Properties of THE INTEGERS

\mathbb{Z} is a set with two binary operations, $+($ addition $)$ and $\cdot($ multiplication $)$.

Properties of addition

A1. (Existence of an additive identity) There is an element $0 \in \mathbb{Z}$ satisfying $0+a=a+0=a$ for all $a \in \mathbb{Z}$.

A2. (Commutativity of +) For all $a, b \in \mathbb{Z}$, we have $a+b=b+a$.
A3. (Associativity of +) For all $a, b, c \in \mathbb{Z}$, we have $a+(b+c)=(a+b)+c$.
A4. (Existence of additive inverses) For all $a \in \mathbb{Z}$, there is some $b \in \mathbb{Z}$ with $a+b=0$.

Properties of multiplication

M1. (Existence of a multiplicative identity) There is an element $1 \in \mathbb{Z}$ satisfying $1 \cdot a=a \cdot 1=a$ for all $a \in \mathbb{Z}$.
M2. (Commutativity of \cdot) For all $a, b \in \mathbb{Z}$, we have $a \cdot b=b \cdot a$.
M3. (Associativity of •) For all $a, b, c \in \mathbb{Z}$, we have $a \cdot(b \cdot c)=(a \cdot b) \cdot c$.

Distributive law

D1. For all $a, b, c \in \mathbb{Z}$, we have

$$
a \cdot(b+c)=a \cdot b+a \cdot c \quad \text { and } \quad(b+c) \cdot a=b \cdot a+c \cdot a .
$$

Nontriviality

N1. $0 \neq 1$

\mathbb{Z} is ordered

O1. There is a distinguished subset \mathbb{Z}^{+}of \mathbb{Z} (the positive integers) with the following three properties.

1. If $a, b \in \mathbb{Z}^{+}$, then $a+b \in \mathbb{Z}^{+}$.
2. If $a, b \in \mathbb{Z}^{+}$, then $a b \in \mathbb{Z}^{+}$.
3. For each $a \in \mathbb{Z}$, exactly one of the following holds: $a \in \mathbb{Z}^{+}, a=0$, or $-a \in \mathbb{Z}^{+}$.

Using O1, we can define what " $<$ " means for integers. Namely, $x<y$ means that $y+(-x) \in \mathbb{Z}^{+}$, where $-x$ denotes the additive inverse of x. (The word "the" in the last sentence needs some justification, which we will get to.) We define $x \leq y$ to mean that $x<y$ or $x=y$.

Well ordering principle

WOP. Every nonempty subset of \mathbb{Z}^{+}has a least element. In other words, if $S \subseteq \mathbb{Z}^{+}$and $S \neq \emptyset$, then there is an $\ell \in S$ with the property that $\ell \leq x$ for all $x \in S$.

