MATH 4000/6000 - Homework \#5

posted March 11, 2024; due by midnight on March 18, 2024

Algebra is but written geometry and geometry is but written algebra. - Sophie Germain
Assignments are expected to be neat and stapled. Illegible work may not be marked. Starred problems $\left({ }^{*}\right)$ are required for those in MATH 6000 and extra credit for those in MATH 4000.

1. By applying the Euclidean algorithm and then backtracking, determine $X(x), Y(x) \in \mathbb{Q}[x]$ with $\left(x^{3}+1\right) X(x)+\left(x^{2}+1\right) Y(x)=1$. Then repeat the exercise with $\mathbb{Q}[x]$ replaced by $\mathbb{Z}_{5}[x]$.
2. Let F be a field. Prove that the units in $F[x]$ are precisely the nonzero elements of F.
3. Let F be a field. Recall the definition of greatest common divisor (gcd) in $F[x]$: a gcd of $a(x), b(x)$ is a common divisor of $a(x)$ and $b(x)$ in $F[x]$ that is divisible by every common divisor in $F[x]$.
Show that if $d(x) \in F[x]$ is a gcd of $a(x), b(x)$, then so is $c \cdot d(x)$ for every nonzero $c \in F$. Conversely, show that every gcd of $a(x), b(x)$ has the form $c \cdot d(x)$ for some nonzero $c \in F$.
4. Let F be a field. In class we showed that every nonconstant polynomial in $F[x]$ can be written as a product of irreducibles. Prove that this representation is unique in the sense discussed in class; that is, show the following claim.

If $f(x) \in F[x]$ is nonconstant and

$$
\begin{aligned}
f(x) & =p_{1}(x) \cdots p_{k}(x) \\
& =q_{1}(x) \cdots q_{\ell}(x),
\end{aligned}
$$

with all the $p_{i}(x)$ and $q_{j}(x)$ irreducible, then $k=\ell$ and after rearranging there are nonzero constants c_{1}, \ldots, c_{k} with

$$
p_{i}(x)=c_{i} \cdot q_{i}(x) \quad \text { for all } i=1,2,3, \ldots, k .
$$

Hint. Imitate the proof of uniqueness in \mathbb{Z}. Proceed by contradiction, choosing a counterexample of smallest degree.
5. Later in the course we will construct a field K with 4 elements containing \mathbb{Z}_{2} as subfield. In this exercise, assume K is such a field. Then in addition to 0,1 from \mathbb{Z}_{2}, the field K has two extra elements; call these α and β.
(a) Show that $\alpha+1=\beta$.

Hint. Try process of elimination.
(b) Show that $\alpha^{2}=\beta$.
(c) Show that both α and β are roots of $x^{2}+x+1$ and deduce that $x^{2}+x+1=(x-\alpha)(x-\beta)$ in $K[x]$.
6. Let F be a subfield of K, and let $\alpha \in K$. Suppose that α is a root of the irreducible polynomial $p(x) \in F[x]$. Let n be the degree of $p(x)$. Show that every element of $F[\alpha]$ has a unique representation in the form

$$
a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n-1} \alpha^{n-1}
$$

where $a_{0}, a_{1}, \ldots, a_{n-1} \in F$.
Hint: We [will have] proved this in class without the uniqueness requirement. So your only job is to prove uniqueness.
7. (a) Let $\sqrt{2}, \sqrt{3}$ denote the positive real square roots of 2 and 3 , respectively. Prove that $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$.
(b) Prove that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]=\mathbb{Q}[\sqrt{2}+\sqrt{3}]$.

Hint: Show containment both ways. One direction is fairly easy: Since $\sqrt{2}, \sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$, and $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ is closed under addition (being a ring), we have $\sqrt{2}+\sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Since $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ contains both \mathbb{Q} and $\sqrt{2}+\sqrt{3}$, and is closed under addition and multiplication (being a ring), it follows that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ contains $\mathbb{Q}[\sqrt{2}+\sqrt{3}]$. Can you find a similar argument for the other containment?
8. Let F be a subfield of K, and suppose $\alpha \in K$ is not algebraic over $F .{ }^{1}$ Prove that α has no multiplicative inverse in $F[\alpha]$. Deduce that $F[\alpha]$ is not a field.
9. (*; MATH 6000 problem) Let $R=\mathbb{Z}_{m}[x]$ where $m=2^{2024}$.
(a) Suppose $f(x)=\overline{a_{0}}+\overline{a_{1}} x+\cdots+\overline{a_{n}} x^{n}$ is a unit in R. Show that a_{0} is odd and all of a_{1}, \ldots, a_{n} are even.

Hint. Each polynomial in $\mathbb{Z}_{m}[x]$ "reduces" (how?) to a polynomial in $\mathbb{Z}_{2}[x]$. You understand the units in $\mathbb{Z}_{2}[x]$ already.
(b) Suppose that a_{0} is odd and all of a_{1}, \ldots, a_{n} are even. Show that $f(x)=\overline{a_{0}}+\overline{a_{1}} x+\cdots+$ $\overline{a_{n}} x^{n}$ is a unit in R.

[^0]
[^0]: ${ }^{1}$ Recall that α being algebraic over F means that there is a nonzero $f(x) \in F[x]$ with $f(\alpha)=0$.

