
MATH 3100/3100H homework – Homework #1
posted August 18, 2025; due August 27 by end-of-day

It requires a very unusual mind to undertake the analysis of the obvious. – A.N. Whitehead

Section and exercise numbers correspond to the notes of Dr. Adams. Assignments are ex-
pected to be neat and stapled. Illegible work may not be marked.

1. §1.1: Exercise 4.

2. §1.1: Exercise 5.

3. §1.1: Exercise 8.

4. §1.2: Exercise 5.

5. §1.2: Exercise 10.

6. §1.2: Exercise 14(b).

7. The following is a statement of complete induction with a different base case:

Suppose S ⊆ N. Let n0 ∈ N, and suppose both of the following hold:

(i) n0 ∈ S,

(ii) if n is a natural number with n ≥ n0, and all of n0, n0 + 1, . . . , n ∈ S, then
n+ 1 ∈ S.

Then S ⊇ {n ∈ N : n ≥ n0}.

We will take this as a basic principle of mathematical reasoning.

On Wednesday, 8/20, we will discuss the following statement: For every n ∈ N with
n ≥ 12, one can make n cents postage out of 4 cent and 5 cent stamps. What follows
below is one way of formalizing the informal argument we will give in class. Your job:
Write out the complete argument on your own sheet of paper, filling in the
details!

Let S = {n ∈ N : one can make n cents postage out of 4 and 5 cent stamps}. We
want to show that S ⊇ {n ∈ N : n ≥ 12}. We apply complete induction with base
case n0 = 12.

First, 12 ∈ S, since [fill this in!].

Now let n ∈ N where n ≥ 12, and assume that all of 12, 13, . . . n ∈ S. We will
show n+ 1 ∈ S. If n = 12, 13, or 14, then n+ 1 ∈ S since [fill this in !].

Thus, we can assume n ≥ 15. Then n+ 1 ≥ 16, and (n+ 1)− 4 ≥ 12. Therefore,
[fill this in!].

Hence, n+1 ∈ S. By complete induction, S contains all natural numbers n ≥ 12,

as desired.

8. §1.2: Exercise 19.

9. Define real numbers α and β by α = 1+
√
5

2
and β = 1−

√
5

2
.



(a) Check that α and β are roots of the polynomial x2 − x− 1.

(b) Using (a), deduce that αn+1 = αn+αn−1 and βn+1 = βn+βn−1, for every integer
n. (First use (a) to explain why this holds when n = 1. Then deduce the general
case. For the general case you don’t need induction, just algebra!)

(c) Recall that the Fibonacci sequence {Fn} is defined by F1 = 1, F2 = 1, and the
recurrence Fn+1 = Fn + Fn−1 for n ≥ 2.

Use complete induction to prove that αn−βn
√
5

= Fn for all natural numbers n.

Hint: The result of (b) will be useful.

10. The following argument is an alleged proof that in any finite group of people, all of
them have the same height:

Let S be the set of natural numbers n for which the statement “every group of

n people share the same height” is true. Obviously the statement is true if there

is just one person, so 1 ∈ S. Now we suppose that n ∈ S, and we prove that

n + 1 ∈ S. Take any group of n + 1 people, say A1, . . . , An+1. Since n ∈ S, it

must be that A1, . . . , An all share the same height, and similarly for A2, . . . , An+1.

But these two groups overlap; for instance, the second person A2 is in both. So

all of our n+ 1 people have the same height (in fact, everyone is the same height

as A2). Thus, n+ 1 ∈ S. So by induction, S is all of the natural numbers.

Clearly explain the mistake in the proof.
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Extra problems for 3100H

These problems are mandatory for students enrolled in MATH 3100H. For 3100 students, a
3100H problem may be worked for extra credit (up to half the point value).

11. Throughout this problem,
√
2 denotes the positive real square root of 2, so that

√
2 =

1.414 . . . .

(a) Suppose that m is an integer for which m
√
2 is also an integer. Write m

√
2 = n,

where n ∈ Z. (Remember that the symbol Z denotes the set of integers.) Explain
why (n−m)

√
2 is also an integer.

(b) Using strong induction and your observation in (a), show that there is no positive
integer m for which m

√
2 is an integer.

(c) What you proved in part (b) is another way of stating a famous classical theorem.
Which theorem?

12. Let Fn be the nth Fibonacci number, as defined earlier in this problem set. Prove that
for all natural numbers n ≥ 2, we have Fn−1Fn+1 −F 2

n = (−1)n. You may not use the
formula for the Fibonacci numbers derived in Problem 9. Instead, work directly from
the recurrence relation defining the Fibonacci numbers.
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