Euler's function and sums of squares

Paul Pollack

University of Illinois
July 16, 2010

Characterizing sums of squares

The study of sums of squares goes back at least to the dawn of modern number theory.

Let \square stand for a generic member of the set $\left\{n^{2}: n=0,1,2, \ldots\right\}$.

Theorem (Fermat-Euler)
Let n be a natural number. Then $n=\square+\square$ if and only if every prime p dividing n with $p \equiv 3$ $(\bmod 4)$ shows up to an even power.

Theorem (Lagrange)

Every natural number is of the form $\square+\square+\square+\square$.

We teach both results in courses on elementary number theory. But what about 3 squares?

Theorem (Lagrange)

Every natural number is of the form

$$
\square+\square+\square+\square .
$$

We teach both results in courses on elementary number theory. But what about 3 squares?

Theorem (Legendre)
Let n be a natural number. Then n has the form $\square+\square+\square$ unless $n=4^{k}(8 l+7)$ for some nonnegative integers k and l.

Counting sums of squares

Theorem (I. M. Trivial)

$$
\#\{n \leq x: n=\square\}=\sqrt{x}+O(1)
$$

Theorem (Landau-Ramanujan)
As $x \rightarrow \infty$,

$$
\#\{n \leq x: n=\square+\square\} \sim C \frac{x}{\sqrt{\log x}}
$$

where

$$
C=\frac{1}{\sqrt{2}} \prod_{p \equiv 3}\left(1-\frac{1}{p^{2}}\right)^{-1 / 2} .
$$

Theorem

For $x \geq 2$, we have

$$
\#\{n \leq x: n=\square+\square+\square\}=\frac{5}{6} x+O(\log x)
$$

Proof.

Let's count exceptions.

$$
\begin{gathered}
\#\{n \leq x: n \equiv 7 \quad(\bmod 8)\}=\frac{x}{8}+O(1) \\
\#\{n \leq x: n=4 m, m \equiv 7 \quad(\bmod 8)\}=\frac{x}{8 \cdot 4}+O(1)
\end{gathered}
$$

etc. Notice that $1 / 8+1 /(8 \cdot 4)+1 /\left(8 \cdot 4^{2}\right)+\cdots=1 / 6$.

Enter Euler

Let ϕ denote Euler's totient function, so that

$$
\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

Question: How often is $\phi(n)$ a sum of squares?

Enter Euler

Let ϕ denote Euler's totient function, so that

$$
\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

Question: How often is $\phi(n)$ a sum of squares?

Theorem (Banks, Friedlander, Pomerance, Shparlinski)
For large x,

$$
\#\{n \leq x: \phi(n)=\square\} \geq x^{0.7038}
$$

Enter Euler

Let ϕ denote Euler's totient function, so that

$$
\phi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times} .
$$

Question: How often is $\phi(n)$ a sum of squares?
Theorem (Banks, Friedlander, Pomerance, Shparlinski)
For large x,

$$
\#\{n \leq x: \phi(n)=\square\} \geq x^{0.7038}
$$

Theorem (Banks, Luca, Saidak, Shparlinski)
For $x \geq 3$,

$$
\#\{n \leq x: \phi(n)=\square+\square\} \asymp \frac{x}{(\log x)^{3 / 2}}
$$

Three squares?

Theorem (P.)

The set of n for which $\phi(n)$ is a sum of three squares has density $7 / 8$.

Three squares?

Theorem (P.)

The set of n for which $\phi(n)$ is a sum of three squares has density $7 / 8$.
Proof: Let $v_{2}(m)$ be the exponent on the power of 2 sitting inside m, and let $u(m)$ be the odd part of m, so that

$$
m=2^{v_{2}(m)} u(m)
$$

According to Legendre,

$$
\begin{aligned}
m \neq \square+\square+\square & \Longleftrightarrow m=4^{k}(8 I+7) \text { for some } k, l \\
& \Longleftrightarrow 2 \mid v_{2}(m), \quad u(m) \equiv 7(\bmod 8) .
\end{aligned}
$$

Let G be the $\operatorname{group}(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 8 \mathbb{Z})^{\times}$.
Define a map $r: \mathbb{N} \rightarrow G$ by

$$
m \mapsto\left(v_{2}(m) \bmod 2, u(m) \bmod 8\right)
$$

Then r is a homomorphism of semigroups.
Also,

$$
m \neq \square+\square+\square \Longleftrightarrow r(m)=(0 \bmod 2,7 \bmod 8) .
$$

So we want to know how often $r(\phi(n))=(0 \bmod 2,7 \bmod 8)$.

We will show that as n ranges over \mathbb{N}, the elements $r(\phi(n)) \in G$ become equidistributed.

Theorem

For each $g \in G$, the set of $n \in \mathbb{N}$ for which $r(\phi(n))=g$ has asymptotic density $1 / 8$.
Recall the following elementary equidistribution criterion:

Lemma

Let $g_{1}, g_{2}, g_{3}, \ldots$ be an infinite sequence of elements of a finite abelian group G. Then $\left\{g_{i}\right\}_{i=1}^{\infty}$ is uniformly distributed precisely when

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x} \chi\left(g_{n}\right)=0
$$

for each nontrivial $\chi \in \hat{G}$.

Let χ be a nontrivial character of $G=(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 8 \mathbb{Z})^{\times}$. Then $f(n):=\chi(r(\phi(n)))$ is a multiplicative function. We want to know that f has mean value zero.

Let \mathcal{M}_{k} denote the class of multiplicative functions $f: \mathbb{N} \rightarrow \mathbb{C}$ with $f(n)^{k}=1$ for each n.

Theorem (Halász)

Let f be an arithmetic function with the property that $f \in \mathcal{M}_{k}$ and

$$
\sum_{p: f(p) \neq 1} \frac{1}{p}
$$

diverges. Then f has mean value zero.
For our functions $f(n)=\chi(r(\phi(n))$, we have $f(p) \neq 1$ for an entire congruence class of primes p modulo 32 .

Thank you!

A parting shot

Let $\lambda(n)$ denote the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$.

Theorem (P.)
The set of n for which $\lambda(n)$ is a sum of three squares has lower density >0 and upper density <1.

A parting shot

Let $\lambda(n)$ denote the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Theorem (P.)
The set of n for which $\lambda(n)$ is a sum of three squares has lower density >0 and upper density <1.

Conjecture

The set of n for which $\lambda(n)$ is a sum of three squares does not have an asymptotic density.

