MATH 3100 - Homework \#4

posted February 16, 2024; due February 23, 2024

Answer the questions, then question the answers. - Glenn Stevens
Section and exercise numbers correspond to the online notes. Assignments are expected to be neat and stapled, with problems submitted in the order they appear below. Illegible work may not be marked.

Required problems

1. §1.5: 6

In the following problems, lub A denotes the least upper bound of the set A while glb A denotes its greatest lower bound. You are warned that outside of this class, it is more common to see sup A denoting the least upper bound (sup for "supremum") and $\inf A$ denoting the greatest lower bound (inf for "infimum").
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be Cauchy sequences. Prove, directly from the definition of a Cauchy sequence, that $\left\{a_{n}+b_{n}\right\}$ is also Cauchy. Do not assume that Cauchy sequences converge.
3. Let $\left\{a_{n}\right\}$ be a bounded increasing sequence. By the completeness axiom, we know $\left\{a_{n}\right\}$ converges to a real number limit.
Show that in fact $\left\{a_{n}\right\}$ converges to lub $\left\{a_{n}: n \in \mathbf{N}\right\}$.
Don't be thrown off by the notation: $\left\{a_{n}\right\}$ denotes a sequence, while $\left\{a_{n}: n \in \mathbf{N}\right\}$ denotes the set of real numbers appearing as terms of that sequence.
4. Let S be a nonempty subset of \mathbf{R} that is bounded below.
(a) Let $S^{\prime}=\{-s: s \in S\}$. Prove that S^{\prime} is bounded above.
(b) Let $U=$ lub S^{\prime}. Show that $-U$ is the greatest lower bound of S.

Hence, the LUB property of \mathbf{R} implies the GLB property of \mathbf{R}.
5. Show that if A and B are nonempty sets of real numbers that are bounded above, and $A \subseteq B$, then lub $A \leq \operatorname{lub} B$.

Hint. There's a very short solution once you understand all the definitions.
6. Let $\left\{a_{n}\right\}$ be a sequence that is bounded above. For each natural number k, define the set

$$
T_{k}=\left\{a_{n}: n \geq k\right\}
$$

We refer to T_{k} as the k-tail set: it is the collection of all real numbers that appear in the sequence at some index at least k.
Since $\left\{a_{n}\right\}$ is bounded above, each T_{k} is also bounded above. Thus, the Least Upper Bound property implies that each T_{k} has a least upper bound. We let L_{k} denote the least upper bound of T_{k}; that is,

$$
L_{k}=\operatorname{lub}\left\{a_{n}: n \geq k\right\} .
$$

(So far you are being told all of this; you are not asked to prove the above facts.)
(a) Show that the sequence $L_{1}, L_{2}, L_{3}, \ldots$ is decreasing.
(b) Show that if V is a lower bound on $\left\{a_{n}\right\}$, then V is also a lower bound on $\left\{L_{k}\right\}$.
(c) Quickly explain why (a) and (b) imply that $\left\{L_{k}\right\}$ converges.

Remark. The limit of the sequence $\left\{L_{k}\right\}$ in part (c) is denoted "limsup a_{n} ". That is,

$$
\limsup a_{n}=\lim \operatorname{lub}\left\{a_{n}: n \geq k\right\} .
$$

(This looks less weird when you remember that sup is commonly used in place of lub.)
7. (continuation) Let $\left\{a_{n}\right\}$ be sequence that is bounded above and let $L=\lim \sup a_{n}$. That is, $L=\lim L_{k}$, where the numbers L_{k} are defined as in the last problem.
(a) Explain why L is a lower bound on $\left\{L_{k}\right\}$. You may cite results mentioned previously in class.
(b) Show that for every $\epsilon>0$, and every natural number k, there is a natural number $n \geq k$ with $a_{n}>L-\epsilon$. Hint. Could $L-\epsilon$ be an upper bound on $T_{k}=\left\{a_{n}: n \geq k\right\} ?$
8. (continuation) Keep all notations and assumptions as in Exercises 6 and onwards.
(a) Let $\epsilon>0$. Show that if k is a natural number with $L_{k}<L+\epsilon$, then $a_{n}<L+\epsilon$ for all $n \geq k$.
(b) Show that for every $\epsilon>0$, there is an $K \in \mathbf{N}$ with $a_{k}<L+\epsilon$ for all natural numbers $k \geq K$.
9. (continution, and the BIG PAYOFF FOR ALL THESE EXERCISES) Keep all notations and assumptions as in Exercises 6 and onwards. Show that there is a subsequence of $\left\{a_{n}\right\}$ converging to $\lim \sup a_{n}$.

Remark. With a little more work, it can be proved that any convergent subsequence of $\left\{a_{n}\right\}$ converges to a number at most L. That is, $\lim \sup a_{n}$ is the largest limit of any convergent subsequence of $\left\{a_{n}\right\}$. Try showing this as practice! The lim sup is a big deal if you go in in real analysis.

Recommended problems (NOT to turn in)

§1.6: 9, 10, 12

