PROPERTIES OF THE INTEGERS

 \mathbb{Z} is a set with two binary operations, + (addition) and \cdot (multiplication).

Properties of addition

- A1. (Existence of an additive identity) There is an element $0 \in \mathbb{Z}$ satisfying 0 + a = a + 0 = a for all $a \in \mathbb{Z}$.
- A2. (Commutativity of +) For all $a, b \in \mathbb{Z}$, we have a + b = b + a.
- A3. (Associativity of +) For all $a, b, c \in \mathbb{Z}$, we have a + (b + c) = (a + b) + c.
- A4. (Existence of additive inverses) For all $a \in \mathbb{Z}$, there is some $b \in \mathbb{Z}$ with a + b = 0.

Properties of multiplication

- M1. (Existence of a multiplicative identity) There is an element $1 \in \mathbb{Z}$ satisfying $1 \cdot a = a \cdot 1 = a$ for all $a \in \mathbb{Z}$.
- M2. (Commutativity of \cdot) For all $a, b \in \mathbb{Z}$, we have $a \cdot b = b \cdot a$.
- M3. (Associativity of \cdot) For all $a, b, c \in \mathbb{Z}$, we have $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

Distributive law

D1. For all $a, b, c \in \mathbb{Z}$, we have

 $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$.

Nontriviality

N1. $0 \neq 1$

\mathbb{Z} is ordered

O1. There is a distinguished subset \mathbb{Z}^+ of \mathbb{Z} (the **positive integers**) with the following three properties.

- 1. If $a, b \in \mathbb{Z}^+$, then $a + b \in \mathbb{Z}^+$.
- 2. If $a, b \in \mathbb{Z}^+$, then $ab \in \mathbb{Z}^+$.
- 3. For each $a \in \mathbb{Z}$, exactly one of the following holds: $a \in \mathbb{Z}^+$, a = 0, or $-a \in \mathbb{Z}^+$.

Using O1, we can define what "<" means for integers. Namely, x < y means that $y + (-x) \in \mathbb{Z}^+$, where -x denotes the additive inverse of x. (The word "the" in the last sentence needs some justification, which we will get to.) We define $x \leq y$ to mean that x < y or x = y.

Well ordering principle

WOP. Every nonempty subset of \mathbb{Z}^+ has a least element. In other words, if $S \subseteq \mathbb{Z}^+$ and $S \neq \emptyset$, then there is an $\ell \in S$ with the property that $\ell \leq x$ for all $x \in S$.