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Messing with perfection

Let s(n) :=
∑

d |n,d<n d denote the sum of the proper divisors of n.
So if σ(n) =

∑
d |n d is the usual sum-of-divisors function, then

s(n) = σ(n)− n.

For example,

s(4) = 1 + 2 = 3, σ(4) = 1 + 2 + 4 = 7.

The ancient Greeks said that n was . . .
deficient if s(n) < n, for instance n = 5;
abundant if s(n) > n, for instance n = 12;
perfect if s(n) = n, for example n = 6.
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Nicomachus (60-120 AD) and the Goldilox theory

The superabundant number is . . . as if an adult animal was formed
from too many parts or members, having “ten tongues”, as the
poet says, and ten mouths, or nine lips, and provided with three
lines of teeth; or with a hundred arms, or having too many fingers
on one of its hands. . . . The deficient number is . . . as if an animal
lacked members or natural parts . . . if he does not have a tongue
or something like that.

. . . In the case of those that are found between the too much and
the too little, that is in equality, is produced virtue, just measure,
propriety, beauty and things of that sort — of which the most
exemplary form is that type of number which is called perfect.
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A deep thought

We tend to scoff at the beliefs of the
ancients.

But we can’t scoff at them person-
ally, to their faces, and this is what
annoys me.

– Jack Handey
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From numerology to number theory

“Serious” problem: How are perfect numbers distributed? More
specifically, what can we say about the number of perfect numbers
n ≤ x , as x grows?

Theorem (Euclid)

If 2m − 1 is a prime number, then n := 2m−1(2m − 1) is a perfect
number.

For example, 22 − 1 is prime, so n = 2 · (22 − 1) = 6 is perfect.

Theorem (Euler)

If n is perfect and even, then n arises from Euclid’s formula.
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Just from the shape of the Euclid–Euler formula (exponential in m),
the number of even perfect n ≤ x is O(log x), for large x .

To do better, we need to understand the distribution of m with
2m − 1 prime. We know something about these m. For example: If
2m − 1 is prime, then m itself is prime (HW!). And values of m with
2m − 1 prime seem to keep appearing, e.g.,

82 589 933,

but there are basically no theorems here.

Open problem

Are there infinitely many prime m for which 2m − 1 is composite?
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What about odd perfect numbers?

Conjecture

There are no odd perfect numbers.
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Let V (x) denote the number of perfect numbers n ≤ x . From
everything said above, we expect that

V (x) = O(log x).

What can we prove?

Theorem (Hornfeck–Wirsing, 1957)

For each ϵ > 0, and all x > x0(ϵ),

V (x) < xϵ.

Wirsing, 1959: V (x) ≤ xc/ log log x .
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Partially perfect?

If n is perfect, then

gcd(n, s(n)) = gcd(n, n) = n.

Since gcd(n, ·) ≤ n, one could say perfect numbers are example of
maximizers for the function gcd(n, s(n)).

The maximizers are precisely the n dividing s(n): such n are called
multiperfect. We understand the distribution of multiply perfect
numbers at about the same level as we do perfect numbers. We don’t
know how to prove there are infinitely many. But the theorems of
Hornfeck–Wirsing and Wirsing from the last slide still apply.
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If one is thinking in this way, it’s natural to ask how often
gcd(n, s(n)) is as small as possible. That is, how many n ≤ x have
gcd(n, s(n)) = 1. This was answered by Erdős in 1948: As x → ∞,

1

x
#{n ≤ x : gcd(n, s(n)) = 1} ∼ e−γ

log log log x
.

(Here γ is the Euler–Mascheroni constant that appears when
estimatings partial sums of the harmonic series.)

The denominator log log log x tends to infinity here, but very slowly.
So while the limiting frequency of n with gcd(n, s(n)) = 1 is 0%, it is
a pretty “fat” 0% !

10 of 15



Large, small, and everything inbetween

Define the two-variable function

E (x , y) = #{n ≤ x : gcd(n, s(n)) > y}.

Question
What estimates can we prove for E (x , y)?

Notice that if n ∈ (x/2, x ] and n is multiperfect, then
gcd(n, s(n)) = n ≥ x/2, so n is counted by E (x , x/2). Hence, the
count of multiply perfect n ≤ x is at most

E (x , x/2) + E (x/2, x/4) + E (x/4, x/8) + . . . .

So upper bounds for E (x , y) yield upper bounds for counts of
multiperfects.
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Theorem
Fix ϵ > 0. If x , y → ∞ with xϵ ≤ y ≤ x1−ϵ, then

E (x , y) = x/y1+o(1).

Example: There are x2/3+o(1) values of n ≤ x with
gcd(n, s(n)) > x1/3.

Consequently: There are O(xϵ) multiply perfect n ≤ x .

Actually, this consequence is a bit of a cheat: The proof uses
Hornfeck–Wirsing. In fact, the theorem uses a more general form of
the Hornfeck–Wirsing result where one counts solutions not only to
s(n) = αn, for given rational α.
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Theorem
Fix ϵ > 0. If x , y → ∞ with xϵ ≤ y ≤ x1−ϵ, then

E (x , y) = x/y1+o(1).

The proof shows that lower bound holds when y grows faster than
any fixed power of x1/

√
log log x .

When is x/y1+o(1) the correct answer? We don’t know!

Easier question: When do we have an upper bound saving some
power of y? That is: In what range do we have E (x , y) ≤ x/y δ, with
δ > 0 bounded away from 0? It’s “easy” to prove that this fails if y is
too small.
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Erdős’s claim
It is necessary and sufficient that y > (log x)β, with β > 0 bounded
away from 0.

Erdős’s claim (corrected)

It is necessary and sufficient that y > exp((log log x)β).

The results from this summer probe the behavior of E (x , y) when
y = exp((log log x)v ) with small v . Write y = (log log x)u. If u → ∞
but v → 0, then

E (x , y) = x exp(−(1 + o(1))u log u).

Consequently, if v goes to 0 but not too quickly,

E (x , y) = x/y v(1+o(1)).
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