
MATH 4000/6000 – Homework #2
posted January 27; due by end of day on February 5

Mathematics is not a deductive science – that’s a cliché. When you try to prove a theorem, you don’t just list

the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork.

— Paul Halmos (1916–2006)

Assignments are expected to be neat and stapled. Illegible work may not be marked. Starred
problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

0. (UNDERSTANDING CHECKS; DO NOT TURN IN)

(a) Prove the law of cancelation in Z: If ab = ac and a ̸= 0, then b = c.

If ab = ac, then a(b− c) = 0. Now look back at Problem #4 on HW 1.

(b) Recall that CD(a, b) = {d ∈ Z : d | a and d | b}. Suppose a, b, q, r ∈ Z and a = bq + r.
We claimed in class that CD(a, b) = CD(b, r) and proved CD(a, b) ⊆ CD(b, r). Complete
the proof of our claim by showing the reverse containment, that CD(b, r) ⊆ CD(a, b).

(c) Fix m ∈ Z. Prove that congruence modulo m is both symmetric and transitive.

1. For each integer a, put D(a) = {d ∈ Z : d | a}. That is, D(a) is the set of integers dividing a.

(a) Prove, starting from the definition of “divides”, that D(a) = D(−a) for all a ∈ Z.
(b) Using (a), show that if b is a nonzero integer, then gcd(0, b) = |b|.
(c) Using (a), show that if a and b are both negative integers, then gcd(a, b) = gcd(|a|, |b|).

The moral of this problem: If we understand gcd(a, b) when a and b are positive integers, then we understand gcd(a, b)

for all pairs of integers a, b.

2. Let a and b be integers. In class, we showed that if d is any integer for which d | a and d | b,
then d | ax + by for all x, y ∈ Z. We also claimed that gcd(a, b) can be written in the form
ax + by for some x, y ∈ Z. (You will see why this claim holds Exercise 5 below.) Putting
these two facts together, it follows immediately that

gcd(a, b) is divisible by every common divisor of a and b.

(All of this is given; you aren’t being asked to prove the above.)

Now let a and b be integers, not both 0.

(a) Show that gcd(a, b) = 1 ⇐⇒ there are integers x, y with ax+ by = 1.

(b) Give an example of integers a, b and d where ax+ by = d and where d ̸= gcd(a, b).

3. Let a, b, and d be integers.

(a) Prove that if a | x and b | y (where x, y ∈ Z), then ab | xy.
(b) Prove that if d = gcd(a, b), then gcd(a/d, b/d) = 1.

(c) Prove or give a counterexample: If d = gcd(a, b), then gcd(a/d, b) = 1.

4. Suppose a, b, and n are positive integers for which gcd(a, n) = gcd(b, n) = 1. Prove or give a
counterexample: gcd(ab, n) = 1.



5. In class, it was claimed that for every pair of integers a, b (not both zero), there are x, y ∈ Z
with ax+ by = gcd(a, b).

The Euclidean algorithm gives a constructive proof of this theorem. We illustrate with the
example of x = 942 and y = 408. Here the Euclidean algorithm runs as follows:

942 = 408 · 2 + 126

408 = 126 · 3 + 30

126 = 30 · 4 + 6

30 = 6 · 5 + 0.

In particular, gcd(942, 408) = 6. So there should be x, y ∈ Z with 942x+ 408y = 6.

We can find x, y by backtracking through the algorithm. First,

6 = 126 + 30(−4), so we get 6 as a combination of 126, 30.

Next,

6 = 126 + (408− 126 · 3)(−4)

= 408(−4) + 126(13), so we get 6 as a combination of 408, 126.

Continuing,

6 = 408(−4) + (942− 408 · 2)(13)
= 942 · 13 + 408(−30), so we get 6 as a combination of 942, 408.

(a) Using this method, find integers x and y with 17x+ 97y = gcd(17, 97).

(b) Find integers x and y with 161x+ 63y = gcd(161, 63).

Make sure you see why this method applies even if one or both of a and b is negative (see Problem #1). To test your

understanding, after doing part (b), you should see how to write gcd(−161, 63) as −161X+63Y for some integers X,Y .

6. Let p be a prime number. Prove that if a2 ≡ b2 (mod p), then a ≡ b (mod p) or a ≡ −b
(mod p).

7. (Divisibility in Pythagorean triples) Recall that an ordered triple of integers x, y, z is called
Pythagorean if x2 + y2 = z2.

(a) Show that in any Pythagorean triple, at least one of x, y, z is a multiple of 3.

(b) Do part (a) again but with “3” replaced by “4”, and then do it once more with “3”
replaced by “5”.

8. Let n be a positive integer. Suppose that the decimal digits of n — read from right-to-left —
are a0, a1, . . . , ak. Show that

n ≡ a0 + a1 + a2 + a3 + · · ·+ ak (mod 9).

Use this to determine the remainder when 2025 is divided by 9.

9. (Fermat’s little theorem again) Complete the proof from class that when p is prime, ap ≡ a
(mod p) for all integers a. In class, we [will have] only handled the case when a ∈ Z+.

Hint: Don’t reinvent the wheel. Find a way to deduce the general result from the case handled in class.

10. [REMOVED; DO NOT TURN IN!] Solve the following congruences.

(a) 3x ≡ 2 (mod 5)

(b) 243x+ 17 ≡ 101 (mod 725)

(c) 20x ≡ 30 (mod 4)

(d) 15x ≡ 25 (mod 35)
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MATH 6000 exercises

11(*). (a) Prove that there are infinitely many prime numbers.

(b) Prove that there are infinitely many prime numbers p satisfying p ≡ 3 (mod 4).

12(*). The Hilbert numbers are the integers 1, 5, 9, 13, . . . from the set H = {4k + 1 : k =
0, 1, 2, 3, . . . }. If p is a Hilbert number, we call p a Hilbert prime if p > 1 and p cannot be
factored in the form p = ab, where a and b are Hilbert numbers larger than 1.

(a) Prove that every Hilbert number n > 1 can be factored (in at least one way) as a product
of Hilbert primes. (As in class, we allow factorizations involving a single prime.)

(b) Prove or give a counterexample: Every Hilbert number n > 1 factors uniquely as a
product of Hilbert primes. (As in class, “unique” means unique up to rearrangement of
the factors.)
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