Euler's function and sums of squares

Paul Pollack

University of Illinois

July 16, 2010

1 of 12

Characterizing sums of squares

The study of sums of squares goes back at least to the dawn of modern number theory.

Let \Box stand for a generic member of the set $\{n^2 : n = 0, 1, 2, ... \}$.

Theorem (Fermat–Euler)

Let n be a natural number. Then $n = \Box + \Box$ if and only if every prime p dividing n with $p \equiv 3 \pmod{4}$ shows up to an even power.

Theorem (Lagrange) Every natural number is of the form $\Box + \Box + \Box + \Box$.

We teach both results in courses on elementary number theory. But what about 3 squares?

Theorem (Lagrange) Every natural number is of the form $\Box + \Box + \Box + \Box$.

We teach both results in courses on elementary number theory. But what about 3 squares?

Theorem (Legendre)

Let n be a natural number. Then n has the form $\Box + \Box + \Box$ unless $n = 4^k(8l + 7)$ for some nonnegative integers k and l.

Counting sums of squares

Theorem (I. M. Trivial)

$$\#\{n \le x : n = \Box\} = \sqrt{x} + O(1).$$

Theorem (Landau–Ramanujan) $As \ x \to \infty$, $\#\{n \le x : n = \Box + \Box\} \sim C \frac{x}{\sqrt{\log x}}$,

where

$$C = \frac{1}{\sqrt{2}} \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{1}{p^2}\right)^{-1/2}$$

Theorem For $x \ge 2$, we have

$$\#\{n \le x : n = \Box + \Box + \Box\} = \frac{5}{6}x + O(\log x).$$

Proof. Let's count exceptions.

$$\#\{n \le x : n \equiv 7 \pmod{8}\} = \frac{x}{8} + O(1).$$
$$\#\{n \le x : n = 4m, m \equiv 7 \pmod{8}\} = \frac{x}{8 \cdot 4} + O(1),$$
etc. Notice that $1/8 + 1/(8 \cdot 4) + 1/(8 \cdot 4^2) + \dots = 1/6.$

Enter Euler

Let ϕ denote Euler's totient function, so that

$$\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Question: How often is $\phi(n)$ a sum of squares?

Enter Euler

Let ϕ denote Euler's totient function, so that

$$\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Question: How often is $\phi(n)$ a sum of squares?

Theorem (Banks, Friedlander, Pomerance, Shparlinski) For large x,

$$\#\{n \le x : \phi(n) = \Box\} \ge x^{0.7038}$$

Enter Euler

Let ϕ denote Euler's totient function, so that

$$\phi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}.$$

Question: How often is $\phi(n)$ a sum of squares?

Theorem (Banks, Friedlander, Pomerance, Shparlinski) For large x,

$$\#\{n \le x : \phi(n) = \Box\} \ge x^{0.7038}$$

Theorem (Banks, Luca, Saidak, Shparlinski) For $x \ge 3$,

$$\#\{n \le x : \phi(n) = \Box + \Box\} \asymp \frac{x}{(\log x)^{3/2}}$$

Three squares?

Theorem (P.)

The set of n for which $\phi(n)$ is a sum of three squares has density 7/8.

Three squares?

Theorem (P.)

The set of n for which $\phi(n)$ is a sum of three squares has density 7/8.

Proof: Let $v_2(m)$ be the exponent on the power of 2 sitting inside m, and let u(m) be the odd part of m, so that

$$m=2^{\nu_2(m)}u(m).$$

According to Legendre,

$$m \neq \Box + \Box + \Box \iff m = 4^k(8l+7)$$
 for some k, l
 $\iff 2 \mid v_2(m), \quad u(m) \equiv 7 \pmod{8}.$

Let G be the group $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^{\times}$.

Define a map $r \colon \mathbb{N} \to G$ by

$$m \mapsto (v_2(m) \mod 2, u(m) \mod 8).$$

Then *r* is a homomorphism of semigroups.

Also,

$$m \neq \Box + \Box + \Box \iff r(m) = (0 \mod 2, 7 \mod 8).$$

So we want to know how often $r(\phi(n)) = (0 \mod 2, 7 \mod 8)$.

We will show that as *n* ranges over \mathbb{N} , the elements $r(\phi(n)) \in G$ become equidistributed.

Theorem

For each $g \in G$, the set of $n \in \mathbb{N}$ for which $r(\phi(n)) = g$ has asymptotic density 1/8.

Recall the following elementary equidistribution criterion:

Lemma

Let $g_1, g_2, g_3, ...$ be an infinite sequence of elements of a finite abelian group G. Then $\{g_i\}_{i=1}^{\infty}$ is uniformly distributed precisely when

$$\lim_{x\to\infty}\frac{1}{x}\sum_{n\leq x}\chi(g_n)=0$$

for each nontrivial $\chi \in \hat{G}$.

Let χ be a nontrivial character of $G = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/8\mathbb{Z})^{\times}$. Then $f(n) := \chi(r(\phi(n)))$ is a multiplicative function. We want to know that f has mean value zero.

Let \mathcal{M}_k denote the class of multiplicative functions $f : \mathbb{N} \to \mathbb{C}$ with $f(n)^k = 1$ for each n.

Theorem (Halász)

Let f be an arithmetic function with the property that $f \in \mathcal{M}_k$ and

$$\sum_{p: f(p) \neq 1} \frac{1}{p}$$

diverges. Then f has mean value zero.

For our functions $f(n) = \chi(r(\phi(n)))$, we have $f(p) \neq 1$ for an entire congruence class of primes p modulo 32.

10 of 12

Thank you!

Let $\lambda(n)$ denote the exponent of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem (P.)

The set of n for which $\lambda(n)$ is a sum of three squares has lower density > 0 and upper density < 1.

Let $\lambda(n)$ denote the exponent of the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

Theorem (P.)

The set of n for which $\lambda(n)$ is a sum of three squares has lower density > 0 and upper density < 1.

Conjecture

The set of n for which $\lambda(n)$ is a sum of three squares does not have an asymptotic density.