MATH 3100 – Homework #7 posted November 13, 2024; due November 20, 2024

Limits, like fears, are often just an illusion. – Michael Jordan

Required problems

1. For this problem, you may assume that $\sin x$ and $\cos x$ are defined and continuous on all of **R**. You may also assume that the function x^{π} , with domain $(0, \infty)$, is continuous on $(0, \infty)$. Let

$$f(x) = (\sin^2 x + \cos^6 x)^{\pi}.$$

- (a) What is the domain of f(x)? Justify your answer.
- (b) Using theorems stated in class or in the textbook (Ross), explain why f(x) is continuous.
- 2. Let $f(x) = 2x \cos(1/x)$ for $x \neq 0$ and set f(0) = 0. Show that f is continuous at 0 by directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.
- 3. Prove that $f(x) = x^3$ is continuous at x = 2 by <u>directly verifying the ϵ - δ definition of continuity. Do *not* use the sequential criterion.</u>
- 4. (Squeeze Lemma for sequences) Suppose $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are three sequences satisfying

$$a_n \leq b_n \leq c_n \quad \text{for all } n \in \mathbf{N}.$$

Suppose there is a real number L such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$. Prove that $\lim_{n\to\infty} b_n = L$.

Remark. This problem could have been assigned in Chapter 1; no new theory is required.

5. (Squeeze Lemma for functions) Let f_1, f_2 , and f_3 be three functions defined on all of **R**, and let *a* be a real number. Suppose that

$$f_1(x) \le f_2(x) \le f_3(x)$$
 for all $x \in \mathbf{R}$.

Suppose also that there is a real number L for which

$$\lim_{x \to a} f_1(x) = \lim_{x \to a} f_3(x) = L.$$

Prove that

$$\lim_{x \to a} f_2(x) = L.$$

6. Let f be a real-valued function with domain D, and let $a \in \mathbf{R}$. Suppose that δ_1, δ_2 are positive real numbers for which $S_1 = (a - \delta_1, a + \delta_1) \setminus \{a\}$ and $S_2 = (a - \delta_2, a + \delta_2) \setminus \{a\}$ are both contained in D.

Let $L \in \mathbf{R}$. Suppose that whenever $\{x_n\}$ is a sequence in S_1 for which $x_n \to a$, we have $f(x_n) \to L$. Prove that whenever $\{x_n\}$ is a sequence in S_2 for which $x_n \to a$, we have $f(x_n) \to L$.

This shows that — at least in the case when $L \in \mathbf{R}$ — which δ we use to check if $\lim_{x \to a} f(x) = L$ doesn't matter, as long as $(a - \delta, a + \delta) \setminus \{a\} \subseteq D$.

Recommended problems (from Ross)

 $17: 3(a,c,f,g,h), \, 8, \, 11, \, 15 \\ 20: \, 1, \, 9, \, 11, \, 13$