MATH 3100 – Homework #4 posted February 16, 2024; due February 23, 2024

Answer the questions, then question the answers. - Glenn Stevens

Section and exercise numbers correspond to the online notes. Assignments are expected to be **neat** and **stapled**, with problems submitted **in the order they appear below**. **Illegible** work may not be marked.

Required problems

1. $\S1.5:6$

In the following problems, lub A denotes the least upper bound of the set A while glb A denotes its greatest lower bound. You are warned that outside of this class, it is more common to see sup A denoting the least upper bound (sup for "supremum") and inf A denoting the greatest lower bound (inf for "infimum").

- 2. Let $\{a_n\}$ and $\{b_n\}$ be Cauchy sequences. Prove, directly from the definition of a Cauchy sequence, that $\{a_n + b_n\}$ is also Cauchy. Do not assume that Cauchy sequences converge.
- 3. Let $\{a_n\}$ be a bounded increasing sequence. By the completeness axiom, we know $\{a_n\}$ converges to a real number limit.

Show that in fact $\{a_n\}$ converges to lub $\{a_n : n \in \mathbf{N}\}$.

Don't be thrown off by the notation: $\{a_n\}$ denotes a sequence, while $\{a_n : n \in \mathbb{N}\}$ denotes the *set* of real numbers appearing as terms of that sequence.

- 4. Let S be a nonempty subset of \mathbf{R} that is bounded below.
 - (a) Let $S' = \{-s : s \in S\}$. Prove that S' is bounded above.
 - (b) Let U = lub S'. Show that -U is the greatest lower bound of S.

Hence, the LUB property of ${\bf R}$ implies the GLB property of ${\bf R}.$

5. Show that if A and B are nonempty sets of real numbers that are bounded above, and $A \subseteq B$, then $lub A \leq lub B$.

Hint. There's a very short solution once you understand all the definitions.

6. Let $\{a_n\}$ be a sequence that is bounded above. For each natural number k, define the set

$$T_k = \{a_n : n \ge k\}.$$

We refer to T_k as the k-tail set: it is the collection of all real numbers that appear in the sequence at some index at least k.

Since $\{a_n\}$ is bounded above, each T_k is also bounded above. Thus, the Least Upper Bound property implies that each T_k has a least upper bound. We let L_k denote the least upper bound of T_k ; that is,

$$L_k = \operatorname{lub} \{a_n : n \ge k\}.$$

(So far you are being told all of this; you are not asked to prove the above facts.)

- (a) Show that the sequence L_1, L_2, L_3, \ldots is decreasing.
- (b) Show that if V is a lower bound on $\{a_n\}$, then V is also a lower bound on $\{L_k\}$.
- (c) Quickly explain why (a) and (b) imply that $\{L_k\}$ converges.

Remark. The limit of the sequence $\{L_k\}$ in part (c) is denoted "lim sup a_n ". That is,

 $\limsup a_n = \limsup \log \{a_n : n \ge k\}.$

(This looks less weird when you remember that sup is commonly used in place of lub.)

- 7. (continuation) Let $\{a_n\}$ be sequence that is bounded above and let $L = \limsup a_n$. That is, $L = \lim L_k$, where the numbers L_k are defined as in the last problem.
 - (a) Explain why L is a lower bound on $\{L_k\}$. You may cite results mentioned previously in class.
 - (b) Show that for every ε > 0, and every natural number k, there is a natural number n ≥ k with a_n > L − ε.
 Hint. Could L − ε be an upper bound on T_k = {a_n : n ≥ k}?
- 8. (continuation) Keep all notations and assumptions as in Exercises 6 and onwards.
 - (a) Let $\epsilon > 0$. Show that if k is a natural number with $L_k < L + \epsilon$, then $a_n < L + \epsilon$ for all $n \ge k$.
 - (b) Show that for every $\epsilon > 0$, there is an $K \in \mathbf{N}$ with $a_k < L + \epsilon$ for all natural numbers $k \ge K$.
- 9. (continution, and the BIG PAYOFF FOR ALL THESE EXERCISES) Keep all notations and assumptions as in Exercises 6 and onwards. Show that there is a subsequence of $\{a_n\}$ converging to $\limsup a_n$.

Remark. With a little more work, it can be proved that any convergent subsequence of $\{a_n\}$ converges to a number at most *L*. That is, $\limsup a_n$ is the largest limit of any convergent subsequence of $\{a_n\}$. Try showing this as practice! The $\limsup sup$ is a big deal if you go in in real analysis.

Recommended problems (NOT to turn in)

§1.6: 9, 10, 12