MATH 4000/6000 - Homework \#6

posted April 5, 2024; due April 8, 2024

You can observe a lot by just looking. - Yogi Berra
Assignments are expected to be neat and stapled. Illegible work may not be marked. Starred problems $\left({ }^{*}\right)$ are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, "ring" always means "commutative ring."

1. Let R be a ring. Recall that if x_{1}, \ldots, x_{n} are elements of R, then (by definition)

$$
\left\langle x_{1}, \ldots, x_{n}\right\rangle=\left\{r_{1} x_{1}+\cdots+r_{n} x_{n}: \text { all } r_{i} \in R\right\} .
$$

In other words, $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is the set of all R-linear combinations of x_{1}, \ldots, x_{n}. Prove that $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is an ideal of R by directly verifying the three defining properties of an ideal.
2. Let R be an integral domain. Show that if $a, b \in R$, then $\langle a\rangle=\langle b\rangle$ if and only if $a=u \cdot b$ for some unit $u \in R$. (Make sure your argument also handles the case when one of a or b is zero.)
3. Let R be a ring in which every ideal is principal. That is, every ideal of R has the form $\langle r\rangle$ for some $r \in R$.

Let $x_{1}, \ldots, x_{n} \in R$. Since $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is an ideal of R, there is some $d \in R$ with $\left\langle x_{1}, \ldots, x_{n}\right\rangle=$ $\langle d\rangle$. Prove that d divides all of x_{1}, \ldots, x_{n} and that if e is any element of R dividing all of x_{1}, \ldots, x_{n}, then $e \mid d$.
4. Let F be a field. Prove that if I is any ideal of $F[x]$, then $I=\langle f(x)\rangle$ for some $f(x) \in F[x]$. (Imitate the proof from class for the analogous claim in \mathbb{Z}.)

5 . Let R be a ring, not the zero ring.
(a) Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then $I=R$.
(b) Prove that $a \in R$ is a unit if and only if $\langle a\rangle=R$.
(c) Prove that R is a field if and only if the only ideals in R are $\langle 0\rangle$ and R.
6. Let F be a field and suppose that $f(x) \in F[x]$ has degree $n \geq 1$. In class, we showed [will show] that the elements of $F[x] /\langle f(x)\rangle$ all have the form $\overline{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}}$, where $a_{0}, \ldots, a_{n-1} \in F$. Show that this representation is unique; that is, distinct choices of a_{i} lead to distinct elements of $F[x] /\langle f(x)\rangle$.
7. Let F be a field, and suppose $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible. Show that $F[x] /\langle f(x)\rangle$ is not an integral domain.

Hint. Think about the multiplication table for $\mathbb{Z}_{3}[x] /\left\langle x^{2}\right\rangle$.
8. Write out the addition and multiplication tables for $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$. Is this ring a domain? a field?
9. Let F be a field, and let $f(x) \in F[x]$ be irreducible. Show that $F[x] /\langle f(x)\rangle$ is a field.

Hint. If $f(x) \nmid a(x)$, then there are $X(x), Y(x) \in F[x]$ with $a(x) X(x)+f(x) Y(x)=1$. What does this equation tell you in $F[x] /\langle f(x)\rangle$?
10. (*; MATH 6000 problem) A polynomial in $\mathbb{Z}[x]$ is called primitive if there is no integer larger than 1 dividing all of its coefficients. For instance, $2 x^{10}-7 x+3$ is primitive, but $3 x^{10}-21 x+3$ is not. Prove that a product of two primitive polynomials is primitive.
Hint. Find a way to use $\mathbb{Z}_{p}[x]$ is domain whenever p is prime.
This result is is the key ingredient in showing Gauss's polynomial lemma.
11. (*; MATH 6000 problem) Let $R=\mathbb{Z}[x]$, and let I be the set of elements of R with even constant term. Show that I is an ideal of R but that I is not principal: there is no $f(x) \in \mathbb{Z}[x]$ with $I=f(x) \mathbb{Z}[x]$.

