MATH 3100 - Homework \#7

posted April 12, 2024; due April 15, 2024

Limits, like fears, are often just an illusion. - Michael Jordan

Required problems

1. For this problem, you may assume that $\sin x$ and $\cos x$ are defined and continuous on all of \mathbf{R}. You may also assume that the function x^{π}, with domain $(0, \infty)$, is continuous on $(0, \infty)$. Let

$$
f(x)=\left(\sin ^{2} x+\cos ^{6} x\right)^{\pi}
$$

(a) What is the domain of $f(x)$? Justify your answer.
(b) Using theorems stated in class or in the textbook, explain why $f(x)$ is continuous.
2. Let $f(x)=2 x \cos (1 / x)$ for $x \neq 0$ and set $f(0)=0$. Show that f is continuous at 0 by directly verifying the $\epsilon-\delta$ definition of continuity. Do not use the sequential criterion.
3. Prove that $f(x)=x^{3}$ is continuous at $x=2$ by directly verifying the $\epsilon-\delta$ definition of continuity. Do not use the sequential criterion.
4. (Limits of constants, function version) Let f be a real-valued function defined on a set of real numbers S. Suppose that f is constant on S, say $f(x)=c$ for all $x \in S$. Prove that for every $a \in \bar{S}$,

$$
\lim _{x \rightarrow a^{S}} f(x)=c
$$

5. (Squeeze Lemma for sequences) Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ are three sequences satisfying

$$
a_{n} \leq b_{n} \leq c_{n} \quad \text { for all } n \in \mathbf{N}
$$

Suppose there is a real number L such that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$. Prove that $\lim _{n \rightarrow \infty} b_{n}=L$.

Remark. This problem could have been assigned in Chapter 1; no new theory is required.
6. (Squeeze Lemma for functions) Let f_{1}, f_{2}, and f_{3} be three functions defined on S, and let a be a real number belonging to the closure of S. Suppose that

$$
f_{1}(x) \leq f_{2}(x) \leq f_{3}(x) \quad \text { for all } x \in S
$$

Suppose also that there is a real number L for which

$$
\lim _{x \rightarrow a^{S}} f_{1}(x)=\lim _{x \rightarrow a^{S}} f_{3}(x)=L
$$

Prove that

$$
\lim _{x \rightarrow a^{S}} f_{2}(x)=L
$$

7. Let a and L be a real numbers. Suppose there is an open interval I containing a such that f is defined on $I \backslash\{a\}$ and, with $S=I \backslash\{a\}$,

$$
\lim _{x \rightarrow a^{S}} f(x)=L
$$

Prove that if I^{\prime} is any open interval containing a for which f is defined on $I^{\prime} \backslash\{a\}$, then with $S^{\prime}=I^{\prime} \backslash\{a\}$,

$$
\lim _{x \rightarrow a^{s^{\prime}}} f(x)=L
$$

Remark. This shows our definition of " $\lim _{x \rightarrow a} f(x)=L$ " is independent of the choice of interval I, at least in the case when $L \in \mathbf{R}$. A similar argument could be given when $L= \pm \infty$.

Hint. We are told that $\lim _{x \rightarrow a^{S}} f(x)=L$. Thus, if the x_{n} are elements of $I \backslash\{a\}$ for which $x_{n} \rightarrow a$, then $f\left(x_{n}\right) \rightarrow L$. Now let y_{n} be elements of $I^{\prime} \backslash\{a\}$ for which $y_{n} \rightarrow a$. We have to show that $f\left(y_{n}\right) \rightarrow L$. Start by showing that $y_{n} \in I$ eventually.
8. Let a be a real number. Suppose that f is a real-valued function defined on $I \backslash\{a\}$ for some open interval I containing a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=L
$$

where L is a real number. Give a careful proof that

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L
$$

[In the next problem, you will be asked to prove the converse!]
9. Let a be a real number. Suppose that f is a real-valued function defined on $I \backslash\{a\}$ for some open interval I containing a. Suppose that

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L
$$

where L is a real number. Prove that

$$
\lim _{x \rightarrow a} f(x)=L
$$

Hint. With I as in the problem statement, let x_{n} be a sequence of elements of $I \backslash\{a\}$ for which $x_{n} \rightarrow a$. Suppose for a contradiction that $f\left(x_{n}\right) \nrightarrow L$. Prove that for some $\epsilon>0$, there are infinitely many n with $\left|f\left(x_{n}\right)-L\right| \geq \epsilon$. Now take two cases, according to whether infinitely many of those n have $x_{n}<a$ or infinitely many have $x_{n}>a$.

Recommended problems (from Ross)

§17: 3(a,c,f,g,h), 8, 11, 15
§20: 1, 9, 11, 13

