The exam is cumulative. The following is a “summary of course topics”.

Topical outline

Part I: The Integers

• Axioms: \mathbb{Z} is a commutative ring with $1 \neq 0$, ordered, and satisfies the well-ordering principle (see the initial handout)

• Binomial theorem

• Theory of divisibility
 – basic definitions and properties of divisibility
 – definition of the gcd
 – Euclid’s algorithm for computing the gcd
 – gcd can be written as a linear combination of starting numbers

• Euclid’s lemma

• Unique factorization theorem

• Congruences
 – basic definitions
 – congruence mod m is an equivalence relation
 – Fermat’s little theorem
 – inverses and cancelation; solving $ax \equiv b \mod m$
 – simultaneous congruences and the Chinese remainder theorem

Part II: Rings: First examples

• Ring axioms

• Definition of fields and integral domains

• Detailed discussion of \mathbb{Z}_m
 – \bar{a} is a unit in \mathbb{Z}_m \iff $\gcd(a, m) = 1$
 – for positive integers m, \mathbb{Z}_m is a field \iff m is prime \iff \mathbb{Z}_m is an integral domain

• Definition of \mathbb{Q} from \mathbb{Z} (ordered pairs up to cross-multiplication equivalence); verification that + and · are well-defined

• Definition of \mathbb{C} from \mathbb{R}
• Basic properties of complex numbers
 – basic concepts: complex conjugation, absolute value, polar form
 – multiplication of complex numbers in polar form
 – de Moivre’s theorem
 – \(n \) distinct \(n \)th roots of every nonzero complex number
 – solving linear, quadratic, and cubic equations over \(\mathbb{C} \)

Part III: Polynomials over commutative rings

• Definition of the polynomial ring \(R[x] \)
• Basic properties
 – if \(R \) is a domain, \(\deg(a(x)b(x)) = \deg(a(x)) + \deg(b(x)) \)
 – if \(R \) is a domain, then \(R[x] \) is a domain
 – if \(R \) is a field, then \(u \) is a unit in \(R[x] \iff u \) is a nonzero constant in \(R \)
• Division algorithm in \(F[x] \), \(F \) a field
• gcds in \(F[x] \) and their properties
• irreducibles in \(F[x] \), Euclid’s lemma, unique factorization theorem in \(F[x] \)
• root-factor theorem
• The Fundamental Theorem of Algebra (proof non-examinable)
• testing irreducibility of polynomials with integer coefficients
 – rational root test
 – reduction modulo \(p \)
 – Eisenstein’s criterion

Part IV: Field extensions, part 1

• definition of a field extension
• definition of \(F[\alpha] \), where \(\alpha \) belongs to an extension of \(F \)
• definition of \(f(x) \) splitting completely; definition of a splitting field for \(f(x) \in F[x] \) over \(F \)
• \(F[\alpha] \) is a field if \(\alpha \) is a root of nonconstant polynomial in \(F[x] \)
Part V: Ring homomorphisms

- definition of a ring homomorphism
- kernel of a homomorphism; \(\ker \phi = \{0\} \iff \phi \) is injective
- definition of an ideal of a commutative ring
- \(\mathbb{Z}, F[x], \) and \(\mathbb{Z}[i] \) are principal ideal domains: all ideals are of the form \(\langle a \rangle \) for a single element \(a \)
- construction of the quotient ring \(R/I \), for an ideal \(I \) of \(R \)
- ring isomorphisms (basic properties) and the Fundamental Homomorphism Theorem

Part VI: Field extensions, part 2

- If \(f(x) \in F[x] \) is irreducible, then \(K = F[x]/\langle f(x) \rangle \) is an extension of \(F \) that contains at least one root of \(f(x) \) (namely, \(\bar{x} \))
- If \(f(x) \in F[x] \), there is an extension \(K \) of \(F \) over which \(f \) splits; moreover, there is a splitting field for \(f(x) \) over \(F \)
- definition of the degree of a field extension
- degree is multiplicative in towers
- if \(K = F[\alpha] \) and \(\alpha \) is a root of a degree \(n \) irreducible polynomial over \(F \), then \([K : F] = n \)