## MATH 3100 – Homework  $\#1$

posted August 19, 2024; due August 26 by end-of-day

It requires a very unusual mind to undertake the analysis of the obvious. – A.N. Whitehead

Section and exercise numbers correspond to the notes of Dr. Adams. Assignments are expected to be neat and stapled. Illegible work may not be marked.

- 1. §1.1: Exercise 4.
- 2. §1.1: Exercise 5.
- 3. §1.1: Exercise 8.
- 4. §1.2: Exercise 5.
- 5. §1.2: Exercise 10.
- 6. §1.2: Exercise 14(b).
- 7. The following is a statement of complete induction with a different base case:

Suppose  $S \subseteq \mathbb{N}$ . Let  $n_0 \in \mathbb{N}$ , and suppose both of the following hold:

- (i)  $n_0 \in S$ ,
- (ii) if *n* is a natural number with  $n \geq n_0$ , and all of  $n_0, n_0 + 1, \ldots, n \in S$ , then  $n+1 \in S$ .

Then  $S \supseteq \{n \in \mathbb{N} : n \geq n_0\}.$ 

We will take this as a basic principle of mathematical reasoning.

In class we considered the following statement: For every  $n \in \mathbb{N}$  with  $n \geq 12$ , one can make n cents postage out of 4 cent and 5 cent stamps. Fill in the details of the following proof. For your submission, you are expected to **write out the complete** argument on your own sheet of paper!

Let  $S = \{n \in \mathbb{N} :$  one can make n cents postage out of 4 and 5 cent stamps. want to show that  $S \supseteq {n \in \mathbb{N} : n \ge 12}$ . We apply complete induction with base case  $n_0 = 12$ .

First,  $12 \in S$ , since [fill this in!].

Now let  $n \in \mathbb{N}$  where  $n \geq 12$ , and assume that all of  $12, 13, \ldots n \in S$ . We will show  $n + 1 \in S$ . If  $n = 12, 13$ , or 14, then  $n + 1 \in S$  since  $[\underline{\text{fill this in } !}]$ .

Thus, we can assume  $n \ge 15$ . Then  $n + 1 \ge 16$ , and  $(n + 1) - 4 \ge 12$ . Therefore, [fill this in!].

Hence,  $n + 1 \in S$ . By complete induction, S contains all natural numbers  $n \ge 12$ , as desired.

- 8. §1.2: Exercise 19.
- 9. Define real numbers  $\alpha$  and  $\beta$  by  $\alpha = \frac{1+\sqrt{5}}{2}$  $\frac{\sqrt{5}}{2}$  and  $\beta = \frac{1-\sqrt{5}}{2}$  $\frac{\sqrt{5}}{2}$ .
	- (a) Check that  $\alpha$  and  $\beta$  are roots of the polynomial  $x^2 x 1$ .
- (b) Using (a), deduce that  $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$  and  $\beta^{n+1} = \beta^n + \beta^{n-1}$ , for every integer n. (First use (a) to explain why this holds when  $n = 1$ . Then deduce the general case. For the general case you don't need induction, just algebra!)
- (c) Recall that the Fibonacci sequence  ${F_n}$  is defined by  $F_1 = 1, F_2 = 1$ , and the recurrence  $F_{n+1} = F_n + F_{n-1}$  for  $n \geq 2$ . Use complete induction to prove that  $\frac{\alpha^n - \beta^n}{\sqrt{5}} = F_n$  for all natural numbers *n*. Hint: The result of (b) will be useful.
- 10. The following argument is an alleged proof that in any finite group of people, all of them have the same height:

Let S be the set of natural numbers n for which the statement "every group of  $n$  people share the same height" is true. Obviously the statement is true if there is just one person, so  $1 \in S$ . Now we suppose that  $n \in S$ , and we prove that  $n + 1 \in S$ . Take any group of  $n + 1$  people, say  $A_1, \ldots, A_{n+1}$ . Since  $n \in S$ , it must be that  $A_1, \ldots, A_n$  all share the same height, and similarly for  $A_2, \ldots, A_{n+1}$ . But these two groups overlap; for instance, the second person  $A_2$  is in both. So all of our  $n + 1$  people have the same height (in fact, everyone is the same height as  $A_2$ ). Thus,  $n + 1 \in S$ . So by induction, S is all of the natural numbers.

Clearly explain the mistake in the proof.