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Characterizing sums of squares

The study of sums of squares goes back at least to the dawn of
modern number theory.

Let [J stand for a generic member of the set {n?>: n=0,1,2,...}.

Theorem (Fermat—Euler)

Let n be a natural number. Then n =040 if
and only if every prime p dividing n with p = 3
(mod 4) shows up to an even power.




Theorem (Lagrange)

Every natural number is of the form
O+ 0O+ 0+ 0.

We teach both results in courses on elementary number theory. But
what about 3 squares?
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Theorem (Legendre)

Let n be a natural number. Then n has the
form O+ O+ O unless n = 4%(8/ + 7) for
some nonnegative integers k and /.




Counting sums of squares

Theorem (1. M. Trivial)
#{n<x:n=0}=Vx+ 0(1).

Theorem (Landau—Ramanujan)

As x — o0, X
<x:n=0+0!~ C—0—me—
#{n<x:n + 0O} NTTA
where 12
1 1\~
C=— 1- = .
V2 11 ( p2>

p=3 (mod 4)

4 of 12



Theorem
For x > 2, we have

#{ngx:n:D+D+D}:gx+O(|ogx).

Proof.
Let’s count exceptions.

#{n<x:n=7 (mod8)}:%+0(1).

#{n<x:n=4m,m=7 (mod 8)}2&—#0(1),

etc. Notice that 1/8 +1/(8-4)+1/(8-4%)+--- =1/6.
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Enter Euler

Let ¢ denote Euler's totient function, so that
¢(n) = #(Z/nZ)".

Question: How often is ¢(n) a sum of squares?




Enter Euler

Let ¢ denote Euler's totient function, so that
¢(n) = #(Z/nZ)".

Question: How often is ¢(n) a sum of squares?

Theorem (Banks, Friedlander, Pomerance, Shparlinski)

For large x,

#{n < x:¢(n) =0} > x07038,
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Let ¢ denote Euler's totient function, so that
¢(n) = #(Z/nZ)".

Question: How often is ¢(n) a sum of squares?

Theorem (Banks, Friedlander, Pomerance, Shparlinski)

For large x,
#{n < x:¢(n) =0} > x07038,

Theorem (Banks, Luca, Saidak, Shparlinski)
For x > 3,

X
(log x)3/2°
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Three squares?

Theorem (P.)
The set of n for which ¢(n) is a sum of three squares has density 7/8.
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Theorem (P.)
The set of n for which ¢(n) is a sum of three squares has density 7/8.

Proof: Let vo(m) be the exponent on the power of 2 sitting inside m,
and let u(m) be the odd part of m, so that

m = 22(M y(m).
According to Legendre,

m# 040+ 0 <= m=4K(8/ 4 7) for some k, /
< 2| vo(m), u(m)=7 (mod 8).
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Let G be the group (Z/2Z) x (Z/8Z)*.
Define a map r: N — G by

m +— (va(m) mod 2, u(m) mod 8).
Then r is a homomorphism of semigroups.

Also,
m# 0+ 040 <= r(m) = (0 mod 2,7 mod 8).

So we want to know how often r(¢(n)) = (0 mod 2,7 mod 8).




We will show that as n ranges over N, the elements r(¢(n)) € G
become equidistributed.

Theorem

For each g € G, the set of n € N for which r(¢(n)) = g has
asymptotic density 1/8.

Recall the following elementary equidistribution criterion:
Lemma

Let g1,82,43, ... be an infinite sequence of elements of a finite
abelian group G. Then {g;}°, is uniformly distributed precisely when

. 1
Jim 2D _x(gn) =0

n<x

for each nontrivial x € G.
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Let x be a nontrivial character of G = (Z/2Z) x (Z/8Z)*. Then
f(n) := x(r(¢(n))) is a multiplicative function. We want to know
that f has mean value zero.

Let M denote the class of multiplicative functions f: N — C with
f(n)k =1 for each n.

Theorem (Halész)

Let f be an arithmetic function with the
property that f € My and

3 1

p: o)z P

diverges. Then f has mean value zero.

For our functions f(n) = x(r(¢(n)), we have f(p) # 1 for an entire
congruence class of primes p modulo 32.
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Thank you!




A parting shot

Let A(n) denote the exponent of the group (Z/nZ)*.

Theorem (P.)

The set of n for which \(n) is a sum of three squares has lower
density > 0 and upper density < 1.

12 of 12



A parting shot

Let A(n) denote the exponent of the group (Z/nZ)*.

Theorem (P.)

The set of n for which \(n) is a sum of three squares has lower
density > 0 and upper density < 1.

Conjecture

The set of n for which \(n) is a sum of three squares does not have
an asymptotic density.
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