MATH 3100 - Homework \#1

posted January 12, 2024; due January 22 by end-of-day

It requires a very unusual mind to undertake the analysis of the obvious. - A.N. Whitehead
Section and exercise numbers correspond to the notes of Dr. Adams. Assignments are expected to be neat and stapled. Illegible work may not be marked.

1. §1.1: Exercise 4.
2. §1.1: Exercise 5.
3. §1.1: Exercise 8.
4. §1.2: Exercise 5.
5. §1.2: Exercise 10.
6. §1.2: Exercise 14(b).
7. The following is a statement of complete induction with a different base case:

Suppose $S \subseteq \mathbf{N}$. Let $n_{0} \in \mathbf{N}$, and suppose both of the following hold:
(i) $n_{0} \in S$,
(ii) if n is a natural number with $n \geq n_{0}$, and all of $n_{0}, n_{0}+1, \ldots, n \in S$, then $n+1 \in S$.

Then $S \supseteq\left\{n \in \mathbf{N}: n \geq n_{0}\right\}$.
We will take this as a basic principle of mathematical reasoning.
In class we considered the following statement: For every $n \in \mathbf{N}$ with $n \geq 12$, one can make n cents postage out of 4 cent and 5 cent stamps. Fill in the details of the following proof. For your submission, you are expected to write out the complete argument on your own sheet of paper!

Let $S=\{n \in \mathbf{N}$: one can make n cents postage out of 4 and 5 cent stamps $\}$. We want to show that $S \supseteq\{n \in \mathbf{N}: n \geq 12\}$. We apply complete induction with base case $n_{0}=12$.
First, $12 \in S$, since [fill this in!].
Now let $n \in \mathbf{N}$ where $n \geq 12$, and assume that all of $12,13, \ldots n \in S$. We will show $n+1 \in S$. If $n=12,13$, or 14 , then $n+1 \in S$ since [fill this in !].
Thus, we can assume $n \geq 15$. Then $n+1 \geq 16$, and $(n+1)-4 \geq 12$. Therefore, [fill this in!].
Hence, $n+1 \in S$. By complete induction, S contains all natural numbers $n \geq 12$, as desired.
8. §1.2: Exercise 19.
9. Define real numbers α and β by $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.
(a) Check that α and β are roots of the polynomial $x^{2}-x-1$.
(b) Using (a), deduce that $\alpha^{n+1}=\alpha^{n}+\alpha^{n-1}$ and $\beta^{n+1}=\beta^{n}+\beta^{n-1}$, for every integer n. (First use (a) to explain why this holds when $n=1$. Then deduce the general case. For the general case you don't need induction, just algebra!)
(c) Recall that the Fibonacci sequence $\left\{F_{n}\right\}$ is defined by $F_{1}=1, F_{2}=1$, and the recurrence $F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 2$.
Use complete induction to prove that $\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}=F_{n}$ for all natural numbers n.
Hint: The result of (b) will be useful.
10. The following argument is an alleged proof that in any finite group of people, all of them have the same height:

Let S be the set of natural numbers n for which the statement "every group of n people share the same height" is true. Obviously the statement is true if there is just one person, so $1 \in S$. Now we suppose that $n \in S$, and we prove that $n+1 \in S$. Take any group of $n+1$ people, say A_{1}, \ldots, A_{n+1}. Since $n \in S$, it must be that A_{1}, \ldots, A_{n} all share the same height, and similarly for A_{2}, \ldots, A_{n+1}. But these two groups overlap; for instance, the second person A_{2} is in both. So all of our $n+1$ people have the same height (in fact, everyone is the same height as A_{2}). Thus, $n+1 \in S$. So by induction, S is all of the natural numbers.

Clearly explain the mistake in the proof.

