MATH 3100/3100H homework – Homework #1

posted August 18, 2025; due August 27 by end-of-day

It requires a very unusual mind to undertake the analysis of the obvious. - A.N. Whitehead

Section and exercise numbers correspond to the notes of Dr. Adams. Assignments are expected to be **neat** and **stapled**. **Illegible work may not be marked**.

- 1. §1.1: Exercise 4.
- 2. §1.1: Exercise 5.
- 3. §1.1: Exercise 8.
- 4. §1.2: Exercise 5.
- 5. §1.2: Exercise 10.
- 6. §1.2: Exercise 14(b).
- 7. The following is a statement of complete induction with a different base case:

Suppose $S \subseteq \mathbb{N}$. Let $n_0 \in \mathbb{N}$, and suppose both of the following hold:

- (i) $n_0 \in S$,
- (ii) if n is a natural number with $n \geq n_0$, and all of $n_0, n_0 + 1, \ldots, n \in S$, then $n+1 \in S$.

Then $S \supseteq \{n \in \mathbf{N} : n \ge n_0\}.$

We will take this as a basic principle of mathematical reasoning.

On Wednesday, 8/20, we will discuss the following statement: For every $n \in \mathbb{N}$ with $n \geq 12$, one can make n cents postage out of 4 cent and 5 cent stamps. What follows below is one way of formalizing the informal argument we will give in class. Your job: Write out the complete argument on your own sheet of paper, filling in the details!

Let $S = \{n \in \mathbb{N} : \text{one can make } n \text{ cents postage out of 4 and 5 cent stamps}\}$. We want to show that $S \supseteq \{n \in \mathbb{N} : n \ge 12\}$. We apply complete induction with base case $n_0 = 12$.

First, $12 \in S$, since [fill this in!].

Now let $n \in \mathbb{N}$ where $n \geq 12$, and assume that all of $12, 13, \ldots n \in S$. We will show $n+1 \in S$. If n=12, 13, or 14, then $n+1 \in S$ since [fill this in !].

Thus, we can assume $n \ge 15$. Then $n + 1 \ge 16$, and $(n + 1) - 4 \ge 12$. Therefore, [fill this in!].

Hence, $n+1 \in S$. By complete induction, S contains all natural numbers $n \geq 12$, as desired.

- 8. §1.2: Exercise 19.
- 9. Define real numbers α and β by $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.

- (a) Check that α and β are roots of the polynomial $x^2 x 1$.
- (b) Using (a), deduce that $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$ and $\beta^{n+1} = \beta^n + \beta^{n-1}$, for every integer n. (First use (a) to explain why this holds when n = 1. Then deduce the general case. For the general case you don't need induction, just algebra!)
- (c) Recall that the Fibonacci sequence $\{F_n\}$ is defined by $F_1=1, F_2=1$, and the recurrence $F_{n+1}=F_n+F_{n-1}$ for $n\geq 2$. Use complete induction to prove that $\frac{\alpha^n-\beta^n}{\sqrt{5}}=F_n$ for all natural numbers n. Hint: The result of (b) will be useful.
- 10. The following argument is an *alleged* proof that in any finite group of people, all of them have the same height:

Let S be the set of natural numbers n for which the statement "every group of n people share the same height" is true. Obviously the statement is true if there is just one person, so $1 \in S$. Now we suppose that $n \in S$, and we prove that $n+1 \in S$. Take any group of n+1 people, say A_1, \ldots, A_{n+1} . Since $n \in S$, it must be that A_1, \ldots, A_n all share the same height, and similarly for A_2, \ldots, A_{n+1} . But these two groups overlap; for instance, the second person A_2 is in both. So all of our n+1 people have the same height (in fact, everyone is the same height as A_2). Thus, $n+1 \in S$. So by induction, S is all of the natural numbers.

Clearly explain the mistake in the proof.

Extra problems for 3100H

These problems are mandatory for students enrolled in MATH 3100H. For 3100 students, a 3100H problem may be worked for extra credit (up to half the point value).

- 11. Throughout this problem, $\sqrt{2}$ denotes the positive real square root of 2, so that $\sqrt{2} = 1.414...$
 - (a) Suppose that m is an integer for which $m\sqrt{2}$ is also an integer. Write $m\sqrt{2} = n$, where $n \in \mathbf{Z}$. (Remember that the symbol \mathbf{Z} denotes the set of integers.) Explain why $(n-m)\sqrt{2}$ is also an integer.
 - (b) Using strong induction and your observation in (a), show that there is no positive integer m for which $m\sqrt{2}$ is an integer.
 - (c) What you proved in part (b) is another way of stating a famous classical theorem. Which theorem?
- 12. Let F_n be the *n*th Fibonacci number, as defined earlier in this problem set. Prove that for all natural numbers $n \geq 2$, we have $F_{n-1}F_{n+1} F_n^2 = (-1)^n$. You may **not** use the formula for the Fibonacci numbers derived in Problem 9. Instead, work directly from the recurrence relation defining the Fibonacci numbers.