MATH 4000/6000 - Homework \#4

posted February 27, 2024; due March 1, 2024 by 5 PM

You did a number on me. But, honestly, baby, who's counting?
— Taylor Swift
Assignments are expected to be neat and stapled. Illegible work may not be marked. Starred problems $\left({ }^{*}\right)$ are required for those in MATH 6000 and extra credit for those in MATH 4000.

1. Let R be a ring, and let R^{\prime} be a subset of R. We call R^{\prime} a subring of R if
(A) R^{\prime} is a ring for the same operations + and \cdot as in R, and
(B) R^{\prime} contains the multiplicative identity 1_{R} of R.
(For example, making the identification discussed in class, \mathbb{Z} is a subring of \mathbb{Q}.)
(a) Let R be a ring. Suppose that R^{\prime} is a subset of R closed under the + and \cdot operations of R, that R^{\prime} contains the additive inverse (in R) of each of its elements, and that R^{\prime} contains 1_{R}. Show that R^{\prime} is a subring of R.

Hint. (B) holds by assumption. Check that all the ring axioms hold for R^{\prime} in order to verify (A). To get started, show that 0_{R} must belong to R^{\prime}.
(b) Find a two-element subset R^{\prime} of $R=\mathbb{Z}_{6}$ that satisfies condition (A) in the definition of a subring but not (B). You do not have to give a detailed proof that (A) holds.
2. (Introduction to the Gaussian integers) Let $\mathbb{Z}[i]$ be the subset of complex numbers defined by $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.
(a) Check that $\mathbb{Z}[i]$ is a subring of \mathbb{C}. (Exercise 1 above may be helpful.)
(b) Define a function $N: \mathbb{Z}[i] \rightarrow \mathbb{R}$ by $N(z)=z \cdot \bar{z}$. This is called the norm of z. Explain why $N(z)$ is a nonnegative integer for every $z \in \mathbb{Z}[i]$. For which $z \in \mathbb{Z}[i]$ is $N(z)=0$?
(c) Prove that $N(z w)=N(z) N(w)$ for all $z, w \in \mathbb{Z}[i]$.
(d) Using (c), show that $z \in \mathbb{Z}[i]$ is a unit $\Longleftrightarrow N(z)=1$. Then find (with proof) all units in $\mathbb{Z}[i]$.
3. Let F be a field in which $1+1 \neq 0$, and let a be a nonzero element of F. Show that the equation $z^{2}=a$ has either no solutions in F or exactly two distinct solutions.
Hint. If $z_{1}^{2}=a$ and $z_{2}^{2}=a$, how are z_{1} and z_{2} related?
4. (Quadratic Formula!) Let F be a field with $1+1 \neq 0$. Suppose $f(x) \in F[x]$ has degree 2 , and write $f(x)=a x^{2}+b x+c$, where $a, b, c \in F$. Define Δ by setting $\Delta=b^{2}-4 a c$.
(a) Show that if R is an element of F with $R^{2}=\Delta$, then

$$
\frac{-b+R}{2 a}
$$

is a root of f that belongs to F. (Interpret the fraction $\frac{-b+R}{2 a}$ as $(-b+R)(2 a)^{-1}$, which makes sense as an element of of F because $2 a$ is a nonzero element of F.)
(b) Prove the converse of (a). That is, show that every root of f that belongs to F has the form $\frac{-b+R}{2 a}$ for some $R \in F$ satisfying $R^{2}=\Delta$.
5. Let F be a field, and let $f(x) \in F[x]$ be a polynomial of degree n. Show that f has at most n distinct roots in F. Hint: Use the Root-Factor theorem.
6. Decide whether each of the following polynomials is irreducible in $F[x]$ for the given field F.
(a) $f(x)=x^{2}+\overline{1}, F=\mathbb{Z}_{5}$,
(c) $f(x)=x^{2}+\overline{1}, F=\mathbb{Z}_{19}$,
(e) $f(x)=x^{3}+x+\overline{1}, F=\mathbb{Z}_{2}$.
7. (*; MATH 6000 problem) The field $\mathbb{Q}(x)$ of rational functions with coefficients in \mathbb{Q} is defined by

$$
\mathbb{Q}(x)=\left\{\frac{a(x)}{b(x)}: a(x), b(x) \in \mathbb{Q}[x], b(x) \neq 0\right\}
$$

with operations $\frac{a(x)}{b(x)}+\frac{c(x)}{d(x)}=\frac{a(x) d(x)+b(x) c(x)}{b(x) d(x)}$ and $\frac{a(x)}{b(x)} \cdot \frac{c(x)}{d(x)}=\frac{a(x) c(x)}{b(x) d(x)} .{ }^{1}$
(a) Say that $\frac{a(x)}{b(x)}$ is positive if $a(x) \neq 0$ and the leading coefficients of $a(x)$ and $b(x)$ have the same sign. Check that whether or not $a(x) / b(x)$ is positive is independent of the representation $a(x) / b(x)$.
(b) Define $\mathbb{Q}(x)^{+}=\{$positive elements of $\mathbb{Q}(x)\}$. Check that $\mathbb{Q}(x)^{+}$has the three properties stated in Axiom O1 from our handout, where $\mathbb{Q}(x)^{+}$replaces \mathbb{Z}^{+}and $\mathbb{Q}(x)$ replaces \mathbb{Z}.
So we have turned $\mathbb{Q}(x)$ into an ordered field and we can define $<$ and $>$ as we are used to doing.
8. (*; MATH 6000 problem)
(a) Is $\mathbb{Q}(x)$ Archimedean? That is: If $a(x), b(x) \in \mathbb{Q}(x)^{+}$, is there always a positive integer n such that

$$
\underbrace{a(x)+a(x)+\cdots+a(x)}_{n \text { times }}>b(x) ?
$$

Justify your answer.
(b) Does $\mathbb{Q}(x)$ have the Least Upper Bound Property? That is, does every nonempty subset of $\mathbb{Q}(x)$ that is bounded above have a least upper bound? Justify your answer.

[^0]
[^0]: ${ }^{1}$ It is to be understood here that $\mathbb{Q}(x)$ is obtained from $\mathbb{Q}[x]$ by applying the equivalence class construction used to obtain \mathbb{Q} from \mathbb{Z}. In particular, $a(x) / b(x)=c(x) / d(x)$ precisely when $a(x) d(x)=b(x) c(x)$ in $\mathbb{Q}[x]$.

