MATH 4000/6000 – Homework #5

posted March 11, 2024; due by midnight on March 18, 2024

Algebra is but written geometry and geometry is but written algebra. - Sophie Germain

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. By applying the Euclidean algorithm and then backtracking, determine $X(x), Y(x) \in \mathbb{Q}[x]$ with $(x^3 + 1)X(x) + (x^2 + 1)Y(x) = 1$. Then repeat the exercise with $\mathbb{Q}[x]$ replaced by $\mathbb{Z}_5[x]$.
- 2. Let F be a field. Prove that the units in F[x] are precisely the nonzero elements of F.
- 3. Let F be a field. Recall the definition of greatest common divisor (gcd) in F[x]: a gcd of a(x), b(x) is a common divisor of a(x) and b(x) in F[x] that is divisible by every common divisor in F[x].

Show that if $d(x) \in F[x]$ is a gcd of a(x), b(x), then so is $c \cdot d(x)$ for every nonzero $c \in F$. Conversely, show that every gcd of a(x), b(x) has the form $c \cdot d(x)$ for some nonzero $c \in F$.

4. Let F be a field. In class we showed that every nonconstant polynomial in F[x] can be written as a product of irreducibles. Prove that this representation is unique in the sense discussed in class; that is, show the following claim.

If $f(x) \in F[x]$ is nonconstant and

$$f(x) = p_1(x) \cdots p_k(x)$$

= $q_1(x) \cdots q_\ell(x),$

with all the $p_i(x)$ and $q_j(x)$ irreducible, then $k = \ell$ and after rearranging there are nonzero constants c_1, \ldots, c_k with

$$p_i(x) = c_i \cdot q_i(x)$$
 for all $i = 1, 2, 3, \dots, k$.

Hint. Imitate the proof of uniqueness in Z. Proceed by contradiction, choosing a counterexample of smallest degree.

- 5. Later in the course we will construct a field K with 4 elements containing \mathbb{Z}_2 as subfield. In this exercise, *assume* K is such a field. Then in addition to 0, 1 from \mathbb{Z}_2 , the field K has two extra elements; call these α and β .
 - (a) Show that $\alpha + 1 = \beta$. *Hint.* Try process of elimination.
 - (b) Show that $\alpha^2 = \beta$.
 - (c) Show that both α and β are roots of $x^2 + x + 1$ and deduce that $x^2 + x + 1 = (x \alpha)(x \beta)$ in K[x].
- 6. Let F be a subfield of K, and let $\alpha \in K$. Suppose that α is a root of the irreducible polynomial $p(x) \in F[x]$. Let n be the degree of p(x). Show that every element of $F[\alpha]$ has a *unique* representation in the form

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{n-1}\alpha^{n-1}$$

where $a_0, a_1, ..., a_{n-1} \in F$.

Hint: We [will have] proved this in class without the uniqueness requirement. So your only job is to prove uniqueness.

- 7. (a) Let $\sqrt{2}, \sqrt{3}$ denote the positive real square roots of 2 and 3, respectively. Prove that $\sqrt{3} \notin \mathbb{Q}[\sqrt{2}]$.
 - (b) Prove that $\mathbb{Q}[\sqrt{2}, \sqrt{3}] = \mathbb{Q}[\sqrt{2} + \sqrt{3}].$

Hint: Show containment both ways. One direction is fairly easy: Since $\sqrt{2}, \sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$, and $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ is closed under addition (being a ring), we have $\sqrt{2} + \sqrt{3} \in \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Since $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ contains both \mathbb{Q} and $\sqrt{2} + \sqrt{3}$, and is closed under addition and multiplication (being a ring), it follows that $\mathbb{Q}[\sqrt{2}, \sqrt{3}]$ contains $\mathbb{Q}[\sqrt{2} + \sqrt{3}]$. Can you find a similar argument for the other containment?

- 8. Let F be a subfield of K, and suppose $\alpha \in K$ is not algebraic over F.¹ Prove that α has no multiplicative inverse in $F[\alpha]$. Deduce that $F[\alpha]$ is not a field.
- 9. (*; MATH 6000 problem) Let $R = \mathbb{Z}_m[x]$ where $m = 2^{2024}$.
 - (a) Suppose f(x) = a₀ + a₁x + ··· + a_nxⁿ is a unit in R. Show that a₀ is odd and all of a₁,..., a_n are even. *Hint.* Each polynomial in Z_m[x] "reduces" (how?) to a polynomial in Z₂[x]. You understand the units in Z₂[x] already.
 - (b) Suppose that a_0 is odd and all of a_1, \ldots, a_n are even. Show that $f(x) = \overline{a_0} + \overline{a_1}x + \cdots + \overline{a_n}x^n$ is a unit in R.

¹Recall that α being algebraic over F means that there is a nonzero $f(x) \in F[x]$ with $f(\alpha) = 0$.