MATH 4000/6000 - Final Exam Study Guide
Exam time/location: Friday, May 3, 12:00 PM - 3 PM, usual classroom
The exam is cumulative. You should expect ≤ 10 questions, with a format similar to that used in the three midterms. At most 2 problems will test your knowledge of degrees of field extensions.

Course summary

Part I: The Integers

- Axioms: \mathbb{Z} is a commutative ring with $1 \neq 0$, ordered, and satisfies the well-ordering principle (see the initial handout)
- Binomial theorem
- Theory of divisibility
- basic definitions and properties of divisibility
- definition of the gcd
- Euclid's algorithm for computing the gcd
- gcd can be written as a linear combination of starting numbers
- Euclid's lemma
- Unique factorization theorem
- Congruences
- basic definitions
- congruence mod m is an equivalence relation
- Fermat's little theorem
- inverses and cancelation; solving $a x \equiv b \bmod m$
- simultaneous congruences and the Chinese remainder theorem

Part II: Rings: First examples

- Ring axioms
- Definition of fields and integral domains
- Detailed discussion of \mathbb{Z}_{m}
$-\bar{a}$ is a unit in $\mathbb{Z}_{m} \Longleftrightarrow \operatorname{gcd}(a, m)=1$
- for positive integers m, \mathbb{Z}_{m} is a field $\Longleftrightarrow m$ is prime $\Longleftrightarrow \mathbb{Z}_{m}$ is an integral domain
- Definition of \mathbb{Q} from \mathbb{Z} (ordered pairs up to cross-multiplication equivalence); verification that + and \cdot are well-defined
- Definition of \mathbb{R} via Cauchy sequences: not examinable!

Part III: Polynomials over commutative rings

- Definition of the polynomial ring $R[x]$
- Basic properties
- if R is a domain, then $R[x]$ is a domain
- if R is a domain, $\operatorname{deg}(a(x) b(x))=\operatorname{deg}(a(x))+\operatorname{deg}(b(x))$
- if R is a field, then u is a unit in $R[x] \Longleftrightarrow u$ is a nonzero constant in R
- Division algorithm in $F[x]$ (F a field)
- gcds in $F[x]$ and their properties
- irreducibles in $F[x]$, Euclid's lemma, unique factorization theorem in $F[x]$
- root-factor theorem
- The Fundamental Theorem of Algebra (proof non-examinable)
- testing irreducibility of polynomials with integer coefficients
- rational root test
- reduction modulo p
- Eisenstein's criterion

Part IV: Field extensions, part 1

- definition of $F[\alpha]$, where α belongs to a field extension of F
- definition of $f(x)$ splitting over F; definition of a splitting field for $f(x) \in F[x]$ over F
- $F[\alpha]$ is a field if α is is a root of nonconstant polynomial in $F[x]$

Part V: Ring homomorphisms

- definition of a ring homomorphism
- kernel of a homomorphism; $\operatorname{ker} \phi=\{0\} \Longleftrightarrow \phi$ is injective
- definition of an ideal of a commutative ring
- \mathbb{Z} and $F[x]$ are principal ideal domains: all ideals are of the form $\langle a\rangle$ for a single element a
- construction of the quotient ring R / I, for an ideal I of R
- ring isomorphisms (basic properties) and the Fundamental Homomorphism Theorem
- direct products of rings

Part VI: Field extensions, part 2

- If $f(x) \in F[x]$ is irreducible, then $K=F[x] /\langle f(x)\rangle$ is a field extension of F that also contains at least one root of $f(x)$ (namely, \bar{x})
- If $f(x) \in F[x]$, there is a field extension K of F over which f splits; moreover, there is a splitting field for $f(x)$ over F
- definition of the degree $[K: F]$
- degrees multiply in towers
- if $p(x)$ is irreducible of degree n over F, then $K=F[x] /\langle p(x)\rangle$ is a field extension of F with $[K: F]=n$.
- if $K=F[\alpha]$ where α is a root of a degree n irreducible polynomial in $F[x]$, then $[K: F]=n$

Practice problems over §5.1

1. Find the degree $[K: F]$ in each of the following cases.
(a) $F=\mathbb{Q}, K=\mathbb{Q}[\sqrt{2}]$,
(b) $F=\mathbb{Q}[i], K=\mathbb{Q}[\sqrt{3}, i]$,
(c) $F=\mathbb{Q}[\sqrt{3}+i], K=\mathbb{Q}[\sqrt{3}, i]$.
(d) $F=\mathbb{Q}[i], K=\mathbb{Q}[\sqrt[5]{8}, i]$,
2. (a) Find $[\mathbb{Q}[\sqrt[6]{2}, \sqrt[7]{2}]: \mathbb{Q}]$.
(b) Show: $\mathbb{Q}[\sqrt[6]{2}, \sqrt[8]{2}]=\mathbb{Q}[\sqrt[24]{2}]$. What is $[\mathbb{Q}[\sqrt[6]{2}, \sqrt[8]{2}]: \mathbb{Q}]$?
3. One can show (you are not asked to do so) that the polynomial $p(x)=x^{6}+x^{3}+1$ is irreducible over $F=\mathbb{Z}_{2}$. Let $K=\mathbb{Z}_{2}[x] /\langle p(x)\rangle$ and let $\alpha=\bar{x} \in K$.
(a) Show that if F^{\prime} is a field with $F \subsetneq F^{\prime} \subsetneq K$, then $\left[F^{\prime}: F\right]=2$ or $\left[F^{\prime}: F\right]=3$.
(b) Let $\beta=\alpha^{3}$. Find $[K: F[\beta]]$ and $[F[\beta]: F]$.
4. Let F be a field. Suppose $f(x) \in F[x]$ has degree 3. Prove that there is a field K containing F satisfying (a) $f(x)$ splits over K, (b) $\operatorname{deg} f(x) \leq 6$.
