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ABSTRACT. If E is an elliptic curve defined over Q and p is a prime of good reduction for E,
let E(Fp) denote the set of points on the reduced curve modulo p. Define an arithmetic function
ME(N) by setting ME(N) := #{p : #E(Fp) = N}. Recently, David and the third author studied
the average of ME(N) over certain “boxes” of elliptic curves E. Assuming a plausible conjecture
about primes in short intervals, they showed the following: for each N , the average of ME(N) over
a box with sufficiently large sides is ∼ K∗(N)

logN for an explicitly-given function K∗(N).
The function K∗(N) is somewhat peculiar: defined as a product over the primes dividing N , it

resembles a multiplicative function at first glance. But further inspection reveals that it is not, and
so one cannot directly investigate its properties by the usual tools of multiplicative number theory.
In this paper, we overcome these difficulties and prove a number of statistical results about K∗(N).
For example, we determine the mean value ofK∗(N) over allN , oddN and primeN , and we show
that K∗(N) has a distribution function. We also explain how our results relate to existing theorems
and conjectures on the multiplicative properties of #E(Fp), such as Koblitz’s conjecture.

1. INTRODUCTION

Let E be an elliptic curve defined over the field Q of rational numbers. For the sake of concrete-
ness, we assume that the affine points of E are given by a Weierstrass equation of the form

E : Y 2 = X3 + aX + b, (1)

where a and b are integers satisfying the condition −16(4a3 + 27b2) 6= 0. For any prime p where
E has good reduction, we let E(Fp) denote the group of Fp-points on the reduced curve. In [16],
Kowalski introduced the arithmetic function ME(N), defined by

ME(N) = #{p prime : #E(Fp) = N}.
The Hasse bound [13] implies that if p is counted by ME(N), then p lies between (

√
N − 1)2 and

(
√
N + 1)2. Thus, ME(N) is a well-defined (finite) integer.
The problem of obtaining good estimates for ME(N) appears to be very difficult. The condi-

tion imposed by Hasse’s bound together with an upper bound sieve gives the weak upper bound
ME(N)�

√
N/ log(N+1) for anyN ≥ 1. Except in the case thatE has complex multiplication,

nothing stronger is known. As we will explain later, the average value of ME(N) as N varies over
various sets of integers is related to some important theorems and conjectures in number theory.
In [6], David and the third author established an “average value theorem” for ME(N) as E varies
over a family of elliptic curves. That work was inspired by pioneering results of Fouvry and Murty
[12], who proved an average value theorem for counts of supersingular primes. Unfortunately, be-
cause of the restriction that all primes counted by ME(N) lie between (

√
N − 1)2 and (

√
N + 1)2,

the result of [6] is necessarily conditional upon a conjecture about the distribution of primes in
short intervals (see Conjecture 1.5 below).
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The main result of [6] introduced a strange arithmetic function, which was calledK(N) because
it is “almost a constant”. In order to define K(N), we recall the common notation νp(n) for the
exact power of p that divides n, so that n =

∏
p p

νp(n). We also recall the Kronecker symbol
(
a
b

)
,

an extension of the Jacobi symbol that is defined for all integers a and b 6= 0 (see, for instance, [5,
Definition 1.4.8, page 28]).

Definition 1.1. For any positive integer N , we define

K(N) =
∏
p-N

(
1−

(
N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

)∏
p|N

(
1− 1

pνp(N)(p− 1)

)
.

We also define K∗(N) = K(N)N/φ(N), where φ(N) is the usual Euler totient function.

As we will see later, it is actually the function K∗(N) that has an interesting connection to the
function ME(N). The purpose of the present work is a statistical study of the function K∗(N).
Our computations will illustrate a technique for dealing with arithmetic functions that have a form
similar to, but are not exactly, multiplicative functions. Our first main result is the computation of
the average value of K∗, first over all N and then over odd values of N .

Theorem 1.2. For x ≥ 2, we have∑
N≤x

K∗(N) = x+O

(
x

log x

)
and

∑
N≤x
N odd

K∗(N) =
x

3
+O

(
x

log x

)
.

Thus K∗ has average value 1 on all N , and average value 2/3 on odd N .
Our second main result is the computation of the average value of K∗ on primes. We employ

the usual notation π(x) = #{p ≤ x : p is prime}.

Theorem 1.3. Fix A > 1. Then for x ≥ 2,∑
p≤x

K∗(p) = 2
3
C2J π(x) +OA

(
x

(log x)A

)
. (2)

Here the constants C2 and J are defined by

C2 =
∏
p>2

(
1− 1

(p− 1)2

)
, (3)

and

J =
∏
p>2

(
1 +

1

(p− 2)(p− 1)(p+ 1)

)
. (4)

Furthermore, the asymptotic formula (2) also holds for
∑

p≤xK(p).

Remark. We have written C2 and J as two separate constants because C2 arises naturally by itself
in the analysis of the function K(N) (see equation (5)).

The technique we use to establish Theorems 1.2 and 1.3, which is dictated by the unusual Defi-
nition 1.1 for K(N), is of interest in its own right: the function K looks much like a multiplicative
function but actually is not. One can rewrite Definition 1.1 in the following form:

K(N) = C2F (N − 1)G(N) (5)
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where C2 is the twin primes constant defined in equation (3),

F (n) =
∏
p|n
p>2

(
1− 1

(p− 1)2

)−1∏
p|n

(
1− 1

(p− 1)2(p+ 1)

)
, (6)

and

G(n) =
∏
p|n
p>2

(
1− 1

(p− 1)2

)−1 ∏
pα‖n

(
1− 1

pα(p− 1)

)
. (7)

So to understand the average value of K(N), we are forced to deal with the correlation between
the multiplicative function F , evaluated at N − 1, and the multiplicative function G evaluated at
the neighboring integer N . It is perhaps somewhat surprising that the average values of C2F (N −
1)G(N) described in Theorem 1.2 come out to simple rational numbers.

The fact that we can successfully compute average values of the function K∗, even though it is
not truly multiplicative, makes it natural to wonder whether we can analyze K∗ in other ways; this
is indeed the case. Our next result is an analogue for K∗(N) of a classical result of Schoenberg
[19] for the function n/φ(n). Recall that a distribution function D(u) is a nondecreasing, right-
continuous function D : R→ [0, 1] for which limu→−∞D(u) = 0 and limu→∞D(u) = 1.

Theorem 1.4. The function K∗ possesses a distribution function relative to the set of all natural
numbersN . In other words, there exists a distribution functionD(u) with the property that at each
of its points of continuity,

D(u) = lim
x→∞

1

x
#{N ≤ x : K∗(N) ≤ u}.

As a consequence of Theorems 1.2 and 1.3, we are able to show that the main result of [6]
is consistent with various unconditional results. As mentioned above, the restriction imposed by
the Hasse bound creates a short-interval problem in any study of ME(N) when N is held fixed.
Indeed, the interval is so short that not even the Riemann hypothesis is any help. This problem
is circumvented in [6] by assuming a conjecture in the spirit of the classical Barban–Davenport–
Halberstam theorem.

Conjecture 1.5. Recall the notation θ(x; q, a) =
∑

p≤x, p≡a (mod q) log p. Let 0 < η ≤ 1 and β > 0
be real numbers. Suppose that X , Y , and Q are positive real numbers satisfying Xη ≤ Y ≤ X
and Y/(logX)β ≤ Q ≤ Y . Then∑

q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣∣θ(X + Y ; q, a)− θ(X; q, a)− Y

φ(q)

∣∣∣∣2 �η,β Y Q logX.

Remark. We remark that Languasco, Perelli, and Zaccagnini [17] have established Conjecture 1.5
in the range η > 7

12
; they also showed, assuming the generalized Riemann hypothesis, that any

η > 1
2

is admissible.

Given integers a and b satisfying −16(4a3 + 27b2) 6= 0, let Ea,b denote the elliptic curve given
by the Weierstrass equation (1). Then, given positive parameters A and B, let E(A,B) denote the
set defined by

E(A,B) = {Ea,b : |a| ≤ A, |b| ≤ B, −16(4a3 + 27b2) 6= 0}
3



In [6, 7], David and the third author established the following average value theorem (in fact a
stronger version of it) for ME(N) taken over the family E(A,B).

Proposition 1.6. Assume the Barban–Davenport–Halberstam estimate (Conjecture 1.5) holds for
some η < 1

2
. Let ε be a positive real number, and letA > N1/2+ε andB > N1/2+ε be real numbers

satisfying AB > N3/2+ε. Then for any positive real number R,

1

#E(A,B)

∑
E∈E(A,B)

ME(N) =
K∗(N)

logN
+Oη,ε,R

(
1

(logN)R

)
.

Remarks.
(1) It is not necessary to assume that Conjecture 1.5 holds for a fixed η < 1/2. It is enough to

assume that it holds for Y =
√
X/(logX)β+2.

(2) The originally published formula in [6] contained an error in the definition of K∗(N),
which was corrected in [7] to the form given in Definition 1.1. See the end of Section 2 for
further discussion of the original version of K∗(N).

(3) The proof of Proposition 1.6 given in [6] is restricted to odd values of N , but further work
by Chandee, Koukoulopoulos, David, and Smith [4] establishes the proposition for even
values of N as well.

We note, as in [16], that computing the average value of ME(N) over the integers N ≤ x is
easily seen to be equivalent to the prime number theorem. In particular,∑

N≤x

ME(N) =
∑

p≤(
√
x+1)2

#{N ≤ x : #E(Fp) = N} = π(x) +O
(√

x
)
. (8)

Similarly, the average value of ME(N) taken over the integers N ≤ x that satisfy a congruence
condition is equivalent to an appropriate application of the Chebotarev density theorem. For ex-
ample, if the 2-division field of E is an S3-extension of Q, then the Chebotarev density theorem
implies that ∑

N≤x
N odd

ME(N) ∼ 1

3

x

log x
.

(The calculation of the constant 1
3

reduces to the fact that two thirds of the elements of GL2(Z/2Z),
which is the automorphism group of E[2], have even trace.) If E is given by the Weierstrass
equation (1), the 2-division field is easily seen to be the splitting field of the polynomial X3 +
aX + b. Since almost all cubics (when ordered by height) have S3 as their Galois groups, it seems
reasonable to conjecture that

1

#E(A,B)

∑
N≤x
N odd

∑
E∈E(A,B)

ME(N) =
x

3 log x
+O

(
x

(log x)2

)
, (9)

provided that A and B are growing fast enough with respect to x. A precise version of this con-
jecture was established by Banks and Shparlinski [3, Theorem 19]. (In fact, their theorem shows
that an analogous estimate holds with the condition “N odd” replaced by “m - N”, for any given
integer m.) The asymptotic result (9), together with the result of Theorem 1.2 for odd N , shows
that if we average the two sides of the equation in Proposition 1.6, we obtain consistent results
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(unconditionally). Similarly, the result of Theorem 1.2 for all N allows us to infer the asymptotic
formula

1

#E(A,B)

∑
N≤x

∑
E∈E(A,B)

ME(N) =
x

log x
+O

(
x

(log x)2

)
,

which is consistent with equation (8). We can therefore, if we wish, view Theorem 1.2 as additional
evidence for the conclusion of Proposition 1.6.

A similar problem arises if we consider only primes p. Computing the average value of ME(p)
over the primes p ≤ x is easily seen to be equivalent to the famous Koblitz conjecture [15]:

Conjecture 1.7 (Koblitz). Given an elliptic curve E defined over the rational field Q, there exists
a constant C(E) with the property that as x→∞,∑

p≤x
p prime

ME(p) ∼ C(E)
x

(log x)2
.

The constant C(E) appearing in Koblitz’s conjecture may be zero, in which case the asymptotic
is interpreted to mean that there are only finitely many primes p such that ME(p) > 0. An obvious
obstruction to there being infinitely many primes with ME(p) > 0 is for E to be isogenous to a
curve possessing nontrivial rational torsion. It was once thought that this was the only case when
C(E) = 0, but this turned out to be false; see [23, Section 1.1] for an explicit counterexample due
to Nathan Jones.

The main theorem of [2] may be reinterpreted to say that the asymptotic formula

1

#E(A,B)

∑
p≤x
p prime

∑
E∈E(A,B)

ME(p) = 2
3
C2J

∫ x

2

dt

(log t)2
+OA

(
x

(log x)A

)
(10)

= 2
3
C2J

x

(log x)2
+O

(
x

(log x)3

)
holds unconditionally for A and B growing fast enough with respect to x. Jones [14] has averaged
the explicit formula for C(E) over the family E(A,B) and shown that the result is consistent with
the above formula. We view this as providing good evidence for the Koblitz conjecture. Equa-
tion (10), together with our Theorem 1.3, shows that we obtain consistent results (unconditionally)
when we average the two sides of the equation in Proposition 1.6 over the primes N ≤ x. Thus all
of the conjectures and conditional theorems mentioned above reinforce one another’s validity.

We note that the asymptotic formulas (9) and (10), in which we average over odd integers N or
primes p up to x, both hold for a much wider range ofA andB than is suggested by Proposition 1.6.
In particular, Banks and Shparlinski [3] developed a character-sum argument based on a large
sieve inequality to show that one may take A,B > xε and AB > x1+ε in elliptic-curve averaging
problems of this sort, when the average number of elliptic curve isomorphism classes modulo p
satisfying the desired property is somewhat large. Baier [1] was able to adapt this technique to
make similar improvements to the required length of the average in the (fixed trace) Lang–Trotter
problem, where the average number of classes modulo p is significantly smaller. Given Baier’s
result, it seems possible that Proposition 1.6, in which the odd integer N is fixed, could itself be
shown to hold provided thatA,B > N ε (note that such an improvement would still seem to require
that AB > N3/2+ε rather than the weaker condition AB > N1+ε). As we are primarily concerned
with the multiplicative function K∗ herein, however, we have not pursued this line of thinking.
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The remainder of the article is organized as follows. We begin by establishing Theorem 1.2 in
Section 2. Briefly, we approximate the function K∗(N) by a similar function whose values depend
only upon the small primes dividing N and N − 1; we then calculate the average value of this
truncated function by partitioning the numbers being averaged over into “configurations” based
on local data about N and N − 1 at these small primes. We prove the related Theorem 1.3 in
Section 3; here the calculation of the main term is simpler since the argument of K∗ is always
a prime, while the estimation of the error term is more complicated due to the need to invoke
results on the distribution of primes in arithmetic progressions. Finally, we establish Theorem 1.4
in Section 4 by studying the moments of K∗.

Notation. As above, we employ the Landau–Bachmann o andO notation, as well as the associated
Vinogradov symbols �, � with their usual meanings; any dependence of implied constants on
other parameters is denoted with subscripts. We reserve the letters ` and p for prime variables. For
each natural number n, we let P (n) denote the largest prime factor of n, with the convention that
P (1) = 1. The natural number n is said to be y-friable (sometimes called y-smooth) if P (n) ≤ y.
We write Ψ(x, y) for the number of y-friable integers not exceeding x. By a partition of a set S,
we mean any collection of disjoint sets whose union is S; we do not require that all of the sets in
the collection be nonempty.

2. THE AVERAGE VALUE OF K∗

For notational convenience, set R(N) := N/φ(N), so that K∗(N) = K(N)R(N). By defini-
tion, K(N) is a product over primes, whileR(N) =

∏
`|N(1−1/`)−1 can also be viewed as such a

product. Moreover, it is the small primes that have the largest influence on the magnitude of these
products. This suggests it might be useful to study the truncated functions Kz and Rz defined by

Kz(N) :=
∏
p-N
p≤z

(
1−

(
N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

)∏
p|N
p≤z

(
1− 1

pνp(N)(p− 1)

)
,

and
Rz(N) :=

∏
p|N
p≤z

(1− 1/p)−1 .

We give the proof of the first half of Theorem 1.2, concerning the average of K(N)R(N) over
all N , in complete detail. The proof of the second claim, concerning the average over odd N , can
be proved in the same way; the necessary changes to the argument are indicated briefly at the end
of this section.

The first half of Theorem 1.2 will be deduced from a corresponding estimate for the mean value
of Kz(N)Rz(N):

Proposition 2.1. Let x ≥ 3, and set z := 1
10

log x. We have∑
N≤x

Kz(N)Rz(N) = x+O(x3/4).

We will establish this proposition at the end of this section (it follows upon combining Lem-
mas 2.7 and 2.8). At this point, we show how Theorem 1.2 can be deduced from the proposition.
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Proof of Theorem 1.2, assuming Proposition 2.1. It suffices to show that with z = 1
10

log x,

∑
N≤x
N odd

∣∣Kz(N)Rz(N)−K(N)R(N)
∣∣� x/z. (11)

Now 0 ≤ K(N) ≤ Kz(N) ≤ 1 and 0 ≤ Rz(N) ≤ R(N), so that

|Kz(N)Rz(N)−K(N)R(N)| ≤ |Kz(N)||Rz(N)−R(N)|+ |Kz(N)−K(N)|R(N)

≤ (R(N)−Rz(N)) + (Kz(N)−K(N))R(N).

Thus, it is enough to show that the sums up to x of R(N) − Rz(N) and (Kz(N) −K(N))R(N)
are also � x/z. As we are looking only for upper bounds, we may extend these sums over all
N ≤ x and not only odd N .

Write R(N) =
∑

d|n g(d) for an auxiliary function g. By a straightforward calculation with the
Möbius inversion formula, we see that g vanishes except at squarefree integers d, in which case
g(d) = 1/φ(d). Hence, for all real t > 0,

∑
N≤t

R(N) =
∑
N≤t

∑
d|N

g(d) =
∑
d≤t

1

φ(d)

∑
N≤t
d|N

1

≤
∑
d≤t

t

dφ(d)

≤ t
∞∑
d=1

1

dφ(d)

= t
∏
p

(
1 +

1

p(p− 1)
+

1

p3(p− 1)
+ . . .

)
� t, (12)

so that R(N) is bounded on average. Now writing Rz(N) =
∑

d|n gz(d) for an auxiliary function
gz(d), one finds that gz vanishes except on squarefree z-friable integers d, in which case again
gz(d) = 1/φ(d). In particular, g(d) − gz(d) is nonnegative for all d, and g(d) − gz(d) = 0 when
d ≤ z. We deduce that

∑
N≤x

(R(N)−Rz(N)) =
∑
N≤x

∑
d|N

(g(d)− gz(d)) ≤
∑
N≤x

∑
d|N
d>z

1

φ(d)

=
∑
z<d≤x

∑
N≤x
d|N

1

φ(d)
≤
∑
d>z

x

dφ(d)
.
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Partitioning this last sum into dyadic intervals, we have∑
N≤x

(R(N)−Rz(N)) ≤
∞∑
k=1

∑
2k−1z<d≤2kz

x

dφ(d)
= x

∞∑
k=1

∑
2k−1z<d≤2kz

R(d)

d2

≤ x
∞∑
k=1

1

(2k−1z)2

∑
d≤2kz

R(d)

� x
∞∑
k=1

1

(2k−1z)2
2kz

� x

z

∞∑
k=1

1

2k
� x

z
,

where we used the estimate (12) in the second-to-last inequality. This proves the desired upper
bound for the partial sums of R(N)−Rz(N).

The partial sums of (Kz(N) − K(N))R(N) are easier. Since each factor appearing in the
products defining Kz and K has the form 1 − O(1/`2), it follows that K(N)/Kz(N) ≥ 1 −
O
(∑

`>z 1/`2
)
≥ 1 − O(1/z). Thus, Kz(N) − K(N) = Kz(N)(1 − K(N)/Kz(N)) ≤ 1 −

K(N)/Kz(N)� 1/z. It follows that∑
N≤x

(Kz(N)−K(N))R(N)� 1

z

∑
N≤x

R(N)� x

z
,

using the estimate (12) once more in the last step. This completes the proof of Theorem 1.2,
assuming Proposition 2.1. �

In the remainder of this section, we concentrate on proving Proposition 2.1. Our strategy, already
alluded to in the introduction, is to partition the integers N ≤ x according to local data at small
primes. We choose the partition so that the values Kz(N) and Rz(N) are constant along each set
belonging to the partition (which we call a configuration). For the remainder of this section, we
continue to assume that x ≥ 3 and that z = 1

10
log x.

Definition 2.2. We define the configuration space S as the set of all 4-tuples of the form

(A,B, C, {e`}`∈B),

where the setsA,B, C partition the set of primes up to z, and the e` are positive integers. (Although
S depends upon z and hence x, we will not include this dependence in the notation.)

To each N ≤ x, we can associate a unique configuration in the following manner.

Definition 2.3. Given N ≤ x, define three subsets of the primes in [2, z] by setting A := {` ≤
z : ` - N(N − 1)}, B := {` ≤ z : ` | N}, and C := {` ≤ z : ` | N − 1}. For each ` ∈ B, set
e` := ν`(N). Then σ = (A,B, C, {e`}`∈B) ∈ S is called the configuration σ corresponding to N
and is denoted σN .

Remark. One checks easily that the value Kz(N)Rz(N) depends only on σ = σN . Thus, we often
abuse notation by referring to Kz(σ) and Rz(σ) instead of Kz(N) and Rz(N).
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We can rewrite the sum considered in Proposition 2.1 in the form∑
N≤x

Kz(N)Rz(N) =
∑
σ∈S

Kz(σ)Rz(σ)
∑
N≤x
σN=σ

1. (13)

In the next lemma, we estimate the inner sum on the right-hand side of (13) in two ways.

Lemma 2.4. For each σ ∈ S , we have∑
N≤x
σN=σ

1 = dσx+O(x1/5), (14)

where

dσ :=

(∏
`∈A

(1− 2/`)

)(∏
`∈B

1

`e`
(1− 1/`)

)(∏
`∈C

1

`

)
. (15)

We also have the crude upper bound ∑
N≤x
σN=σ

1 ≤ x
∏
`∈B

`−e` (16)

for any σ ∈ S .

Proof. The condition that σN = σ is equivalent to a congruence condition on N modulo

mσ :=

( ∏
`∈A∪C

`

)(∏
`∈B

`e`+1

)
. (17)

Indeed, σN = σ precisely when N belongs to a union of
∏

`∈A(` − 2)
∏

`∈B(` − 1) congruence
classes modulo mσ. This implies that∑

N≤x
σN=σ

1 =
x

mσ

∏
`∈A

(`− 2)
∏
`∈B

(`− 1) +O

( ∏
`∈A∪B

`

)
= dσx+O

(∏
`≤z

`

)
.

By our choice of z and the prime number theorem,
∏

`≤z ` < x1/5 for large x, and so we have
established the formula (14). To justify the inequality (16), it suffices to observe that if σN = σ,
then

∏
`∈B `

e` divides N . �

The modulus mσ, defined in (17), will continue to play a key role in subsequent arguments. It
will be convenient to know that mσ nearly determines σ; this is the substance of our next result.

Lemma 2.5. For each natural number m, the number of σ ∈ S with mσ = m is O(x1/4).

Proof. Suppose that mσ = m, where σ = (A,B, C, {e`}`∈B). Since the sets A,B, C partition the
primes up to z, the number of possibilities for these sets is 3π(z) = exp(O(log x/log log x)) = xo(1).
Having chosen these sets, the exponents e`, for ` ∈ B, are determined by the prime factorization
of m. This proves the lemma with 1

4
replaced by any positive ε. �

We next investigate two sums over mσ for future use in estimating error terms.

Lemma 2.6. For each σ ∈ S , define mσ by (17). Then for all x ≥ 3,

x6/5 log log x
∑
σ∈S
mσ>x

1

mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

1� x3/4. (18)
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Proof. We proceed by Rankin’s method:

x6/5 log log x
∑
σ∈S
mσ>x

1

mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

1

≤ x6/5 log log x
∑
σ∈S
mσ>x

(
mσ

x

)7/8
1

mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

(
x

mσ

)1/8

= x13/40 log log x
∑
σ∈S

1

m
1/8
σ

.

Every value of mσ is z-friable, and there are at most x1/4 configurations σ ∈ S for every possible
value of mσ by Lemma 2.5. Therefore

x13/40 log log x
∑
σ∈S

1

m
1/8
σ

� x13/40 log log x · x1/4
∑

m z-friable

1

m1/8

= x23/40 log log x
∏
p≤z

(
1 +

1

p1/8
+

1

p1/4
+ · · ·

)

= x23/40 log log x
∏
p≤z

(
1− 1

p1/8

)−1
.

Each factor in the product is at most (1 − 2−1/8)−1 < 13, and so the product is less than 13π(z) =
13O(log x/ log log x) = xo(1). Thus the left-hand side of equation (18) is� x23/40+o(1) log log x� x3/4

as claimed. �

The next lemma relates the mean value of Kz(N)Rz(N), taken over odd N , to the sum of
Kz(σ)Rz(σ)dσ, taken over all configurations σ.

Lemma 2.7. For all x ≥ 3,∑
N≤x

Kz(N)Rz(N) = x
∑
σ∈S

Kz(σ)Rz(σ)dσ +O(x3/4).

Proof. We begin by noting that the upper bounds

0 ≤ K(N) ≤ Kz(N) ≤ 1 and 0 ≤ Rz(N) ≤ R(N) ≤
∏
p≤x

(
1− 1

p

)−1
� log log x (19)

are valid for all N ≤ x. We write∑
N≤x

Kz(N)Rz(N) =
∑
σ∈S

Kz(σ)Rz(σ)
∑
N≤x
σN=σ

1

=
∑
σ∈S
mσ≤x

Kz(σ)Rz(σ)
∑
N≤x
σN=σ

1 +
∑
σ∈S
mσ>x

Kz(σ)Rz(σ)
∑
N≤x
σN=σ

1

=
∑
σ∈S
mσ≤x

Kz(σ)Rz(σ)(dσx+O(x1/5)) +O

( ∑
σ∈S
mσ>x

Kz(σ)Rz(σ)x
∏
`∈B

`−e`
)

10



by Lemma 2.4. Using the upper bounds (19) for Kz and Rz, we deduce after extending the first
sum to infinity that∑

N≤x

Kz(N)Rz(N) = x
∑
σ∈S

Kz(σ)Rz(σ)dσ +O

(
x log log x

∑
σ∈S
mσ>x

dσ

)

+O

(
x1/5 log log x

∑
σ∈S
mσ≤x

1 + x log log x
∑
σ∈S
mσ>x

∏
`∈B

`−e`
)

;

since the inequality dσ ≤
∏

`∈B `
−e` follows from the definition (15), the first error term is domi-

nated by the second. Because
∏

`∈B `
−e` = m−1σ

∏
`≤z ` < m−1σ x1/5 once x is large, this error term

is� x3/4 by Lemma 2.6, and the proof is complete. �

In view of Lemma 2.7, Proposition 2.1 is a consequence of the following remarkable identity:

Lemma 2.8. We have ∑
σ∈S

Kz(σ)Rz(σ)dσ = 1.

Proof. Referring back to the definitions of Kz and Rz, we see that for σ ∈ S ,

Kz(σ)Rz(σ) =

(∏
`∈A

(
1− 1

(`− 1)2

))(∏
`∈B

(
1− 1

`e`(`− 1)

)(
1− 1

`

)−1)
×(∏

`∈C

(
1− 1

(`− 1)2(`+ 1)

))
. (20)

Multiplying by the expression (15) for dσ, we find that

Kz(σ)Rz(σ)dσ =

(∏
`∈A

`− 2

`− 1

)2(∏
`∈B

1

`e`

(
1− 1

`e`(`− 1)

))(∏
`∈C

`2 − `− 1

(`− 1)2(`+ 1)

)
. (21)

Recall that σ is a 4-tuple with entries A,B, C, and {e`}`∈B. We sum the expression (21) over the
possibilities for {e`}. We have

∑
{e`}

each e`≥1

(∏
`∈B

1

`e`

(
1− 1

`e`(`− 1)

))
=
∏
`∈B

( ∞∑
e`=1

1

`e`

(
1− 1

`e`(`− 1)

))
.

By a short computation,

∞∑
e`=1

1

`e`

(
1− 1

`e`(`− 1)

)
=

`2 − 2

(`+ 1)(`− 1)2
.

11



Thus, if we now fix only A, B, and C and sum over all corresponding configurations σ, we have∑
σ∈S

A,B,C fixed

Kz(σ)Rz(σ)dσ =

(∏
`∈A

`− 2

`− 1

)2(∏
`∈B

`2 − 2

(`+ 1)(`− 1)2

)(∏
`∈C

`2 − `− 1

(`− 1)2(`+ 1)

)

=

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)
, (22)

where for notational convenience we have defined

PA(`) =

(
`− 2

`− 1

)2

, PB(`) =
`2 − 2

(`+ 1)(`− 1)2
, PC(`) =

`2 − `− 1

(`− 1)2(`+ 1)
. (23)

To finish the proof, we sum the right-hand side of equation (22) over all possibilities for A, B,
and C. The only condition on the sets A, B, and C is that they partition the set of primes not
exceeding z. Hence,∑

σ∈S

Kz(σ)Rz(σ)dσ =
∑

A,B,C disjoint
A∪B∪C={`≤z}

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)

=
∏
`≤z

(
PA(`) + PB(`) + PC(`)

)
.

However, PA(`) + PB(`) + PC(`) = 1, identically! This completes the proof of the lemma, and so
also of Proposition 2.1. �

As already remarked above, the first half of Theorem 1.2 follows immediately upon combining
Lemmas 2.7 and 2.8.

Proof of the second half of Theorem 1.2. The condition that N is odd amounts to the requirement
that 2 ∈ C in the configuration notation of this section. If we carry this requirement through the
proofs of Lemmas 2.7 and 2.8, the bulk of the argument is essentially unchanged, but the new
conclusions are that ∑

N≤x
2-N

Kz(N)Rz(N) = x
∑
σ∈S
2∈C

Kz(σ)Rz(σ)dσ +O(x3/4)

and ∑
σ∈S
2∈C

Kz(σ)Rz(σ)dσ =
∑

A,B,C disjoint
A∪B∪C={`≤z}

2∈C

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)

= PC(2)
∏

2<`≤z

(
PA(`) + PB(`) + PC(`)

)
= PC(2).

(We assume in going from the first line to the second that z ≥ 2, i.e., that x ≥ e20.) Since
PC(2) = 1

3
, the second half of Theorem 1.2 follows. �

Most mathematical coincidences have explanations, of course, and the magical-seeming PA(`)+
PB(`) + PC(`) = 1 is no different. One might guess that PA(`), PB(`), and PC(`) are probabilities
of certain events occurring, and this is exactly right: as γ ranges over all elements of GL2(F`),

12



the expression det(γ) + 1 − tr(γ) is congruent to 0 (mod `) with probability PB(`), congruent to
1 (mod `) with probability PC(`), and congruent to each of the ` − 2 other residue classes with
probability PA(`)/(`− 2). (See [8, equation (2.2)] for this computation, as well as for the precise
connection to elliptic curves.)

We conclude this section by saying a few words about the function that was originally published
in [6], which we will here call K◦ to avoid confusion with the corrected function K∗:

K◦(N) =

N

φ(N)

∏
p-N

(
1−

(
N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

) ∏
p|N

2-νp(N)

(
1− 1

pνp(N)(p− 1)

) ∏
p|N

2|νp(N)

(
1−

p−
(−Np

p

)
pνp(N)+1(p− 1)

)
,

whereNp = N/pνp(N) is the p-free part ofN . This function is even further from being a multiplica-
tive function than K∗, since its value can depend even on the residue class modulo p of the p-free
part of N . Nevertheless, our techniques can in fact determine the average value of the function K◦

as well.
To investigate the average of K◦, we would expand the notion of a configuration to a sextuple

(A,B1,B2, C, {e`}`∈B1∪B2 , {a`}`∈B2), where A,B1,B2, C partition the set of primes up to z, the
e` are positive integers, and the a` are integers satisfying 1 ≤ a` ≤ ` − 1. We would modify
Definition 2.3 by setting B1 := {` ≤ z : 2 - e`} and B2 := {` ≤ z : 2 | e`} and, for ` ∈ B2,
choosing a` ∈ {1, . . . , `− 1} so that a` ≡ N/`e` (mod `). The analogue of equation (21) would be

K◦z (σ)dσ =

(∏
`∈A

`− 2

`− 1

)2(∏
`∈C

`2 − `− 1

(`− 1)2(`+ 1)

)
×(∏

`∈B1

1

`e`

(
1− 1

`e`(`− 1)

))(∏
`∈B2

1

`e`(`− 1)

(
1−

`−
(−a`

`

)
`e`+1(`− 1)

))
.

We would then hold A,B1,B2, C, and the e` fixed and sum over all
∏

`∈B2(` − 1) possibilities for
the a`; this has the effect of replacing the Legendre symbol

(−a`
`

)
by its average value 0. At this

point in the argument, the factors corresponding to primes in B1 and B2 would be identical, and
the calculation would soon dovetail with equation (22).

We felt these few details of the determination of the average value ofK◦ were worth mentioning,
as an example of the wider applicability of our method and the more complicated configuration
spaces that can be used.

3. THE AVERAGE OF K∗ OVER PRIMES

In this section we establish Theorem 1.3. The main component of the proof is the following
asymptotic formula for the sum of the multiplicative function F evaluated on shifted primes.

Proposition 3.1. Let F be the multiplicative function defined in equation (6), and let J be the
constant defined in equation (4). For any x > 2 and for any positive real number A,∑

p≤x

F (p− 1) = Jπ(x) +OA(x/(log x)A).
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Proof. Write F (n) =
∑

d|n g(d) for an auxiliary function g (not the same function as in the proof
of Theorem 1.2), which is also multiplicative. By a direct computation with the Möbius inversion
formula, g vanishes unless d is squarefree. Moreover, g(2) = −1

3
, while for odd primes `,

g(`) =
1

(`− 2)(`+ 1)
. (24)

Writing π(x; d, 1) for the number of primes p ≤ x with p ≡ 1 (mod d), we have∑
p≤x

F (p− 1) =
∑
p≤x

∑
d|p−1

g(d)

=
∑

d≤(log x)A
g(d)π(x; d, 1) +

∑
(log x)A<d≤x

g(d)π(x; d, 1). (25)

We first consider the second sum on the right-hand side. Trivially, π(x; d, 1) < x/d, and so∣∣∣∣∣∣
∑

(log x)A<d≤x

g(d)π(x; d, 1)

∣∣∣∣∣∣ ≤ x
∑

d>(log x)A

|g(d)|
d

. (26)

When g(d) is nonvanishing, the formula (24) yields

d2g(d)�
∏

`|d, `>2

`2

`2 − `− 2
�
∏
`|d

(
1− 1

`

)−1
=

d

φ(d)
,

and hence g(d)� 1/dφ(d) for all values of d. In particular, using the crude lower bound φ(d)�
d1/2 (compare with the precise [18, Theorem 2.9, page 55]), we find that g(d) � d−3/2. Thus,
equation (26) gives ∑

(log x)A<d≤x

g(d)π(x; d, 1)� x
∑

d>(log x)A

d−5/2 � x(log x)−3A/2,

and so equation (25) becomes∑
p≤x

F (p− 1) =
∑

d≤(log x)A
g(d)π(x; d, 1) +O

(
x(log x)−3A/2

)
. (27)

To deal with the remaining sum, we invoke the Siegel–Walfisz theorem [18, Corollary 11.21,
page 381]. That theorem implies that for a certain absolute constant c > 0,∑

d≤(log x)A
g(d)π(x; d, 1) =

∑
d≤(log x)A

g(d)

(
π(x)

φ(d)
+OA

(
x exp(−c

√
log x)

))

= π(x)
∑

d≤(log x)A

g(d)

φ(d)
+OA

(
x exp(−c

√
log x)

∞∑
d=1

|g(d)|
)

= π(x)
∞∑
d=1

g(d)

φ(d)

+OA

(
π(x)

∑
d>(log x)A

|g(d)|
φ(d)

+ x exp(−c
√

log x)
∞∑
d=1

|g(d)|
)
.
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In the error term, we again use the crude bounds g(d)� d−3/2 and φ(d)� d1/2, obtaining∑
d≤(log x)A

g(d)π(x; d, 1) = π(x)
∞∑
d=1

g(d)

φ(d)
+OA

(
π(x)(log x)−A + x exp(−c

√
log x) · 1

)
,

whereupon equation (27) becomes∑
p≤x

F (p− 1) = π(x)
∞∑
d=1

g(d)

φ(d)
+OA

(
x(log x)−A

)
.

Finally, the constant in this main term is an absolutely convergent sum of a multiplicative function,
and hence it can be expressed as the Euler product

∞∑
d=1

g(d)

φ(d)
=
∏
`

(
1 +

g(p)

φ(p)
+
g(p2)

φ(p2)
+ · · ·

)
=

2

3

∏
`>2

(
1 +

1

(`− 1)(`− 2)(`+ 1)

)
=

2

3
J,

by equation (24). This completes the proof of the proposition. �

Proof of Theorem 1.3. We first claim that the asymptotic formula (2) for K∗ follows easily from
the same asymptotic formula forK. Indeed, for each prime p, we haveK∗(p) = K(p)p/(p− 1) =
K(p) +O(K(p)/p). Because each local factor in Definition 1.1 is of the form 1 +O(p−2), we see
that K is absolutely bounded. Thus∑

p≤x

K∗(p) =
∑
p≤x

K(p) +O

(∑
p≤x

1

p

)
=
∑
p≤x

K(p) +O(log log x),

and so it suffices to establish the asymptotic formula (2) for K.
For each odd prime p, the decomposition (5) gives K(p) = C2F (p − 1)G(p), where F and G

are defined in equations (6) and (7), respectively. Again, all local factors in these definitions are of
the form 1 +O(p−2); hence G(p) = 1 +O(1/p2) and F is absolutely bounded. Therefore,∑

p≤x

K(p) =
∑
p≤x

C2F (p− 1)G(p)

= C2

∑
p≤x

F (p− 1) +O

(
1 +

∑
p≤x

F (p− 1)

p2

)
= C2

∑
p≤x

F (p− 1) +O(1),

and so the desired asymptotic formula (2) is a direct consequence of Proposition 3.1. �

4. THE DISTRIBUTION FUNCTION OF K∗

The goal of this section is to establish the existence of the distribution function of K∗(N). We
do so by bounding the moments of K∗(N):

µk := lim
x→∞

1

x

∑
N≤x

K∗(N)k. (28)
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We describe below how Theorem 1.4 follows from Proposition 4.3. Before we can bound these
moments, however, we must prove that the moments even exist. In Theorem 1.2 we determined
that µ1 = 1, and the same method of determining µk applies in general.

Proposition 4.1. For every natural number k, the limit (28) defining µk exists.

Proof. Following the proof of Proposition 2.1, we obtain (with minimal changes to the argument)
that for each fixed k,∑

N≤x

(Kz(N)Rz(N))k = x
∑
σ∈S

Kz(σ)kRz(σ)kdσ +Ok(x
3/4), (29)

where z = 1
10

log x and dσ is defined in equation (15). Note that for N ≤ x,(
Kz(N)Rz(N))k − (K(N)R(N)

)k
�k max

{
K(N)R(N), Kz(N)Rz(N)

}k−1 · ∣∣K(N)R(N)−Kz(N)Rz(N)
∣∣

�k (log log x)k−1 ·
∣∣K(N)R(N)−Kz(N)Rz(N)

∣∣
by the bounds in equation (19); therefore∑
N≤x

K∗(N)k =
∑
N≤x

(Kz(N)Rz(N))k +

(∑
N≤x

(
(K(N)R(N))k − (Kz(N)Rz(N))k

))
=
∑
N≤x

(Kz(N)Rz(N))k +Ok

(
(log log x)k−1

∑
N≤x

∣∣K(N)R(N)−Kz(N)Rz(N)
∣∣).

Using equation (29) in the main term and the estimate (11) in the error term, we obtain∑
N≤x

K∗(N)k = x
∑
σ∈S

Kz(σ)kRz(σ)kdσ +Ok(x
3/4 + (log log x)k−1x/z)

= x
∑
σ∈S

Kz(σ)kRz(σ)kdσ +Ok

(
x

log x
(log log x)k−1

)
.

Dividing both sides by x and passing to the limit, we deduce that

µk = lim
x→∞

∑
σ∈S

Kz(σ)kRz(σ)kdσ, (30)

provided that this limit exists.
To compute the sum over σ in (30), we follow the proof of Lemma 2.8; however, the details

are somewhat messier. With the four components A, B, C, {e`}`∈B of σ as before, we write
down the expansion for Kz(σ)kRz(σ)kdσ analogous to (21). This expansion is made up of three
pieces, which are products over primes ` in A, B, and C. The B product depends additionally
on the tuple {e`}`∈B. We sum over all possibilities for {e`}`∈B to remove this dependence. After
straightforward but uninspiring computations, we find that fixing only A, B, and C,∑

σ

Kz(σ)kRz(σ)kdσ =

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)
,
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where (we suppress the dependence on k in the notation on the left-hand sides)

PA(`) = (1− 2
`
)k+1(1− 1

`
)−2k,

PB(`) =

(
1− 1

`

)1−k ∞∑
d=1

1

`d

(
1− 1

`d(`− 1)

)k
, (31)

PC(`) =
1

`

(
1− 1

(`− 1)2(`+ 1)

)k
.

(Note that when k = 1, these expressions reduce to the expressions in equation (23).) To compute
the sum appearing in (30), we sum over A, B, and C, keeping in mind that these sets partition the
primes in [2, z]. We find that∑

σ∈S

Kz(σ)kRz(σ)kdσ =
∏
`≤z

(PA(`) + PB(`) + PC(`)) ,

and so from equation (30),

µk =
∏
`

(PA(`) + PB(`) + PC(`)) . (32)

It remains to show that this product converges. From their definitions (31), we find that

PA(`) = 1− 2/`+Ok(1/`
2),

PB(`) = 1/`+Ok(1/`
2),

PC(`) = 1/`+Ok(1/`
2).

It follows that each term in the product from equation (32) is 1 + O(1/`2); consequently, that
product converges, which completes the proof of the proposition. �

Remarks. For any given k, we can explicitly compute PA, PB, and PC and thus write down an exact
expression for µk as an infinite product over primes. For example, taking k = 2, we find that

µ2 =
∏
`

(
1 +

`5 − `3 − 2`2 − 2`− 1

(`− 1)4(`+ 1)2(`2 + `+ 1)

)
≈ 1.261605.

Now that we know these moments µk exist, we proceed to establish an upper bound for them as
a function of k. The following result, well known in the theory of probability (see, for example,
[9, Theorem 3.3.12, page 123]), allows us to pass from such an upper bound to the existence of a
limiting distribution function.

Lemma 4.2. Let F1, F2, . . . be a sequence of distribution functions. Suppose that for each positive
integer k, the limit limn→∞

∫
uk dFn(u) = µk exists. If

lim sup
k→∞

µ
1/2k
2k

2k
<∞,

then there is a unique distribution function F possessing the µk as its moments, and Fn converges
weakly to F .

We will apply Lemma 4.2 with

Fn(u) :=
#{m ≤ n : K∗(m) ≤ u}

#{m ≤ n}
,
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for which

lim
n→∞

∫
uk dFn(u) = lim

n→∞

1

n

∑
m≤n

K∗(m)k = µk

(so that the uses of µk in equation (28) and Lemma 4.2 are consistent). In light of Lemma 4.2,
Theorem 1.4 is a consequence of the following upper bound.

Proposition 4.3. The moments µk defined in equation (28) satisfy log µk � k log log k. In partic-
ular, (µ

1/2k
2k )/2k � (log k)A/k for some constant A.

Proof. Recall that R(N) denotes the function N/φ(N). The number µk is the kth moment of the
function K(N)R(N), and that function is bounded pointwise by R(N). So µk is bounded above
by µ′k, where

µ′k := lim
x→∞

1

x

∑
N≤x

R(N)k.

Thus, it suffices to establish the estimate log µ′k � k log log k.
By a result known already to Schur (see [19, page 194]; see also [18, Exercise 14, page 42]), we

have that for each k,

µ′k =
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)−k )
=
∏
p

(
1 +

1

p

((
p

p− 1

)k
− 1k

))
.

By the mean value theorem,

1 +
1

p

((
p

p− 1

)k
− 1k

)
= 1 +O

(
k

p(p− 1)

(
p

p− 1

)k−1)
= 1 +O

(
k

p2

(
1 +

1

p− 1

)k−1)
< 1 +O

(
k

p2
exp

(
k − 1

p− 1

))
,

and so

µ′k <
∏
p≤k

(
1 +O

(
k

p2
exp

(
k − 1

p− 1

)))∏
p>k

(
1 +O

(
k

p2
exp

(
k − 1

p− 1

)))
. (33)

In the first product, we use the crude inequality

1 +O

(
k

p2
exp

(
k − 1

p− 1

))
< 1 +O

(
k exp

(
k

p− 1

))
� k exp

(
k

p− 1

)
,

so that for some absolute constant C,∏
p≤k

(
1 +O

(
k

p2
exp

(
k − 1

p− 1

)))
≤
∏
p≤k

Ck exp

(
k

p− 1

)
≤ (Ck)π(k) exp

(
k
∑
p≤k

1

p− 1

)
= exp(O(k)) exp(O(k log log k)).
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In the second product, the exponential factor is uniformly bounded, and so∏
p>k

(
1 +O

(
k

p2
exp

(
k − 1

p− 1

)))
=
∏
p>k

(
1 +O

(
k

p2

))
<
∏
p>k

(
exp

(
O

(
k

p2

)))
≤ exp

(
O

(∑
p

k

p2

))
= exp(O(k)).

In light of these last two estimates, equation (33) yields µ′k ≤ exp(O(k log log k)) as required. �

Remarks. It is worthwhile to make a few remarks about the behavior of D(u). Let u0 := 2
3
C2. We

can view equation (20), with z = ∞, as providing us with a conveniently factored Euler product
expansion of K∗(N). Comparing the terms of this expansion with those in the product expansion
for C2, one sees that K∗(N) > u0 for all N . In fact, one finds that K∗(N) is bounded away from
u0 unless all of the small odd primes belong to A, i.e., unless N(N − 1) possesses no small odd
prime factors. Conversely, if N(N − 1) has no small odd prime factors, an averaging argument
shows that K∗(N) is usually close to u0. In this way, one proves that D(u0) = 0 while D(u) > 0
for u > u0.

Since K(N) is absolutely bounded and bounded away from zero, several results onD(u) follow
immediately from corresponding results for the distribution function of N/φ(N), whose behavior
has been studied by Erdős [11] and Weingartner [21, 22]. In particular, from [11, Theorem 1], we
see that D(u) > 1− exp(− exp(Cu)) for a certain constant C > 0 and all large u.

Finally, we remark that there is an alternative, more arithmetic approach to the proof of Theorem
1.4, based on ideas and results of Erdős [10] and Shapiro [20]. This approach allows us to show
that the distribution functionD(u) of Theorem 1.4 is continuous everywhere and strictly increasing
for u > u0. We omit the somewhat lengthy arguments for these claims.
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