MATH 4000/6000 – Homework #4 posted February 27, 2024; due March 1, 2024 by 5 PM

You did a number on me. But, honestly, baby, who's counting? — Taylor Swift

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. Let R be a ring, and let R' be a subset of R. We call R' a **subring** of R if
 - (A) R' is a ring for the same operations + and \cdot as in R, and
 - (B) R' contains the multiplicative identity 1_R of R.

(For example, making the identification discussed in class, \mathbb{Z} is a subring of \mathbb{Q} .)

(a) Let R be a ring. Suppose that R' is a subset of R closed under the + and \cdot operations of R, that R' contains the additive inverse (in R) of each of its elements, and that R' contains 1_R . Show that R' is a subring of R.

Hint. (B) holds by assumption. Check that all the ring axioms hold for R' in order to verify (A). To get started, show that 0_R must belong to R'.

- (b) Find a two-element subset R' of $R = \mathbb{Z}_6$ that satisfies condition (A) in the definition of a subring but not (B). You do **not** have to give a detailed proof that (A) holds.
- 2. (Introduction to the Gaussian integers) Let $\mathbb{Z}[i]$ be the subset of complex numbers defined by $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$
 - (a) Check that $\mathbb{Z}[i]$ is a subring of \mathbb{C} . (Exercise 1 above may be helpful.)
 - (b) Define a function $N: \mathbb{Z}[i] \to \mathbb{R}$ by $N(z) = z \cdot \overline{z}$. This is called the **norm** of z. Explain why N(z) is a nonnegative integer for every $z \in \mathbb{Z}[i]$. For which $z \in \mathbb{Z}[i]$ is N(z) = 0?
 - (c) Prove that N(zw) = N(z)N(w) for all $z, w \in \mathbb{Z}[i]$.
 - (d) Using (c), show that $z \in \mathbb{Z}[i]$ is a unit $\iff N(z) = 1$. Then find (with proof) all units in $\mathbb{Z}[i]$.
- 3. Let F be a field in which $1 + 1 \neq 0$, and let a be a nonzero element of F. Show that the equation $z^2 = a$ has either no solutions in F or exactly two distinct solutions.

Hint. If $z_1^2 = a$ and $z_2^2 = a$, how are z_1 and z_2 related?

- 4. (Quadratic Formula!) Let F be a field with $1 + 1 \neq 0$. Suppose $f(x) \in F[x]$ has degree 2, and write $f(x) = ax^2 + bx + c$, where $a, b, c \in F$. Define Δ by setting $\Delta = b^2 4ac$.
 - (a) Show that if R is an element of F with $R^2 = \Delta$, then

$$\frac{-b+R}{2a}$$

is a root of f that belongs to F. (Interpret the fraction $\frac{-b+R}{2a}$ as $(-b+R)(2a)^{-1}$, which makes sense as an element of of F because 2a is a nonzero element of F.)

(b) Prove the converse of (a). That is, show that every root of f that belongs to F has the form $\frac{-b+R}{2a}$ for some $R \in F$ satisfying $R^2 = \Delta$.

Hint. Completing the square yields $4af(x) = (2ax + b)^2 - \Delta$.

- 5. Let F be a field, and let $f(x) \in F[x]$ be a polynomial of degree n. Show that f has at most n distinct roots in F. Hint: Use the Root-Factor theorem.
- 6. Decide whether each of the following polynomials is irreducible in F[x] for the given field F.
 - (a) $f(x) = x^2 + \overline{1}, F = \mathbb{Z}_5,$
 - (c) $f(x) = x^2 + \overline{1}, F = \mathbb{Z}_{19}$
 - (e) $f(x) = x^3 + x + \overline{1}, F = \mathbb{Z}_2.$
- 7. (*; MATH 6000 problem) The field $\mathbb{Q}(x)$ of rational functions with coefficients in \mathbb{Q} is defined by

$$\mathbb{Q}(x) = \left\{ \frac{a(x)}{b(x)} : a(x), b(x) \in \mathbb{Q}[x], b(x) \neq 0 \right\},\$$

with operations $\frac{a(x)}{b(x)} + \frac{c(x)}{d(x)} = \frac{a(x)d(x)+b(x)c(x)}{b(x)d(x)}$ and $\frac{a(x)}{b(x)} \cdot \frac{c(x)}{d(x)} = \frac{a(x)c(x)}{b(x)d(x)}$.¹

- (a) Say that $\frac{a(x)}{b(x)}$ is positive if $a(x) \neq 0$ and the leading coefficients of a(x) and b(x) have the same sign. Check that whether or not a(x)/b(x) is positive is independent of the representation a(x)/b(x).
- (b) Define Q(x)⁺ = {positive elements of Q(x)}. Check that Q(x)⁺ has the three properties stated in Axiom O1 from our handout, where Q(x)⁺ replaces Z⁺ and Q(x) replaces Z. So we have turned Q(x) into an ordered field and we can define < and > as we are used to doing.

8. (*; MATH 6000 problem)

(a) Is $\mathbb{Q}(x)$ Archimedean? That is: If $a(x), b(x) \in \mathbb{Q}(x)^+$, is there always a positive integer n such that

$$\underbrace{a(x) + a(x) + \dots + a(x)}_{n \text{ times}} > b(x) ?$$

Justify your answer.

(b) Does $\mathbb{Q}(x)$ have the Least Upper Bound Property? That is, does every nonempty subset of $\mathbb{Q}(x)$ that is bounded above have a least upper bound? Justify your answer.

¹It is to be understood here that $\mathbb{Q}(x)$ is obtained from $\mathbb{Q}[x]$ by applying the equivalence class construction used to obtain \mathbb{Q} from \mathbb{Z} . In particular, a(x)/b(x) = c(x)/d(x) precisely when a(x)d(x) = b(x)c(x) in $\mathbb{Q}[x]$.