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For a less
slanted view
of the
subject,
consider
purchasing:
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PART I: The simplest proof in number theory ?

Theorem (Euclid, ca. 300 BCE)

There are infinitely many primes.

Proof.
If p1, . . . , pn is any finite list of primes, let
pn+1 be any prime divisor of p1 · · · pn + 1.
Then pn+1 is a new prime.

There are unsolved problems connected not just with the infinitude of
primes but even with this proof of the infinitude of primes!
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Answer the question and then question the answer

Two questions of A. A. Mullin (1963):

(i) Let p1 = 2 and let pn+1 be the smallest prime factor of
p1 . . . pn + 1.

(ii) Let p1 = 2 and let pn+1 be the largest prime factor of p1 . . . pn + 1.

Call the sequence {pn} resulting from (i) the first Euclid–Mullin
sequence, and (ii) the second Euclid–Mullin sequence.

‘How many’ of the infinitely many primes do we see in the resulting
sequence {pn}?
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You can see a lot just by looking

First Euclid–Mullin sequence:
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17,
5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957,
887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857,
103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223,
139703, 457, 9649, 61, 4357, . . .

Second Euclid–Mullin sequence:
2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
1368845206580129, 889340324577880670089824574922371

Conjecture (Shanks)

Every prime appears in the first Euclid–Mullin sequence.
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Theorem
5 never appears in the 2nd Euclid–Mullin sequence.

Proof.
Suppose that 5 appears as pn+1. Then 5 is the largest prime factor of
p1 · · · pn + 1 = 6p3 · · · pn + 1, using p1 = 2 and p2 = 3. So

6p3 · · · pn + 1 = 2a3b5c

for some nonnegative integers a, b, c with c ≥ 1.

In fact, a = b = 0, since LHS is prime to 6. So

6p3 · · · pn + 1 = 5c .

But LHS is 3 (mod 4) while RHS is 1 mod 4.
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Cox and van der Poorten (1968) showed that all of

5, 11, 13, 17, 19, 23, 29, 31, 37, 41, and 47

are missing from the second Euclid–Mullin sequence.

Conjecture

Infinitely many primes are missing.

Theorem (Booker, 2012)

The Cox–van der Poorten conjecture is true.

Simpler proof (P. and Treviño, 2014) to appear in
the Amer. Math. Monthly. We use only quadratic
reciprocity and elementary facts about the
distribution of squares and nonsquares modulo p.
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Conjecture

Only a density zero set of prime numbers appears in the second
Euclid–Mullin sequence.

Even under GRH, Booker’s proof only gives about
√
x missing primes

up to x .

Theorem (Booker)

Suppose that there is no algorithm to decide whether or not a prime
belongs to the second Euclid–Mullin sequence. Then the conjecture is
true!
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In the beginning. . .

Inductively define a sequence of primes p1, p2, . . . by letting p1 = 2
and then letting pk+1 be the least prime not already chosen that
divides ∏

i∈S
pi + 1

for some subset S of {1, 2, . . . , k}.
Does this sequence contain every prime?

Theorem (Pomerance, unpublished)

Yes! And in fact, pi is the ith prime for every i ≥ 5.

Pomerance has called this generating the primes “from nothing.”
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Filling a much-needed gap in the literature

Recall that the Möbius function is the arithmetic function which
vanishes at nonsquarefree integers n and which satisfies

µ(p1 · · · pk) = (−1)k

when p1 · · · pk is a product of distinct primes.

Lemma
The sum

∑
d |n µ(d) takes the value 1 when n = 1 and the value 0

otherwise.

Let’s suppose that there are only finitely many primes, and let’s call
their product D. Consider the power series

A(x) :=
∞∑
n=1

anx
n, where an =

∑
d |n
d |D

µ(d).
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Now µ is supported on the divisors of D, and so A(x) = x .

We can reverse the order of summation to get that

A(x) :=
∑
d |D

µ(d)
∑
n: d |n

xd

=
∑
d |D

µ(d)(xd + x2d + . . . ) =
∑
d |D

µ(d)xd
1

1− xd
.

Multiplying by 1− xD to clear denominators gives

x(1− xD) = A(x)(1− xD)

=
∑
d |D

µ(d)xd fd(x), where fd(x) =
1− xD

1− xd
∈ C[x ].
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OK, so ...

x(1− xD) = A(x)(1− xD)

=
∑
d |D

µ(d)xd fd(x), where fd(x) =
1− xD

1− xd
∈ C[x ].

Each fd(x) has degree D − d , so each xd fd(x) has degree D.
So

∑
d |D µ(d)xd fd(x) has degree at most D.

But x(1− xD) has degree D + 1, and this is a contradiction.

Remark
This is a version, due to Ken Ribet, of a proof
published by P. in Elem. Math., 2011. Ribet’s
version comes from a MATH 115 HW assignment:
Students were asked to decide whether or not the
proof was correct.
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PART II: Messing with perfection

Let s(n) :=
∑

d |n,d<n d denote the sum of the proper divisors of n.
So if σ(n) =

∑
d |n d is the usual sum-of-divisors function, then

s(n) = σ(n)− n.

For example,

s(4) = 1 + 2 = 3, σ(4) = 1 + 2 + 4 = 7.

The ancient Greeks said that n was . . .
deficient if s(n) < n, for instance n = 5;
abundant if s(n) > n, for instance n = 12;
perfect if s(n) = n, for example n = 6.
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Nicomachus (60-120 AD) and the Goldilox theory

The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.
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Iamblichus (245-325) and St. Augustine (354-430) on
perfect numbers

The number Six .... which is said to be perfect ...
was called Marriage by the Pythagoreans,
because it is produced from the intermixing of
the first meeting of male and female; and for the
same reason this number is called Holy and
represents Beauty, because of the richness of its
proportions.

Six is a number perfect in itself, and not because
God created all things in six days; rather, the
converse is true. God created all things in six
days because the number is perfect.
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A deep thought

We tend to scoff at the beliefs of
the ancients.

But we can’t scoff at them
personally, to their faces, and this is
what annoys me.

– Jack Handey
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From numerology to number theory

Perfect numbers are solutions to the equation σ(N) = 2N. What do
these solutions look like?

Theorem (Euclid)

If 2n − 1 is a prime number, then N := 2n−1(2n − 1) is a perfect
number.

For example, 22 − 1 is prime, so N = 2 · (22 − 1) = 6 is perfect.
A slightly larger example (≈ 35 million digits) corresponds to
n = 57885161.

Theorem (Euler)

If N is an even perfect number, then N comes from Euclid’s rule.

Problem
Are there any odd perfect numbers?
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Anatomy of an odd perfect integer

. . . a prolonged meditation has satisfied me that the existence of
[an odd perfect number] - its escape, so to say, from the
complex web of conditions which hem it in on all sides - would
be little short of a miracle.

– J. J. Sylvester

If N is an odd perfect number, then:

1. N has the form peM2, where p ≡ e ≡ 1 (mod 4) (Euler),

2. N has at least 10 distinct prime factors (Nielsen, 2014) and at
least 101 prime factors counted with multiplicity (Ochem and Rao,
2012),

3. N > 101500 (Ochem and Rao, 2012).

Conjecture

There are no odd perfect numbers.
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Counting perfects

Let V ′(x) denote the number of odd perfect numbers n ≤ x .

Theorem (Hornfeck)

We have V ′(x) ≤ x1/2.

Proof.
Each odd perfect N has the form peM2. If N ≤ x , then M ≤

√
x .

We will show that each M corresponds to at most one N.
In fact, since σ(pe)σ(M2) = σ(N) = 2N = 2peM2, we get

σ(pe)

pe
=

2M2

σ(M2)
.

The right-hand fraction depends only on M.
The left-hand side is already a reduced fraction, since
p - 1 + p + · · ·+ pe = σ(pe). Thus, pe depends only on M.
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Counting perfects

Let V (x) denote the number of perfect numbers n ≤ x .

Theorem
We have the following estimates for V (x):

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4
log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)
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This is the end of the story (so far), but it shouldn’t be!
If there are no odd perfect numbers, and if plausible seeming
conjectures on the distribution of Mersenne primes hold, then

V (x) ∼ eγ

log 2
log log x .

Here γ is the Euler–Mascheroni constant.

The best known version of the Hornfeck–Wirsing method, due to
Wirsing (1959), gives an upper bound

V (x) ≤ xC/ log log x ,

where C is an absolute, positive constant.
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Approximating perfection

There are countless variations on the theme of perfect numbers, some
of which seem just as intractable — maybe even moreso.

Definition (Cattaneo, 1951)

We say n is quasiperfect if σ(n) = 2n + 1.

We have no examples!

Theorem (Pomerance–P., 2013)

The number of quasiperfect n ≤ x is Oε(x
1
4
+ε).
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Prime-perfect numbers

Pomerance suggested calling a number prime-perfect if n and σ(n)
have the same set of distinct prime factors. For example, if n = 270,
then

n = 2 · 33 · 5, and σ(n) = 24 · 32 · 5,

so n is prime-perfect.

Theorem (Pomerance–P., 2011)

The number of prime-perfect n ≤ x is at most x1/3+ε for all large x .
Moreover, there are infinitely many prime-perfect numbers n. In fact,
for each k , there are more than (log x)k examples n ≤ x once x is
large.
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Did Pythagoras invent arithmetic dynamics?

Consider the map s : N ∪ {0} → N ∪ {0}, extended to have s(0) = 0.
A perfect number is nothing other than a positive integer fixed point.

We say n is amicable if n generates a two-cycle: in other words,
s(n) 6= n and s(s(n)) = n. For example,

s(220) = 284, and s(284) = 220.

Pythagoras, when asked what a friend was, replied:

One who is the other I, such are 220 and 284.
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The distribution of amicable numbers

There are over ten million amicable pairs known, but we have no
proof that there are infinitely many.
But we can still guess!

Let A(x) be the number of pairs with smaller member ≤ x .

Conjecture (Bratley–Lunnon–McKay, 1970)

A(x) = o(
√
x).

They based this on a complete list of amicable pairs to 107.
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A voice of dissent

Here is data up to 1013 from a more recent survey of Garcia,
Pedersen, and te Riele (2004):

In contrast with B-L-McK, Erdős suggests that for each ε > 0 and
each positive integer K , one has

x1−ε < A(x) < x/(log x)K .
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Upper bounds

Let V2(x) denote the number of n ≤ x belonging to some amicable
pair. (Thus, A(x) ≤ V (x) ≤ 2A(x).)

Theorem
We have the following estimates for V2(x):

Erdős, 1955 V2(x) = o(x)

Rieger, 1973 V2(x) = O(x/(log4 x)1/2−ε)

Erdős & Rieger, 1975 V3(x) = O(x/ log3 x)

Pomerance, 1977 V (x) = O(x/ exp(c
√

log3 x log4 x))

Pomerance, 1981 V2(x) = O(x/ exp((log x)1/3))

Pomerance, 2014 V2(x) = O(x/ exp((log x)1/2))
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pair. (Thus, A(x) ≤ V (x) ≤ 2A(x).)

Theorem
We have the following estimates for V2(x):

Erdős, 1955 V2(x) = o(x)

Rieger, 1973 V2(x) = O(x/(log4 x)1/2−ε)
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Sociable numbers

More generally, we call n a k-sociable number if n starts a cycle of
length k. (So perfect corresponds to k = 1, amicable to k = 2.) For
example,

2115324 7→ 3317740 7→ 3649556 7→ 2797612 7→ 2115324 7→ . . .

is a sociable 4-cycle. We know 221 cycles of order > 2.

Let Vk(x) denote the number of k-sociable numbers n ≤ x .

Theorem (Erdős, 1976)

Fix k. The set of k-sociable numbers has asymptotic
density zero. In other words, Vk(x)/x → 0 as x →∞.
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Counting sociables

How fast does Vk(x)/x → 0? Erdős’s proof gives . . .

Vk(x)/x ≤ 1/

3k times︷ ︸︸ ︷
log log · · · log x .

In joint work with Mits Kobayashi and Carl Pomerance, we obtain
more reasonable bounds. A further improvement is possible for odd k.

Theorem (P., 2010)

Suppose k is odd, and let ε > 0. Then

Vk(x) ≤ x/(log x)1−ε

for all large x .
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Counting sociables

What if we count all sociable numbers at once? Put

V (x) := V1(x) + V2(x) + V3(x) + . . .

Is it still true that most numbers are not sociable numbers?

Theorem (K.–P.–P., 2009)

lim supV (x)/x ≤ 0.0021.

Theorem (K.–P.–P., 2009)

The number of n ≤ x which belong to a cycle
entirely contained in [1, x ] is o(x), as x →∞.

Here 0.0021 is standing in for the density of odd abundant
numbers, odd numbers n for which s(n) > n (e.g., n = 945).
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A parting shot: Perfect polynomials

A function field analogue of perfect numbers was proposed by E. F.
Canaday, the first doctoral student of L. Carlitz.

Definition
We say a polynomial A(T ) in one variable over F2 is perfect if

A =
∑
D|A

D, where D runs over all divisors of A in F2[T ].

Canaday originally called these ‘one-rings’.

Theorem (Canaday, 1941)

The perfect polynomials that split completely over F2 are exactly
those of the form A = (T (T + 1))2

n−1.
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Canaday found several other sporadic examples:
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Motivated by this list, Canaday made the following conjecture:

Conjecture

There are no odd perfect polynomials. Here “odd” means divisible by
neither T nor T + 1.

Not hard to show that if T is a factor of a perfect polynomial, then
so is T + 1, and that any odd perfect polynomial is a square. Very
little is known towards the conjecture; the sharpest results we have is:

Theorem (Gallardo and Rahavandrainy, 2009)

Any odd perfect A has at least 5 distinct irreducible
factors.

The analogous conjecture over Fq fails quite often, e.g., whenever q
is a proper prime power (Gallardo–P.–Rahavandrainy, 2008).
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Part III: An Euler φ-for-all

(this pun brought to you by L. Thompson )

As usual, we let φ(n) = #(Z/nZ)×. Its most famous appearance is in
Euler’s theorem: aφ(n) ≡ 1 (mod n) if gcd(a, n) = 1.

Many other appearances throughout mathematics:

Theorem (Szele, 1947)

Every group of order n is cyclic if and only if
gcd(n, φ(n)) = 1.

Erdős (1948) showed that this condition cuts out a set with counting
function ∼ e−γx/ log3 x as x →∞.
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How do we understand the Euler function?

The same way we understand anything else – by asking and answering
insightful questions!

• How many numbers up to x belong to the range of the Euler
function?

• What is the multiplicative structure of numbers that appear in the
range?

Theorem (I. M. Trivial)

From the prime number theorem,

#{φ(n) ≤ x} ≥ #{p ≤ x}
≈ x/ log x , for large x .
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A matching upper bound?

Put V (x) := #{φ(n) ≤ x}.

Theorem (Pillai, 1929)

V (x)� x/(log x)log 2/e .

Proof sketch.
“Most” n ≤ x are divisible by a large number of odd primes, say at
least K such. If n is divisible by K odd primes, then 2K | φ(n). But
there are only x/2K integers n ≤ x divisible by 2K . Now optimize on

K ; we end up with K = log2 x
e .
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By looking at the total number of prime factors of φ(n) (with
multiplicity), this was improved by Erdős.

Theorem (Erdős, 1934)

For each ε > 0, we have V (x)� x/(log x)1−ε.

OK, so V (x) = x/(log x)1+o(1), as x →∞.
A lot can hide in a o(1) term.

Theorem (Maier and Pomerance, 1988)

For a certain constant C ≈ 0.8178 · · · (given
implicitly), the following holds: As x →∞,

V (x) =
x

log x
exp((C + o(1))(log log log x)2).
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Theorem (Ford, 1998)

For certain constants C ≈ 0.8178 . . . and D ≈ 2.176 . . . , we have

V (x) � x

log x
exp((C (log3 x−log4 x)2+D log3 x−(D+

1

2
−2C ) log4 x).

Open problem

Get an asymptotic formula for V (x), as x →∞.

Open problem

Short of answering the last question, at least decide whether
V (2x)/V (x)→ 2 as x →∞.
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Theorem (Ford, 1998)

For certain constants C ≈ 0.8178 . . . and D ≈ 2.176 . . . , we have

V (x) � x

log x
exp(C (log3 x− log4 x)2+D log3 x−(D+

1

2
−2C ) log4 x).

One taste of the underlying structure theory:
Typical “preimages” have about 2C log3 x prime factors.
For an absolute constant ρ = 0.54259 . . . , the ith largest prime factor
qi (n) satisfies

log2 qi ≈ ρi−1 log2 x

for small values of i .
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Open problem (Erdős, ≤ 1959)

Show that there are infinitely many numbers m in the range of both
the Euler φ-function and the sum-of-divisors function σ.

This is entirely believable:

(i) follows from the twin prime conjecture; if p, p + 2 is a twin prime
pair, then φ(p + 2) = p + 1 = σ(p).

(ii) true if there are infinitely many Mersenne primes 2n − 1; then
σ(2n − 1) = 2n = φ(2n+1)

(iii) true under GRH (Pomerance, unpublished)

(iv) common values are ... pretty common, from the data!
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Let Vφ(N) = #{φ(n) ≤ N}, Vσ(N) = #{σ(n) ≤ N}, and
Vφ,σ(N) = #{m ≤ N : m is in the range of both φ, σ}.

So at 109, we see that the proportion of φ values that are also
σ-values is about 49.4%.

Theorem (Ford, Luca, Pomerance, 2010)

Erdős’s conjecture is true. In fact,
Vφ,σ(x) ≥ exp((log log x)c) for a certain constant
c > 0.
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What is the true order of Vφ,σ(x)?
In particular, could it be that a positive proportion of φ-values are
actually also σ-values?

NO!

Theorem (Ford, P., 2012)

We have Vφ,σ(x) ≤ Vφ(x)/(log log x)1/2+o(1).

Both Vφ(x) and Vσ(x) have the shape x/(log x)1+o(1). So
independence might suggest Vφ,σ(x) = x/(log x)2+o(1). Is this right?

AGAIN, NO! (well, probably...)

Theorem (Ford, P., 2011)

Assuming a strong, quantitative form of the prime k-tuples
conjecture, we have Vφ,σ(x) = x/(log x)1+o(1), as x →∞.
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In both proofs, the fine structure theory of φ and σ-values developed
by Ford plays an essential role.

Many other questions could be mentioned.
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We know most integers are missing from the range of the Euler
function. Are most squares missing?

Theorem (Banks, Friedlander, Pomerance, Shparlinski)

#{n ≤ x : φ(n) = �} ≥ x0.7038 for large x ; conjecturally the
exponent can be taken to be 1− o(1).

Up to 108, there are 26094797 values of n for which n2 belongs to the
range of the φ-function.
Thus, more than half of the even n ≤ 108 have n2 in the range of φ.

Theorem (P. and Pomerance, 2013)

Asymptotically 0% of squares are in the range of φ.

Problem
What about cubes?
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