MATH 4000/6000 - Homework #6

posted April 5, 2024; due April 8, 2024

You can observe a lot by just looking. - Yogi Berra

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, "ring" always means "commutative ring."

1. Let R be a ring. Recall that if x_1, \ldots, x_n are elements of R, then (by definition)

 $\langle x_1, \dots, x_n \rangle = \{ r_1 x_1 + \dots + r_n x_n : \text{all } r_i \in R \}.$

In other words, $\langle x_1, \ldots, x_n \rangle$ is the set of all *R*-linear combinations of x_1, \ldots, x_n . Prove that $\langle x_1, \ldots, x_n \rangle$ is an ideal of *R* by directly verifying the three defining properties of an ideal.

- 2. Let R be an integral domain. Show that if $a, b \in R$, then $\langle a \rangle = \langle b \rangle$ if and only if $a = u \cdot b$ for some unit $u \in R$. (Make sure your argument also handles the case when one of a or b is zero.)
- 3. Let R be a ring in which every ideal is principal. That is, every ideal of R has the form $\langle r \rangle$ for some $r \in R$.

Let $x_1, \ldots, x_n \in R$. Since $\langle x_1, \ldots, x_n \rangle$ is an ideal of R, there is some $d \in R$ with $\langle x_1, \ldots, x_n \rangle = \langle d \rangle$. Prove that d divides all of x_1, \ldots, x_n and that if e is any element of R dividing all of x_1, \ldots, x_n , then $e \mid d$.

- 4. Let F be a field. Prove that if I is any ideal of F[x], then $I = \langle f(x) \rangle$ for some $f(x) \in F[x]$. (Imitate the proof from class for the analogous claim in \mathbb{Z} .)
- 5. Let R be a ring, not the zero ring.
 - (a) Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then I = R.
 - (b) Prove that $a \in R$ is a unit if and only if $\langle a \rangle = R$.
 - (c) Prove that R is a field if and only if the only ideals in R are $\langle 0 \rangle$ and R.
- 6. Let F be a field and suppose that $f(x) \in F[x]$ has degree $n \ge 1$. In class, we showed [will show] that the elements of $F[x]/\langle f(x) \rangle$ all have the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$. Show that this representation is unique; that is, distinct choices of a_i lead to distinct elements of $F[x]/\langle f(x) \rangle$.
- 7. Let F be a field, and suppose $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible. Show that $F[x]/\langle f(x) \rangle$ is not an integral domain.

Hint. Think about the multiplication table for $\mathbb{Z}_3[x]/\langle x^2 \rangle$.

- 8. Write out the addition and multiplication tables for $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$. Is this ring a domain? a field?
- 9. Let F be a field, and let $f(x) \in F[x]$ be irreducible. Show that $F[x]/\langle f(x) \rangle$ is a field. Hint. If $f(x) \nmid a(x)$, then there are $X(x), Y(x) \in F[x]$ with a(x)X(x) + f(x)Y(x) = 1. What does this equation tell you in $F[x]/\langle f(x) \rangle$?

10. (*; MATH 6000 problem) A polynomial in $\mathbb{Z}[x]$ is called primitive if there is no integer larger than 1 dividing all of its coefficients. For instance, $2x^{10} - 7x + 3$ is primitive, but $3x^{10} - 21x + 3$ is not. Prove that a product of two primitive polynomials is primitive. Hint. Find a way to use $\mathbb{Z}_p[x]$ is domain whenever p is prime.

This result is is the key ingredient in showing Gauss's polynomial lemma.

11. (*; MATH 6000 problem) Let $R = \mathbb{Z}[x]$, and let I be the set of elements of R with even constant term. Show that I is an ideal of R but that I is not principal: there is no $f(x) \in \mathbb{Z}[x]$ with $I = f(x)\mathbb{Z}[x]$.