MATH 3100 – Homework #3

posted September 8, 2025; due by end of day on Wednesday, September 17

When I was a child, the Earth was said to be two billion years old. Now scientists say it's four and a half billion. So that makes me two and a half billion. — Paul Erdős

Section and exercise numbers correspond to the online notes. Assignments are expected to be **neat** and **stapled**, with problems arranged in the order they appear below. **Illegible** work may not be marked.

Required problems

- 1. §1.4: 10
- 2. §1.4: 15
- 3. §1.4: 17
- 4. §1.4: 23
- 5. §1.5: 3
- 6. §1.5: 6

Recommended problems (NOT to turn in)

§1.4: 11, 20, 21, 22

 $\S 1.5: 7(a)$

MATH 3100H problems

7. (Cesaro Means) Let $\{x_n\}$ be a sequence that converges to 0. Define a new sequence $\{y_n\}$ by the rule

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 for each $n \in \mathbf{N}$.

You should think of y_n as the "running average" of the first n terms from the original sequence.

Since convergent sequences are bounded, we can pick a real number $M \geq 0$ with each $|x_n| \leq M$.

(a) Let $\epsilon > 0$, and choose $N_0 \in \mathbf{N}$ with $|x_n| < \frac{1}{2}\epsilon$ for all $n \geq N_0$. Prove that for all natural numbers $n \geq N_0$, we have

$$|y_n| \le M \frac{N_0}{n} + \frac{1}{2}\epsilon.$$

- (b) Using the result of (a), prove that $y_n \to 0$.
- 8. (continuation)
 - (a) Now suppose $\{x_n\}$ is a sequence that converges to L, where L is an arbitrary real number (not necessarily 0 as in the last problem). As before, define $\{y_n\}$ by letting

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 for each $n \in \mathbb{N}$. (*)

Prove that $y_n \to L$.

Don't reinvent the wheel. Find a way to use the result of Problem 7.

(b) Explicitly describe a sequence of real numbers $\{x_n\}$ for which $\{x_n\}$ diverges but nevertheless $\{y_n\}$, as defined by (*), converges. Justify your answer. That is, prove both that $\{x_n\}$ diverges and that the corresponding sequence $\{y_n\}$ converges.

2