MATH 3200 – Homework #4

posted October 9, 2024; due at the start of class on October 18, 2024

Assignments are expected to be **neat** and **stapled**. Illegible work may not be marked. Assume — unless explicitly told otherwise — that you are expected to include clear and concise explanations of your reasoning, expressed in complete sentences.

- 1. Let $A = \{3, \{\pi, 3\}, \mathbb{Z}, \pi, \{3\}\}.$
 - (a) Is \mathbf{Z} an element or a subset of A?
 - (b) Give an example of an element of A.
 - (c) Give an example of a (nontrivial) subset of A; nontrivial means a proper subset of A that is not the empty set.
 - (d) Is it possible to give the same answer to the preceding two questions?
 - (e) Compute |A|.
 - (f) How many elements do each of the following have: $\{\}, \emptyset, \text{ and } \{\emptyset\}$?

Explain your answer to (d). For the other parts, the answer alone is sufficient.

2. Let $A = \{x \in \mathbb{Z} : 5 \nmid x - 3\}$ and $B = \{x \in \mathbb{Z} : x = 15k + 3 \text{ for some } k \in \mathbb{Z}\}$. Prove that $A \cap B = \emptyset$.

Recall that to show $A \cap B = \emptyset$, it is enough to assume there is some element in A and B and to derive a contradiction.

- 3. Let $A = \{2, 3, 4, 5\}$ and $B = \{1, 5\}$ be subsets of the universal set $U = \{1, 2, 3, 4, 5\}$. Write out the following sets.
 - (a) A^c
 - (b) B^c
 - (c) $A \cup B$
 - (d) $A \cap B$
 - (e) $A \setminus B$
 - (f) $B \setminus A$

[No justification required.]

4. Call an integer n round if $3 \mid n$, strange if n = 3k + 1 for some $k \in \mathbb{Z}$, and weird if n + 1 is round. Let R, S, and W be the sets of round, strange, and weird integers, respectively.

Let $T = \{n \in \mathbb{Z} : n - 1 \in S\}$. Prove that W = T.

Suggestion. Use the method of element-chasing.

- 5. Suppose A, B, and C are subsets of a universal set U. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. (This is one of our distributive laws.)
- 6. Prove or disprove both of the following. Give a counterexample if the statement is false and a proof via element-chasing if the statement is true.
 - (a) Let A, B, and C be sets with $A \subseteq B$ and $B \subseteq C$. Then $A \subseteq C$.
 - (b) Let A, B, and C be sets where $A \subseteq B$ and $B \in C$. Then $A \in C$.

- 7. Prove or disprove: Let A, B, and X be sets. If $X \subseteq A \cap B$, then $X \subseteq A$ and $X \subseteq B$. Give a counterexample if the statement is false and a proof via element-chasing if the statement is true.
- 8. Suppose A, B, C are subsets of a universal set U.

Use the "beyond element-chasing method" to prove that $A \cap (A \cap B)^c = A \setminus B$. Indicate whenever you use the Commutative Property, the Associative Property, the Distributive Property, and de Morgan's laws.

9. Suppose A, B, C are subsets of a universal set U.

Use the "beyond element-chasing method" to prove that $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$. Indicate whenever you use the Commutative Property, the Associative Property, the Distributive Property, and de Morgan's laws.

10. Let A, B, C, D be sets. Prove that

 $(A \setminus B) \times (C \setminus D) = (A \times C) \setminus [(A \times D) \cup (B \times C)].$