CIMPA/ICTP research school

Analogies between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$; elementary case studies

Paul Pollack

University of Georgia

July 2013
$1 / 63$

Integers vs. polynomials

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Throughout, q denotes a prime power, and \mathbb{F}_{q} denotes the finite field of order q (unique up to isomorphism).

The ring of integers \mathbb{Z} and the ring of polynomials $\mathbb{F}_{q}[t]$ share a number of features. Both are:

- Euclidean domains (and so PIDs)
- Finite quotient domains (R / I is finite for nonzero I)
- Rings with only finitely many units.

Integers vs. polynomials

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's theorem

Sums of two squares

Waring's problem

Throughout, q denotes a prime power, and \mathbb{F}_{q} denotes the finite field of order q (unique up to isomorphism).

The ring of integers \mathbb{Z} and the ring of polynomials $\mathbb{F}_{q}[t]$ share a number of features. Both are:

- Euclidean domains (and so PIDs)
- Finite quotient domains (R / I is finite for nonzero I)
- Rings with only finitely many units.

This means that much of the elementary theory carries over almost word-for-word - these parallels are stressed in many abstract algebra courses. Examples include unique factorization, Fermat's little theorem, and Wilson's theorem.

A brief dictionary

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Integers
 Polynomials

\mathbb{Z}, generic element $n \quad A=\mathbb{F}_{q}[t]$, generic element f
units: $\{ \pm 1\}$
prime number positive integer absolute value dyadic interval $[x, 2 x]$
units: \mathbb{F}_{q}^{\times}
irreducible polynomial monic polynomial
$|f|=q^{\operatorname{deg} f}$ (so $|f|=|A / f A|$) polynomials of a given degree

Quadratic reciprocity

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

But the analogies run deeper than this. In this lecture, I want to dwell on a few of my favorite examples.

Recall that if p is an odd prime and $a \in \mathbb{Z}$, the Legendre symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{rll}
0 & \text { if } p \mid a, & \\
1 & \text { if } a \equiv \square & (\bmod p), \\
-1 & \text { if } a \not \equiv \square & (\bmod p)
\end{array}\right.
$$

Theorem (Quadratic reciprocity law, Gauss)

For distinct odd primes p and q,

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}} .
$$

Quadratic reciprocity

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

What should quadratic reciprocity look like in $A=\mathbb{F}_{q}[t]$?
Suppose P is a monic irreducible element in $\mathbb{F}_{q}[t]$. Then A / P is a field of size $q^{\operatorname{deg} P}$. Hence, the nonzero squares form an index 2 subgroup of $(A / P)^{\times}$whenever q is odd. So let's assume that.

Quadratic reciprocity

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary

Waring's problem

What should quadratic reciprocity look like in $A=\mathbb{F}_{q}[t]$?
Suppose P is a monic irreducible element in $\mathbb{F}_{q}[t]$. Then A / P is a field of size $q^{\operatorname{deg} P}$. Hence, the nonzero squares form an index 2 subgroup of $(A / P)^{\times}$whenever q is odd. So let's assume that.

We can again define a Legendre symbol. If $f \in A$, set

$$
\left(\frac{f}{P}\right)=\left\{\begin{array}{rll}
0 & \text { if } P \mid f, & \\
1 & \text { if } f \equiv \square & (\bmod P), \\
-1 & \text { if } f \not \equiv \square & (\bmod P) .
\end{array}\right.
$$

This is multiplicative in the top entry and "periodic" modulo P, in analogy with the usual Legendre symbol.

Quadratic reciprocity

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Example

Let $q=3$, so that $A=\mathbb{F}_{3}[t]$. Let $P=t^{2}+1 \in A$. Then A / P is the field with 3^{2} elements, and so the unit group of A / P is the cyclic group of order 8 . By direct computation, the $8=\frac{1}{2} \cdot 4$ squares in $(A / P)^{\times}$are represented by

$$
1, \quad-1, \quad t, \quad 2 t
$$

Continuing, suppose $Q=t^{3}-t+1$. Then $Q \equiv t+1$ $(\bmod P)$, and so

$$
\left(\frac{Q}{P}\right)=-1
$$

Quadratic reciprocity

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Suppose P and Q are distinct monic irreducibles in A. Then the most naive guess for a quadratic reciprocity law would be

$$
\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{\frac{|P|-1}{2} \frac{|Q|-1}{2}} .
$$

Quadratic reciprocity

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Suppose P and Q are distinct monic irreducibles in A. Then the most naive guess for a quadratic reciprocity law would be

$$
\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{\frac{|P|-1}{2} \frac{|Q|-1}{2}} .
$$

Theorem (Dedekind, 1857)

This is correct!
The proof of our theorem can be established completely analogously to Gausss fifth proof [of QR] and is based on [Gauss's lemma] ... its consequences, up to ... the proof of the theorem, are so similar to the ones in the cited treatise of Gauss that no one can fail to find the complete proof.

A short proof of quadratic reciprocity in $A=\mathbb{F}_{q}[t]$

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

We will prove quadratic reciprocity where the exponent on -1 looks a bit different. Of course, we only care about this exponent modulo 2 .

Say P has degree d and Q has degree e. Then modulo 2 ,

$$
\frac{|P|-1}{2}=\frac{q^{d}-1}{2}=\frac{q-1}{2}\left(1+q+q^{2}+\cdots+q^{d-1}\right) \equiv d \frac{q-1}{2} .
$$

Similarly, $\frac{|Q|-1}{2} \equiv e^{\frac{q-1}{2} .}$.Thus,

$$
\frac{|P|-1}{2} \frac{|Q|-1}{2} \equiv d e \frac{q-1}{2} \quad(\bmod 2) .
$$ ctd.

Analogies between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary

Waring's problem

So we can replace the exponent of -1 with $d e \frac{q-1}{2}$; this leads to the form of QR that we will actually prove:

Theorem

Let P and Q be distinct monic irreducibles in $A=\mathbb{F}_{q}[t]$, where q is odd. Say $\operatorname{deg} P=d$ and $\operatorname{deg} Q=e$. Then

$$
\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{d e \frac{q-1}{2}}
$$

The argument we will give is due essentially to F. K. Schmidt, with some fine tuning by L. Carlitz.

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's

 problem
Lemma

Let P be a monic irreducible in A. For every $f \in A$, we have

$$
\left(\frac{f}{P}\right) \equiv f^{\frac{|P|-1}{2}} \quad(\bmod P)
$$

This is clear if $f \equiv 0(\bmod P)$, so suppose otherwise.

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

Lemma

Let P be a monic irreducible in A. For every $f \in A$, we have

$$
\left(\frac{f}{P}\right) \equiv f^{\frac{|P|-1}{2}} \quad(\bmod P)
$$

This is clear if $f \equiv 0(\bmod P)$, so suppose otherwise. If $f \equiv g^{2}(\bmod P)$, then $f^{\frac{|P|-1}{2}} \equiv g^{|P|-1} \equiv 1 \equiv\left(\frac{f}{P}\right)(\bmod P)$.

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary

Mason's theorem

Sums of two squares

Waring's problem

Lemma

Let P be a monic irreducible in A. For every $f \in A$, we have

$$
\left(\frac{f}{P}\right) \equiv f^{\frac{|P|-1}{2}} \quad(\bmod P)
$$

This is clear if $f \equiv 0(\bmod P)$, so suppose otherwise. If $f \equiv g^{2}(\bmod P)$, then $f^{\frac{|P|-1}{2}} \equiv g^{|P|-1} \equiv 1 \equiv\left(\frac{f}{P}\right)(\bmod P)$. Finally, suppose $f \not \equiv \square(\bmod P)$. Now there are at most $\frac{|P|-1}{2}$ solutions $\bmod P$ to $X^{\frac{|P|-1}{2}} \equiv 1(\bmod P)$, since A / P is a field. There are also $\frac{|P|-1}{2}$ squares $\bmod P$. So $f^{\frac{|P|-1}{2}} \not \equiv 1(\bmod P)$. But $\left(f^{\frac{|P|-1}{2}}\right)^{2} \equiv f^{|P|-1} \equiv 1(\bmod P)$, forcing $f^{\frac{|P|-1}{2}} \equiv-1 \equiv\left(\frac{f}{P}\right)(\bmod P)$.

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_{q}. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$
P(t)=(t-\alpha)\left(t-\alpha^{q}\right) \cdots\left(t-\alpha^{q^{d-1}}\right)
$$

and

$$
Q(t)=(t-\beta)\left(t-\beta^{q}\right) \cdots\left(t-\beta^{q^{e-1}}\right)
$$

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_{q}. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$
P(t)=(t-\alpha)\left(t-\alpha^{q}\right) \cdots\left(t-\alpha^{q^{d-1}}\right)
$$

and

$$
Q(t)=(t-\beta)\left(t-\beta^{q}\right) \cdots\left(t-\beta^{q^{e-1}}\right)
$$

We would like to evaluate $P^{\frac{|Q|-1}{2}} \bmod Q$, since this gives $\left(\frac{P}{Q}\right)$.

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_{q}. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$
P(t)=(t-\alpha)\left(t-\alpha^{q}\right) \cdots\left(t-\alpha^{q^{d-1}}\right)
$$

and

$$
Q(t)=(t-\beta)\left(t-\beta^{q}\right) \cdots\left(t-\beta^{q^{e-1}}\right)
$$

We would like to evaluate $P^{\frac{|Q|-1}{2}} \bmod Q$, since this gives $\left(\frac{P}{Q}\right)$. We compute $P^{\frac{|Q|-1}{2}} \bmod t-\beta^{q^{i}}$ for each i, starting with $P^{\frac{|Q|-1}{2}} \bmod t-\beta$ (the case $i=0$).

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity

Fermat's last

 theoremMason's
theorem
Sums of two squares

Waring's problem

Using that P has coefficients belonging to \mathbb{F}_{q}, we see that

$$
\begin{aligned}
P(t)^{\frac{|Q|-1}{2}} & =P(t)^{\frac{q^{e}-1}{2}}=P(t)^{\left(1+q+\cdots+q^{e-1}\right) \frac{q-1}{2}} \\
& =\left(P(t) P\left(t^{q}\right) \cdots P\left(t^{q^{e-1}}\right)\right)^{\frac{q-1}{2}} .
\end{aligned}
$$

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary

Mason's theorem

Sums of two squares

Waring's problem

Using that P has coefficients belonging to \mathbb{F}_{q}, we see that

$$
\begin{aligned}
P(t)^{\frac{|Q|-1}{2}} & =P(t)^{\frac{q^{e}-1}{2}}=P(t)^{\left(1+q+\cdots+q^{e-1}\right) \frac{q-1}{2}} \\
& =\left(P(t) P\left(t^{q}\right) \cdots P\left(t^{q^{e-1}}\right)\right)^{\frac{q-1}{2}} .
\end{aligned}
$$

Modulo $t-\beta$, this is congruent to

$$
\left(P(\beta) P\left(\beta^{q}\right) \cdots P\left(\beta^{q^{e-1}}\right)\right)^{\frac{q-1}{2}} .
$$

Remembering that $P(t)=\prod_{i=0}^{d-1}\left(t-\alpha^{q^{i}}\right)$, we get

$$
P(t)^{\frac{|Q|-1}{2}} \equiv\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}}(\bmod t-\beta)
$$

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem

Sums of two squares

Waring's problem

OK, so we have now that

$$
P(t)^{\frac{|Q|-1}{2}} \equiv\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}} \quad(\bmod t-\beta)
$$

How does the right hand side change if we replace the modulus $t-\beta$ with $t-\beta^{q^{\ell}}$?

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary

Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

OK, so we have now that

$$
P(t)^{\frac{|Q|-1}{2}} \equiv\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}}(\bmod t-\beta)
$$

How does the right hand side change if we replace the modulus $t-\beta$ with $t-\beta^{q^{\ell}}$? It doesn't! Hence,

$$
\prod_{j=0}^{e-1}\left(\prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}} \equiv P(t)^{\frac{|Q|-1}{2}} \equiv\left(\frac{P}{Q}\right) \quad(\bmod Q(t))
$$

Both sides are constants (elements of \mathbb{F}); this implies

$$
\left(\frac{P}{Q}\right)=\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}} .
$$

A short proof of QR in $A=\mathbb{F}_{q}[t]$, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary

Fermat's last theorem

Mason's

theorem

Sums of two squares

Waring's problem

So in \mathbb{F}, we have the equation

$$
\left(\frac{P}{Q}\right)=\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\beta^{q^{j}}-\alpha^{q^{i}}\right)\right)^{\frac{q-1}{2}} .
$$

Similarly: $\left(\frac{Q}{P}\right)=\left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1}\left(\alpha^{q^{i}}-\beta^{q^{j}}\right)\right)^{\frac{q-1}{2}}$. Thus,

$$
\left(\frac{P}{Q}\right)=(-1)^{d e \frac{q-1}{2}}\left(\frac{Q}{P}\right), \quad \text { whence } \quad\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{d e \frac{q-1}{2}} .
$$

The final identity is true not only in \mathbb{F} but also in \mathbb{Z}, since both sides are ± 1. Done!

Fermat's last theorem

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Perhaps the most celebrated mathematical success story in recent memory is the resolution of the following longstanding conjecture of Fermat.

Theorem (Wiles and Taylor, 1995)

Let $n>3$. Then there are no integer solutions to

$$
x^{n}+y^{n}=z^{n}
$$

with $x y z \neq 0$.

Fermat's last theorem, ctd.

Analogies
between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

One could formulate the exact same conjecture for polynomials.

> Conjecture
> If $n>3$, there are no solutions to $x^{n}+y^{n}=z^{n}$ with $x, y, z \in A=\mathbb{F}_{q}[t]$ and $x y z \neq 0$.

But this is false. For example, there might well be constant solutions. Even worse, whenever $x+y=z$ in A, then $x^{p^{k}}+y^{p^{k}}=z^{p^{k}}$, where $p=\operatorname{char}(F)$.

Fermat's last theorem, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity

One could formulate the exact same conjecture for polynomials.

Conjecture
 If $n>3$, there are no solutions to $x^{n}+y^{n}=z^{n}$ with $x, y, z \in A=\mathbb{F}_{q}[t]$ and $x y z \neq 0$.

But this is false. For example, there might well be constant solutions. Even worse, whenever $x+y=z$ in A, then $x^{p^{k}}+y^{p^{k}}=z^{p^{k}}$, where $p=\operatorname{char}(F)$.

Conjecture (modified)

If $n \geq 3$ and $p \nmid n$, then there are no coprime solutions to $x^{n}+y^{n}=z^{n}$ with $x, y, z \in A=\mathbb{F}_{q}[t], x y z \neq 0$, and x, y, z not all constant.

Fermat's last theorem, ctd.

Analogies between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Conjecture (modified)

If $n \geq 3$ and $p \nmid n$, then there are no coprime solutions to $x^{n}+y^{n}=z^{n}$ with $x, y, z \in A=\mathbb{F}_{q}[t], x y z \neq 0$, and x, y, z not all constant.

Theorem (Liouville - Korkine - Greenleaf)

The modified conjecture is true!

There are various ways to prove this. Perhaps the simplest proof uses Mason's theorem.

Mason's theorem

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

For a polynomial f over a field F, let $R(f)$ be the product of the distinct monic irreducibles dividing f (the squarefree part of f), and let $r(f)=\operatorname{deg} R(f)$.

Theorem (Mason, 1984)

Let F be any field. Suppose $f, g, h \in F[t]$ are nonzero and that that there is no irreducible dividing all of f, g, and h. Suppose that $f+g=h$ and that it is not the case that $f^{\prime}=g^{\prime}=h^{\prime}=0$. Then

$$
\max \{\operatorname{deg} f, \operatorname{deg} g, \operatorname{deg} h\} \leq r(f g h)-1
$$

Deduction of FLT for $\mathbb{F}_{q}[t]$

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Theorem (Mason, 1984)

Let F be any field. Suppose $f, g, h \in F[t]$ are nonzero and that that there is no irreducible dividing all of f, g, and h. Suppose that $f+g=h$ and that it is not the case that $f^{\prime}=g^{\prime}=h^{\prime}=0$. Then

$$
\max \{\operatorname{deg} f, \operatorname{deg} g, \operatorname{deg} h\} \leq r(f g h)-1
$$

Now we return to Fermat's last theorem for polynomials. Suppose $x^{n}+y^{n}=z^{n}$ with x, y, z nonzero elements of $\mathbb{F}_{q}[t]$, coprime, not all constant.
Suppose also that $p \nmid n$. We have to show $n<3$.
We can assume x, y, and z are not all polynomials in t^{p}; otherwise, take p th roots of the equation $x^{n}+y^{n}=z^{n}$ (repeat as necessary).

Deduction of FLT, continued

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Now $f=x^{n}, g=y^{n}$, and $h=z^{n}$ satisfy the relation $f+g=h$.

Moreover, not all of $f^{\prime}, g^{\prime}, h^{\prime}=0$, since $p \nmid n$ and not all of x, y, and z are polynomials in t^{p}.

So Mason's theorem applies and shows that

$$
\begin{aligned}
n \max \{\operatorname{deg} x, \operatorname{deg} y, \operatorname{deg} z\} & \leq r\left(x^{n} y^{n} z^{n}\right)-1 \\
& =r(x y z)-1 \\
& <\operatorname{deg}(x y z) \\
& \leq 3 \max \{\operatorname{deg} x, \operatorname{deg} y, \operatorname{deg} z\}
\end{aligned}
$$

Hence, $n<3$.

Proof of Mason's theorem

Analogies between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

We give a proof due to Noah Snyder (1999).
Recall that $R(f)$ denotes the product of the distinct monic irreducibles dividing f and that $r(f)=\operatorname{deg} R(f)$.

Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$
f / R(f) \mid \operatorname{gcd}\left(f, f^{\prime}\right)
$$

Proof of Mason's theorem, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$
f / R(f) \mid \operatorname{gcd}\left(f, f^{\prime}\right) .
$$

Exercise: Check that $R(f)$ and $\operatorname{gcd}\left(f, f^{\prime}\right)$ do not change under extensions of F.

Proof of Mason's theorem, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's

Hence, we can assume F is algebraically closed. Write $f=c \prod\left(t-\alpha_{i}\right)^{e_{i}}$. By the product rule, $\left(t-\alpha_{i}\right)^{e_{i}-1} \mid f^{\prime}$ for each i, and hence

$$
\prod\left(t-\alpha_{i}\right)^{e_{i}-1} \mid \operatorname{gcd}\left(f, f^{\prime}\right)
$$

The left hand side is $f / R(f)$.

Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$
f / R(f) \mid \operatorname{gcd}\left(f, f^{\prime}\right)
$$

Exercise: Check that $R(f)$ and $\operatorname{gcd}\left(f, f^{\prime}\right)$ do not change under extensions of F.

Proof of Mason's theorem, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Using $f+g=h$, one checks $h^{\prime} g-g^{\prime} h=f g^{\prime}-f^{\prime} g$.
This common element is divisible by $\operatorname{gcd}\left(f, f^{\prime}\right), \operatorname{gcd}\left(g, g^{\prime}\right)$, and $\operatorname{gcd}\left(h, h^{\prime}\right)$. Thus, it is divisible by the (coprime!) elements $f / R(f), g / R(g)$, and $h / R(h)$.

Hence, $h^{\prime} g-g^{\prime} h$ is divisible by

$$
f g h /(R(f) R(g) R(h))=f g h / R(f g h) .
$$

Proof of Mason's theorem, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

We want to show all of $\operatorname{deg} f, \operatorname{deg} h, \operatorname{deg} h$ are smaller than $r(f g h)=\operatorname{deg} R(f g h)$.

Assume for the sake of contradiction that $\operatorname{deg} f \geq \operatorname{deg} R(f g h)$. Then

$$
\begin{aligned}
\operatorname{deg}(f g h / R(f g h)) & =\operatorname{deg} g h+(\operatorname{deg} f-\operatorname{deg} R(f g h)) \\
& \geq \operatorname{deg}(g h) \\
& >\operatorname{deg}\left(h^{\prime} g-g^{\prime} h\right)
\end{aligned}
$$

Since $f g h / R(f g h) \mid h^{\prime} g-g^{\prime} h$, these inequalities imply that $h^{\prime} g-g^{\prime} h=0$. But then $h \mid h^{\prime}$, so $h^{\prime}=0$. Since $h^{\prime} g-g^{\prime} h=0$, we get $g^{\prime}=0$. Since $f=h-g$, we get $f^{\prime}=h^{\prime}-g^{\prime}=0$.

Proof of Mason's theorem, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

So all of $f^{\prime}, g^{\prime}, h^{\prime}=0$. But we assumed that this was not the case! So the only possibility left is that

$$
\operatorname{deg} f \leq \operatorname{deg} R(f g h)-1=r(f g h)-1 .
$$

But f and g play symmetric roles, since $f+g=h$. So the same bound on the degree holds for $\operatorname{deg} g$.

Finally, since $f+g=h$, we conclude that the same bound holds for $\operatorname{deg} h$.

This completes the proof of Mason's theorem (and so also of FLT).

$a b c ?$

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's theorem

Sums of two squares

Waring's problem

As we have just seen, Mason's theorem allows one to give a very short proof of Fermat's last theorem for polynomials.

There is an analogous conjecture for integers, known as the $a b c$-conjecture.

Conjecture (Oesterlé-Masser)

For every $\epsilon>0$, there are only finitely many triples of coprime positive integers a, b, c, satisfying $a+b=c$ and having

$$
c>\left(\prod_{p \mid a b c} p\right)^{1+\epsilon} .
$$

Quite recently, Mochizuki has claimed a proof. This would have many important arithmetic consequences.

Sums of two squares

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Fermat knew that every prime $p \equiv 1(\bmod 4)$ was a sum of two squares. A complete characterization of which integers are sums of two squares is attributed to Euler.

Sums of two squares, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

OK, which elements of $A=\mathbb{F}_{q}[t]$ are sums of two squares?
When q is even - i.e., $p=2$ - then everything that is a sum of two squares is a square itself. So let's assume that q is odd.

A natural guess, after Euler's result, might be the following.

Conjecture

Let $f \in A$. Then f can be written as a sum of two squares in A if and only if every prime P with $|P| \equiv 3(\bmod 4)$ shows up to an even exponent in the prime factorization of A.

Sums of two squares, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

OK, which elements of $A=\mathbb{F}_{q}[t]$ are sums of two squares?
When q is even - i.e., $p=2$ - then everything that is a sum of two squares is a square itself. So let's assume that q is odd.

A natural guess, after Euler's result, might be the following.

Conjecture

Let $f \in A$. Then f can be written as a sum of two squares in A if and only if every prime P with $|P| \equiv 3(\bmod 4)$ shows up to an even exponent in the prime factorization of A.

Theorem (Leahey, 1967)

This is true!

Sums of two squares, ctd.

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

A more general theorem was proved by Joly (1970).

Theorem

Let F be a field of characteristic $\neq 2$. Suppose that -1 is not a square in F, but that every element of F is a sum of two squares. Then the following are equivalent:
(1) f is a sum of two squares,
(2) if P is an irreducible dividing f for which -1 is not a square in $F[t] /(P)$, then P appears to an even power in the prime factorization of f.

For the proofs, Leahey and Joly use the arithmetic of $F[t][i]=F[i][t]$. This is analogous to studying sums of two squares as norms from $\mathbb{Z}[i]$.

Higher powers

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Instead of considering sums of squares, let's consider sums of k th powers.

For each k, let $\Sigma(k, \mathbb{Z})$ be the set of integers that can be written as a finite sum of k th powers of elements of \mathbb{Z}.

It is easy to see that if k is odd, then $\Sigma(k, \mathbb{Z})=\mathbb{Z}$, while when k is even, $\Sigma(k, \mathbb{Z})=\mathbb{Z}_{\geq 0}$. The following conjecture was made by Edward Waring (1770).

Conjecture

Every element of $\Sigma(k, \mathbb{Z})$ can be written as the sum of at most $w(k, \mathbb{Z}) k$ th powers, where $w(k, \mathbb{Z})<\infty$.

For example, Lagrange's theorem shows that $w(2, \mathbb{Z})=4$ is acceptable.

Waring's problem

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's

 problemAs another example, notice that

$$
(t+1)^{3}+(-t)^{3}+(-t)^{3}+(t-1)^{3}=6 t
$$

So every multiple of 6 is a sum of four cubes in \mathbb{Z}. Since $n-n^{3}$ is always a multiple of 6 , we see that $w(3, \mathbb{Z})=5$ is admissible.

Waring's problem

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

As another example, notice that

$$
(t+1)^{3}+(-t)^{3}+(-t)^{3}+(t-1)^{3}=6 t
$$

So every multiple of 6 is a sum of four cubes in \mathbb{Z}. Since $n-n^{3}$ is always a multiple of 6 , we see that $w(3, \mathbb{Z})=5$ is admissible.

The first proof of the existence of a finite $w(k, \mathbb{Z})$ for every k is due to Hilbert.

Theorem (Hilbert, 1909)

Waring was right!

Paley's theorem

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

If R is a ring (always understood to be commutative, with 1), we let $\Sigma(k, R)$ be the set of elements of R that have an expression as a finite sum of k th powers.

Theorem (Paley, 1932)

Let $A=\mathbb{F}_{q}[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A) k$ th powers, where $w(k, A)<\infty$.

Paley's theorem

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

If R is a ring (always understood to be commutative, with 1), we let $\Sigma(k, R)$ be the set of elements of R that have an expression as a finite sum of k th powers.

Theorem (Paley, 1932)

Let $A=\mathbb{F}_{q}[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A) k t h$ powers, where $w(k, A)<\infty$.

In fact, we will show that $w(k, A)$ can be chosen to depend only on k (and not on q). Rather than follow Paley, we give an argument using methods of Vaserstein (1987).

Preliminaries: two results of Tornheim (1938)

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's

theorem
Sums of two squares

Waring's problem

Theorem

Let F be a field of positive characteristic. Then $\Sigma(k, F)$ is a subfield of F.

Proof: By definition, $\Sigma(k, F)$ is closed under + . It is also closed under •, since

$$
\left(\sum_{i} \alpha_{i}^{k}\right)\left(\sum_{j} \beta_{j}^{k}\right)=\sum_{i, j}\left(\alpha_{i} \beta_{j}\right)^{k}
$$

It is closed under taking additive inverses, since (e.g.)

$$
-\sum_{i} \alpha_{i}^{k}=\underbrace{\left(\sum_{i} \alpha_{i}^{k}+\cdots+\sum_{i} \alpha_{i}^{k}\right)}_{p-1 \text { times }}
$$

First theorem, ctd.

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Finally, it is closed under taking multiplicative inverses: Suppose $0 \neq \alpha \in \Sigma(k, F)$. Then $\alpha^{-k} \in F^{K} \subset \Sigma(k, F)$, and $\alpha^{k-1} \in \Sigma(k, F)$ (since we already proved closure under multiplication).

Thus, using closure under • once again,

$$
\alpha^{-1}=\alpha^{-k} \alpha^{k-1} \in \Sigma(k, F) .
$$

Preliminaries: two results of Tornheim (1938)

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem .

Theorem

Let $F=\mathbb{F}_{q}$ be a finite field. Then every element of $\Sigma(k, F)$ is expressible as a sum of $k k t h$ powers in F.

It is helpful to introduce some notation from additive number theory. If B and C are subsets of an additive group, we let

$$
B \oplus C=\{b+c: b \in B, c \in C\} .
$$

We define the ℓ-fold sumset of B to be

$$
\ell B=\underbrace{B \oplus B \oplus \cdots \oplus B}_{\ell \text { times }} .
$$

Now let B be the set of k th powers in the field $F=\mathbb{F}_{q}$.

Preliminaries: two results of Tornheim (1938)

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's

theorem

Sums of two squares

Waring's problem

Since $0 \in B$, we have a sequence of inclusions

$$
0 B=\{0\} \subset B \subset 2 B \subset 3 B \subset \ldots
$$

We look for the first positive integer i for which $(i+1) B=i B$. In that case,

$$
(i+2) B=(i+1) B+B=i B+B=(i+1) B
$$

and so the sequence of sumsets stabilizes:

$$
i B=(i+1) B=(i+2) B=\cdots=\Sigma(k, F)
$$

Key observation: $(i+1) B \backslash i B$ is stable under multiplication by $\left(F^{\times}\right)^{k}$.

Preliminaries: two results of Tornheim (1938)

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

Consequently, whenever $(i+1) B$ properly contains B, the set-difference $(i+1) B \backslash i B$ is a union of cosets of $\left(F^{\times}\right)^{k}$. The total number of cosets of $\left(F^{\times}\right)^{k}$ in F^{\times}is

$$
\operatorname{gcd}(q-1, k) \leq k
$$

Consequently. there can be at most $\operatorname{gcd}(q-1, k) \leq k$ strict inclusions in the sequence

$$
\{0\}=0 A \subset A \subset 2 A \subset 3 A \subset \ldots
$$

Thus, every element of $\Sigma(k, F)$ is a sum of at most $\operatorname{gcd}(q-1, k) \leq k k$ th powers.

Since 0 is a k th power, we can use exactly k such powers in the representation, if we wish.

Back to Waring's problem for polynomials over

 finite fieldsAnalogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Recall that our goal is to prove the following theorem.

Theorem

Let $A=\mathbb{F}_{q}[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A) k$ th powers, where $w(k, A)<\infty$ can be chosen to depend only on k.

First, we show that we can assume $p \nmid k$. Suppose that the theorem is proved under this extra assumption.

Say $k=p^{e} k^{\prime}$, where $p \nmid k^{\prime}$. If $f \in \Sigma(k, A)$, then

$$
f=\sum f_{i}^{k}=\left(\sum f_{i}^{k / p^{e}}\right)^{p^{e}}
$$

Let

$$
g=\sum f_{i}^{k / p^{e}} \in \Sigma\left(k / p^{e}, A\right)
$$

Reduction to the case when $p \nmid k$

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

We have $f=g^{p^{e}}$, where

$$
g=\sum f_{i}^{k / p^{e}} \in \Sigma\left(k / p^{e}, A\right) .
$$

Since $p \nmid \frac{k}{p^{e}}$, we know that every element of $\Sigma\left(k / p^{e}, A\right)$ is a sum of $w\left(k / p^{e}, A\right)\left(k / p^{e}\right)$ th powers.

In particular, g is a sum of $w\left(k / p^{e}, A\right)\left(k / p^{e}\right)$ th powers. Thus, $f=g^{p^{e}}$ is a sum of $w\left(k / p^{e}, A\right) k$ th powers.

So the theorem follows with

$$
w\left(\mathbb{F}_{q}[t], k\right)=w\left(\mathbb{F}_{q}[t], k / p^{e}\right) .
$$

Waring's problem for polynomials

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's

 problem
Theorem

Let $A=\mathbb{F}_{q}[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A) k$ th powers, where $w(k, A)<\infty$ can be chosen to depend only on k.

Case 1: $p>k$. In this case, we show that $\Sigma(k, A)=A$ and that one can take $w(k, A)=k^{2}$. Choose distinct elements $\alpha_{1}, \ldots, \alpha_{k}$ of \mathbb{F}_{p}. Consider the $k \times k$ Vandermonde matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{k} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \alpha_{k}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{k-1} & \alpha_{2}^{k-1} & \cdots & \alpha_{k}^{k-1}
\end{array}\right) .
$$

Waring's problem for polynomials

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares

Waring's problem

Since the matrix is invertible, we can solve the system

$$
\sum_{i=1}^{k} \beta_{i} \alpha_{i}^{s}= \begin{cases}0 & \text { if } s=0,1,2, \ldots, k-2, \\ k^{-1} & \text { if } s=k-1\end{cases}
$$

for $\beta_{1}, \ldots, \beta_{k} \in \mathbb{F}_{p}$.
It follows that in $\mathbb{F}_{p}[y]$,

$$
\sum_{i=1}^{k} \beta_{i}\left(y+\alpha_{i}\right)^{k}=y+\gamma, \quad \text { where } \quad \gamma=\sum_{i=1}^{k} \beta_{i} \alpha_{i}^{k} \in \mathbb{F}_{p} .
$$

Thus,

$$
\sum_{i=1}^{k} \beta_{i}\left(y+\left(\alpha_{i}-\gamma\right)\right)^{k}=y
$$

Waring's problem for polynomials

Analogies
between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last
theorem
Mason's
theorem
Sums of two squares

Waring's problem

We have (for constants $\alpha_{i}, \beta_{i}, \gamma$ all in \mathbb{F}_{p})

$$
\sum_{i=1}^{k} \beta_{i}\left(y+\left(\alpha_{i}-\gamma\right)\right)^{k}=y
$$

We can expand each β_{i} as a sum of $k k$ th powers in \mathbb{F}_{p}. This gives y as a sum of $k^{2} k$ th powers in $\mathbb{F}_{p}[y]$.

Replacing y with an arbitrary element f of $A=\mathbb{F}_{q}[t]$, we get that every $f \in A$ is a sum of $k^{2} k$ th powers in $\mathbb{F}_{p}[f] \subset \mathbb{F}_{q}[t]$. This completes the proof of Case 1 .

Waring's problem for polynomials

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Case 2: $p \leq k$
We observe that the argument given for Case 1 in fact proves the following result (with $F=\mathbb{F}_{p}$).

Lemma

Let F be a field of characteristic coprime to k and where F has more than k elements. Then y can be written in the form

$$
\sum \beta_{i} \ell_{i}(y)^{k}
$$

where each $\beta_{i} \in F$ and each $\ell_{i}(y)$ is a (linear) polynomial with coefficients from F.

Waring's problem for polynomials, case 2

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

Lemma

Let F be a field of characteristic coprime to k and where F has more than k elements. Then y can be written in the form

$$
\sum \beta_{i} \ell_{i}(y)^{k}
$$

where each $\beta_{i} \in F$ and each $\ell_{i}(y)$ is a (linear) polynomial with coefficients from F.

We choose $F=\Sigma\left(k, \mathbb{F}_{p}(t)\right)$. Using that each $\beta_{i} \in \Sigma\left(k, \mathbb{F}_{p}(t)\right)$, we obtain that y is a finite sum of k th powers in $\mathbb{F}_{p}(t)[y]$.

Now we clear denominators. Multiplying by $D(t)^{k} \in \mathbb{F}_{p}[t]$ for a suitable $D(t)$, we get an identity

$$
M(t) y=\left(\text { finite sum of } k \text { th powers in } \mathbb{F}_{p}[t][y]\right)
$$

where $M(t)=D(t)^{k}$.

Waring's problem for polynomials, case 2

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

We get an identity in $\mathbb{F}_{p}[t][y]$:

$$
M(t) y=\left(\text { finite sum of } k \text { th powers in } \mathbb{F}_{p}[t][y]\right)
$$

We can now characterize $\Sigma(k, A)$, where $A=\mathbb{F}_{q}[t]$.

Lemma

An element $f \in A$ is a sum of k th powers in A if and only if its reduction mod M is a sum of k th powers in $A /(M)$.

If f is a sum of k th powers, then it is a sum of k th powers mod M. In the other direction, if $f \equiv f_{1}^{k}+\cdots+f_{s}^{k}(\bmod M)$, then

$$
f(t)-\left(f_{1}(t)^{k}+\cdots+f_{s}(t)^{k}\right)=M(t) q(t)
$$

Waring's problem for polynomials, case 2

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

We still have to show that an $f \in \Sigma(k, A)$ is a sum of $O_{k}(1)$ k th powers in A.

So suppose $f \in \Sigma(k, A)$. We have just seen that to write f as a sum of k th powers, it suffices to first write $f \bmod M$ as a sum of k th powers in $A /(M)$, say

$$
f \equiv f_{1}^{k}+\cdots+f_{s}^{k} \quad(\bmod M)
$$

and then apply the identity

$$
M(t) y=\left(\text { finite sum of } k \text { th powers in } \mathbb{F}_{p}[t][y]\right)
$$

to write $f-\left(f_{1}^{k}+\cdots+f_{s}^{k}\right)$ as a sum of k th powers. The identity depends only on p and k, and since $p \leq k$, the number of terms in the identity is bounded solely in terms of k.

Waring's problem for polynomials, case 2

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

Waring's problem

So it remains only to show we can always choose $s=O_{k}(1)$. In other words, we have reduced the proof of the theorem to the following lemma.

Lemma

Let $A=\mathbb{F}_{q}[t]$, and let M be a nonzero element of A. Then every element of $\Sigma(k, A /(M))$ can be written as a sum of at most $w(k, A /(M)) k$ th powers, where $w(k, A /(M))$ is bounded solely in terms of k.

In fact, we will show that we can take $w(k, A /(M))=k+1$.
By the Chinese remainder theorem, it suffices to prove this stronger claim when M is a power of an irreducible polynomial, say $M=P^{e}$.

Waring's problem for polynomials, case 2

Analogies between \mathbb{Z} and $\mathbb{F}_{q}[t]$

Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's theorem

Sums of two squares

So suppose that $f \bmod P^{e}$ is a sum of k th powers modulo P^{e}. Then $f \bmod P$ is a sum of k th powers $\bmod P$.

Since $\Sigma(k, A /(P))$ is a field, it is also true that $f-1 \bmod P$ is a sum of k th powers mod P.

Since $A /(P)$ is a finite field, Tornheim says we only need $k k$ th powers: We can write $f-1 \equiv f_{1}^{k}+\cdots+f_{k}^{k}(\bmod P)$. Thus,

$$
f-\left(f_{1}^{k}+\ldots f_{k}^{k}\right) \equiv 1 \quad(\bmod P)
$$

Using once more that $p \nmid k$, Hensel's lemma implies that $f-\left(f_{1}^{k}+\ldots f_{k}^{k}\right) \equiv f_{k+1}^{k}\left(\bmod P^{e}\right)$. Hence,

$$
f \equiv f_{1}^{k}+f_{2}^{k}+\cdots+f_{k+1}^{k} \quad\left(\bmod P^{e}\right)
$$

The state of the art on Waring for polynomials

Analogies between \mathbb{Z}
and $\mathbb{F}_{q}[t]$
Paul Pollack

A dictionary
Reciprocity
Fermat's last theorem

Mason's
theorem
Sums of two squares
as $k \rightarrow \infty$, uniformly in q.

