MATH 4000/6000 - Homework \#2

posted January 24, 2024; due by end of day on January 31, 2024

Abstract

Mathematics is not a deductive science - that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork.

- Paul Halmos (1916-2006)

Assignments are expected to be neat and stapled. Illegible work may not be marked. Starred problems $\left({ }^{*}\right)$ are required for those in MATH 6000 and extra credit for those in MATH 4000.
0. [For practice only: not to turn in!] Prove the law of cancelation in \mathbb{Z} : If $a b=a c$ and $a \neq 0$, then $b=c$. Hint: If $a b=a c$, then $a(b-c)=0$. Now use a result from HW \#1.

1. For each pair of integers a, b, define the set

$$
\mathrm{CD}(a, b)=\{d \in \mathbb{Z}: d \mid a \text { and } d \mid b\} .
$$

Suppose a, b, q, r are integers with $a=b q+r$. Prove that $\mathrm{CD}(a, b)=\mathrm{CD}(b, r)$.
Remark. As discussed in class, it is this result that justifies the Euclidean algorithm as a method of computing gcds. Namely, if we apply this result repeatedly as we step through the Euclidean algorithm, we eventually find that $C D(a, b)=C D(0, r)$, where r is the last nonzero remainder. Hence, the set of common divisors of a, b is the same as the set of divisors of r.
2. Let a, b be integers, not both 0 . We showed in class every common divisor of a and b divides $\operatorname{gcd}(a, b)$. Hence, the number $d=\operatorname{gcd}(a, b)$ is a positive integer with the following property:

$$
d \text { divides } a \text { and } b \text {, and every common divisor of } a \text { and } b \text { divides } d \text {. }
$$

Prove that $\operatorname{gcd}(a, b)$ is the only positive integer d that satisfies (\dagger).
Remark. This exercise shows that (\dagger) could have been taken as the definition of $\operatorname{gcd}(a, b)$. That's the approach taken in Shifrin's textbook, for instance.
3. (a) Prove that if $a \mid x$ and $b \mid y$, then $a b \mid x y$.
(b) Prove that if $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}(a / d, b / d)=1$.
(c) Prove or give a counterexample: If $d=\operatorname{gcd}(a, b)$, then $\operatorname{gcd}(a / d, b)=1$.
4. Suppose a, b, and n are positive integers for which $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$. Prove or give a counterexample: $\operatorname{gcd}(a b, n)=1$.

Hint: One approach starts by proving the following lemma: $\operatorname{gcd}(A, B)>1$ if and only if there is a common prime p dividing both A and B.
5. Let p be a prime number. Prove that if $a^{2} \equiv b^{2}(\bmod p)$, then $a \equiv b(\bmod p)$ or $a \equiv-b$ $(\bmod p)$.
6. (Divisibility in Pythagorean triples) Recall that an ordered triple of integers x, y, z is called Pythagorean if $x^{2}+y^{2}=z^{2}$.
(a) Show that in any Pythagorean triple, at least one of x, y, z is a multiple of 3 .
(b) Do part (a) again but with " 3 " replaced by " 4 ", and then do it once more with " 3 " replaced by " 5 ".
7. In class, it was claimed that for every pair of integers a, b, there are $x, y \in \mathbb{Z}$ with $a x+b y=$ $\operatorname{gcd}(a, b)$.

The Euclidean algorithm gives a constructive proof of this theorem. We illustrate with the example of $x=942$ and $y=408$. Here the Euclidean algorithm runs as follows:

$$
\begin{aligned}
942 & =408 \cdot 2+126 \\
408 & =126 \cdot 3+30 \\
126 & =30 \cdot 4+6 \\
30 & =6 \cdot 5+0 .
\end{aligned}
$$

In particular, $\operatorname{gcd}(942,408)=6$. So there should be $x, y \in \mathbb{Z}$ with $942 x+408 y=6$.
We can find x, y by backtracking through the algorithm. First,

$$
6=126+30(-4), \quad \text { so we get } 6 \text { as a combination of } 126,30 .
$$

Next,

$$
\begin{aligned}
6 & =126+(408-126 \cdot 3)(-4) \\
& =408(-4)+126(13), \quad \text { so we get } 6 \text { as a combination of } 408,126 .
\end{aligned}
$$

Continuing,

$$
\begin{aligned}
6 & =408(-4)+(942-408 \cdot 2)(13) \\
& =942 \cdot 13+408(-30), \quad \text { so we get } 6 \text { as a combination of } 942,408 .
\end{aligned}
$$

(a) Using this method, find integers x and y with $17 x+97 y=\operatorname{gcd}(17,97)$.
(b) Find integers x and y with $161 x+63 y=\operatorname{gcd}(161,63)$.
8. Let n be a positive integer. Suppose that the decimal digits of n - read from right-to-left are $a_{0}, a_{1}, \ldots, a_{k}$. Show that

$$
n \equiv a_{0}+a_{1}+a_{2}+a_{3}+\cdots+a_{k} \quad(\bmod 9)
$$

Use this to determine the remainder when 2022 is divided by 9 .
9. (Fermat's little theorem again) Complete the proof from class that when p is prime, $a^{p} \equiv a$ $(\bmod p)$ for all integers a. Remember that in class, we [will have] only handled the case when $a \in \mathbb{Z}^{+}$.

Hint: Don't reinvent the wheel. Find a way to deduce the general result from the case handled in class.
10. Solve the following congruences.
(a) $3 x \equiv 2(\bmod 5)$
(b) $243 x+17 \equiv 101(\bmod 725)$
(c) $20 x \equiv 30(\bmod 4)$
(d) $15 x \equiv 25(\bmod 35)$

MATH 6000 exercises

$11(*)$. (a) Prove that there are infinitely many prime numbers.
(b) Prove that there are infinitely many prime numbers p satisfying $p \equiv 3(\bmod 4)$.
$12\left(^{*}\right)$. Prove that there are infinitely many prime numbers p satisfying $p \equiv 3$ or $5(\bmod 8)$.

