MATH 3100 - Homework \#2

posted January 22, 2024; due by end-of-day on January 31, 2024
'Obvious' is the most dangerous word in mathematics. - E.T. Bell
Section and exercise numbers correspond to the online notes. Assignments are expected to be neat and stapled. Illegible work may not be marked.

Required problems

1. Let $a_{n}=2 n$ for all $n \in \mathbf{N}$, and let $b_{n}=2^{n}$ for all $n \in \mathbf{N}$. Show that $\left\{b_{n}\right\}$ is a subsequence of $\left\{a_{n}\right\}$ by writing down a strictly increasing function $g: \mathbf{N} \rightarrow \mathbf{N}$ with $b_{n}=a_{g(n)}$ for all $n \in \mathbf{N}$.
2. §1.3, Exercise 8 (no proofs necessary)
3. §1.3, Exercise 9 (no proofs necessary)
4. §1.3, Exercise 13
5. §1.3, Exercise 15
6. Let $\left\{a_{n}\right\}$ be the sequence defined by $a_{n}=n^{2}-7 n+11$ for all $n \in \mathbf{N}$. Find a value of $N \in \mathbf{N}$ such that $a_{n} \leq a_{n+1}$ for all $n \geq N$. Justify your answer.
7. Show that if $\left\{a_{n}\right\}$ is a sequence, then $\lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. (Remember that an if-and-only-if statement requires a proof for both directions.)
8. In class, we will show that if $0<r<1$, then $\lim _{n \rightarrow \infty} r^{n}=0$. We will also show that if $r>1$, then $\left\{r^{n}\right\}$ is not bounded. You may assume these two results for this exercise.
(a) Suppose that $-1<r<0$. Prove that $\lim _{n \rightarrow \infty} r^{n}=0$.
(b) Suppose that $r<-1$. Prove that $\left\{r^{n}\right\}$ is unbounded. Deduce that $\left\{r^{n}\right\}$ diverges in this case.

Hint: Problems 5 and 7 (above) may be useful.
9. $\S 1.4$, Exercise 2
10. §1.4, Exercise 8

Recommended problems (NOT to turn in)

§1.3: $14,17,18,19,20,25$
§1.4: $1,3,4,5,6,7$

