Analogies between \mathbb{Z} and $\mathbb{F}_q[t]$; elementary case studies

Paul Pollack

University of Georgia

July 2013
Integers vs. polynomials

Throughout, q denotes a prime power, and \mathbb{F}_q denotes the finite field of order q (unique up to isomorphism).

The ring of integers \mathbb{Z} and the ring of polynomials $\mathbb{F}_q[t]$ share a number of features. Both are:

- Euclidean domains (and so PIDs)
- Finite quotient domains (R/I is finite for nonzero I)
- Rings with only finitely many units.
Throughout, q denotes a prime power, and \mathbb{F}_q denotes the finite field of order q (unique up to isomorphism).

The ring of integers \mathbb{Z} and the ring of polynomials $\mathbb{F}_q[t]$ share a number of features. Both are:

- Euclidean domains (and so PIDs)
- Finite quotient domains (R/I is finite for nonzero I)
- Rings with only finitely many units.

This means that much of the elementary theory carries over almost word-for-word — these parallels are stressed in many abstract algebra courses. Examples include unique factorization, Fermat’s little theorem, and Wilson’s theorem.
A brief dictionary

<table>
<thead>
<tr>
<th>Integers</th>
<th>Polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}, generic element n</td>
<td>$A = \mathbb{F}_q[t]$, generic element f</td>
</tr>
<tr>
<td>units: ${\pm 1}$</td>
<td>units: \mathbb{F}_q^\times</td>
</tr>
<tr>
<td>prime number</td>
<td>irreducible polynomial</td>
</tr>
<tr>
<td>positive integer</td>
<td>monic polynomial</td>
</tr>
<tr>
<td>absolute value</td>
<td>$</td>
</tr>
<tr>
<td>dyadic interval $[x, 2x]$</td>
<td>polynomials of a given degree</td>
</tr>
</tbody>
</table>
But the analogies run deeper than this. In this lecture, I want to dwell on a few of my favorite examples.

Recall that if p is an odd prime and $a \in \mathbb{Z}$, the Legendre symbol

$$\left(\frac{a}{p} \right) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \equiv \square \pmod{p}, \\ -1 & \text{if } a \not\equiv \square \pmod{p}. \end{cases}$$

Theorem (Quadratic reciprocity law, Gauss)

For distinct odd primes p and q,

$$\left(\frac{q}{p} \right) \left(\frac{p}{q} \right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}.$$
What should quadratic reciprocity look like in $A = \mathbb{F}_q[t]$?

Suppose P is a monic irreducible element in $\mathbb{F}_q[t]$. Then A/P is a field of size $q^\deg P$. Hence, the nonzero squares form an index 2 subgroup of $(A/P)^\times$ whenever q is odd. So let’s assume that.
Quadratic reciprocity

What should quadratic reciprocity look like in $A = \mathbb{F}_q[t]$?

Suppose P is a monic irreducible element in $\mathbb{F}_q[t]$. Then A/P is a field of size $q^\deg P$. Hence, the nonzero squares form an index 2 subgroup of $(A/P)^\times$ whenever q is odd. So let’s assume that.

We can again define a Legendre symbol. If $f \in A$, set

$$
\left(\frac{f}{P} \right) = \begin{cases}
0 & \text{if } P \mid f, \\
1 & \text{if } f \equiv \square \pmod{P}, \\
-1 & \text{if } f \not\equiv \square \pmod{P}.
\end{cases}
$$

This is multiplicative in the top entry and “periodic” modulo P, in analogy with the usual Legendre symbol.
Example

Let $q = 3$, so that $A = \mathbb{F}_3[t]$. Let $P = t^2 + 1 \in A$. Then A/P is the field with 3^2 elements, and so the unit group of A/P is the cyclic group of order 8. By direct computation, the $8 = \frac{1}{2} \cdot 4$ squares in $(A/P)^\times$ are represented by

$$1, \quad -1, \quad t, \quad 2t.$$

Continuing, suppose $Q = t^3 - t + 1$. Then $Q \equiv t + 1 \pmod{P}$, and so

$$\left(\frac{Q}{P} \right) = -1.$$
Suppose P and Q are distinct monic irreducibles in A. Then the most naive guess for a quadratic reciprocity law would be

$$\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^\frac{|P|-1}{2} \frac{|Q|-1}{2}.$$

Theorem (Dedekind, 1857)

This is correct! The proof of our theorem can be established completely analogously to Gauss's fifth proof [of QR] and is based on [Gauss's lemma]... its consequences, up to... the proof of the theorem, are so similar to the ones in the cited treatise of Gauss that no one can fail to find the complete proof.
Suppose P and Q are distinct monic irreducibles in A. Then the most naive guess for a quadratic reciprocity law would be

$$\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^{\frac{|P|-1}{2} \frac{|Q|-1}{2}}.$$

Theorem (Dedekind, 1857)

This is correct!

The proof of our theorem can be established completely analogously to Gauss’s fifth proof [of QR] and is based on [Gauss’s lemma] . . . its consequences, up to . . . the proof of the theorem, are so similar to the ones in the cited treatise of Gauss that no one can fail to find the complete proof.
We will prove quadratic reciprocity where the exponent on -1 looks a bit different. Of course, we only care about this exponent modulo 2.

Say P has degree d and Q has degree e. Then modulo 2,

$$\frac{|P| - 1}{2} = \frac{q^d - 1}{2} = \frac{q - 1}{2} (1 + q + q^2 + \cdots + q^{d-1}) \equiv dq^{\frac{d-1}{2}}.$$

Similarly, $\frac{|Q| - 1}{2} \equiv e \frac{q - 1}{2}$. Thus,

$$\frac{|P| - 1}{2} \frac{|Q| - 1}{2} \equiv de \frac{q - 1}{2} \pmod{2}.$$
So we can replace the exponent of -1 with $de^{q-1\over 2}$; this leads to the form of QR that we will actually prove:

Theorem

Let P and Q be distinct monic irreducibles in $A = \mathbb{F}_q[t]$, where q is odd. Say $\deg P = d$ and $\deg Q = e$. Then

$$\left(\frac{P}{Q} \right) \left(\frac{Q}{P} \right) = (-1)^{de^{q-1\over 2}}.$$

The argument we will give is due essentially to F. K. Schmidt, with some fine tuning by L. Carlitz.
A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

Lemma

Let P be a monic irreducible in A. For every $f \in A$, we have

$$\left(\frac{f}{P} \right) \equiv f^{\frac{|P|-1}{2}} \pmod{P}.$$

This is clear if $f \equiv 0 \pmod{P}$, so suppose otherwise.
A short proof of QR in \(A = \mathbb{F}_q[t] \), ctd.

Lemma

Let \(P \) be a monic irreducible in \(A \). For every \(f \in A \), we have

\[
\left(\frac{f}{P} \right) \equiv f^{|P|-1 \over 2} \pmod{P}.
\]

This is clear if \(f \equiv 0 \pmod{P} \), so suppose otherwise. If \(f \equiv g^2 \pmod{P} \), then

\[
f^{|P|-1 \over 2} \equiv g^{|P|-1} \equiv 1 \equiv \left(\frac{f}{P} \right) \pmod{P}.
\]
Lemma

Let P be a monic irreducible in A. For every $f \in A$, we have

$$\left(\frac{f}{P} \right) \equiv f^{\frac{|P|-1}{2}} \pmod{P}.$$

This is clear if $f \equiv 0 \pmod{P}$, so suppose otherwise. If $f \equiv g^2 \pmod{P}$, then $f^{\frac{|P|-1}{2}} \equiv g^{|P|-1} \equiv 1 \equiv \left(\frac{f}{P} \right) \pmod{P}$.

Finally, suppose $f \not\equiv \square \pmod{P}$. Now there are at most $\frac{|P|-1}{2}$ solutions mod P to $X^{\frac{|P|-1}{2}} \equiv 1 \pmod{P}$, since A/P is a field. There are also $\frac{|P|-1}{2}$ squares mod P. So $f^{\frac{|P|-1}{2}} \not\equiv 1 \pmod{P}$.

But $\left(f^{\frac{|P|-1}{2}}\right)^2 \equiv f^{|P|-1} \equiv 1 \pmod{P}$, forcing $f^{\frac{|P|-1}{2}} \equiv -1 \equiv \left(\frac{f}{P} \right) \pmod{P}$.
A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q} \right)$ and $\left(\frac{Q}{P} \right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_q. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$P(t) = (t - \alpha)(t - \alpha^q) \cdots (t - \alpha^{q^{d-1}})$$

and

$$Q(t) = (t - \beta)(t - \beta^q) \cdots (t - \beta^{q^{e-1}}).$$
A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_q. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$P(t) = (t - \alpha)(t - \alpha^q) \cdots (t - \alpha^{q^{d-1}})$$

and

$$Q(t) = (t - \beta)(t - \beta^q) \cdots (t - \beta^{q^{e-1}}).$$

We would like to evaluate $P^{\frac{|Q| - 1}{2}} \mod Q$, since this gives $\left(\frac{P}{Q}\right)$.

A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

Idea of the proof: Find explicit expressions for $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$ in terms of the roots of P and Q and then compare.

Let \mathbb{F} stand for the algebraic closure of \mathbb{F}_q. Both P and Q split into distinct linear factors over \mathbb{F}, and we can write

$$P(t) = (t - \alpha)(t - \alpha^q) \cdots (t - \alpha^{q^{d-1}})$$

and

$$Q(t) = (t - \beta)(t - \beta^q) \cdots (t - \beta^{q^{e-1}}).$$

We would like to evaluate $P^{\frac{|Q|-1}{2}} \mod Q$, since this gives $\left(\frac{P}{Q}\right)$. We compute $P^{\frac{|Q|-1}{2}} \mod t - \beta^i$ for each i, starting with $P^{\frac{|Q|-1}{2}} \mod t - \beta$ (the case $i = 0$).
A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

Using that P has coefficients belonging to \mathbb{F}_q, we see that

$$P(t) \frac{|Q|-1}{2} = P(t) \frac{q^e-1}{2} = P(t)^{(1+q+\cdots+q^{e-1})} \frac{q-1}{2}$$

$$= (P(t)P(t^q)\cdots P(t^{q^{e-1}})) \frac{q-1}{2}.$$
Using that P has coefficients belonging to \mathbb{F}_q, we see that

$$
P(t)^{\frac{|Q|-1}{2}} = P(t)^{\frac{q^e-1}{2}} = P(t)^{(1+q+\cdots+q^{e-1})\frac{q-1}{2}}
$$

$$
= (P(t)P(t^q)\cdots P(t^{q^{e-1}}))^{\frac{q-1}{2}}.
$$

Modulo $t - \beta$, this is congruent to

$$(P(\beta)P(\beta^q)\cdots P(\beta^{q^{e-1}}))^{\frac{q-1}{2}}. $$

Remembering that $P(t) = \prod_{i=0}^{d-1} (t - \alpha^{q^i})$, we get

$$
P(t)^{\frac{|Q|-1}{2}} \equiv \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\beta^{q^j} - \alpha^{q^i}) \right)^{\frac{q-1}{2}} \pmod{t - \beta}.
$$
A short proof of QR in $A = \mathbb{F}_q[t]$, ctd.

OK, so we have now that

$$P(t)^{\frac{|Q|-1}{2}} \equiv \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\beta^q j - \alpha^q i) \right)^{\frac{q-1}{2}} \pmod{t - \beta}.$$

How does the right hand side change if we replace the modulus $t - \beta$ with $t - \beta^q \ell$?
OK, so we have now that

\[P(t) \frac{|Q|-1}{2} \equiv \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\beta q^j - \alpha q^i) \right)^{\frac{q-1}{2}} \pmod{t - \beta}. \]

How does the right hand side change if we replace the modulus \(t - \beta \) with \(t - \beta q^\ell \)? It doesn’t! Hence,

\[\prod_{j=0}^{e-1} \left(\prod_{i=0}^{d-1} (\beta q^j - \alpha q^i) \right)^{\frac{q-1}{2}} \equiv P(t) \frac{|Q|-1}{2} \equiv \left(\frac{P}{Q} \right) \pmod{Q(t)}. \]

Both sides are constants (elements of \(\mathbb{F} \)); this implies

\[\left(\frac{P}{Q} \right) = \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\beta q^j - \alpha q^i) \right)^{\frac{q-1}{2}}. \]
A short proof of QR in \(A = \mathbb{F}_q[t] \), ctd.

So in \(\mathbb{F} \), we have the equation

\[
\left(\frac{P}{Q} \right) = \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\beta q^j - \alpha q^i) \right)^{\frac{q-1}{2}}.
\]

Similarly:

\[
\left(\frac{Q}{P} \right) = \left(\prod_{j=0}^{e-1} \prod_{i=0}^{d-1} (\alpha q^i - \beta q^j) \right)^{\frac{q-1}{2}}.
\]

Thus,

\[
\left(\frac{P}{Q} \right) = (-1)^{de \frac{q-1}{2}} \left(\frac{Q}{P} \right), \quad \text{whence} \quad \left(\frac{P}{Q} \right) \left(\frac{Q}{P} \right) = (-1)^{de \frac{q-1}{2}}.
\]

The final identity is true not only in \(\mathbb{F} \) but also in \(\mathbb{Z} \), since both sides are \(\pm 1 \). Done!
Perhaps the most celebrated mathematical success story in recent memory is the resolution of the following longstanding conjecture of Fermat.

Theorem (Wiles and Taylor, 1995)

Let \(n > 3 \). Then there are no integer solutions to

\[
x^n + y^n = z^n
\]

with \(xyz \neq 0 \).
Fermat’s last theorem, ctd.

One could formulate the exact same conjecture for polynomials.

Conjecture

If $n > 3$, *there are no solutions to* $x^n + y^n = z^n$ *with* $x, y, z \in A = \mathbb{F}_q[t]$ *and* $xyz \neq 0$.

But this is **false**. For example, there might well be constant solutions. Even worse, whenever $x + y = z$ in A, then $x^{p^k} + y^{p^k} = z^{p^k}$, where $p = \text{char}(\mathbb{F})$.
One could formulate the exact same conjecture for polynomials.

Conjecture

If $n > 3$, *there are no solutions to* $x^n + y^n = z^n$ *with* $x, y, z \in A = \mathbb{F}_q[t]$ *and* $xyz \neq 0$.

But this is **false**. For example, there might well be constant solutions. Even worse, whenever $x + y = z$ in A, then $x^p + y^p = z^p$, where $p = \text{char}(F)$.

Conjecture (modified)

If $n \geq 3$ *and* $p \nmid n$, *then there are no coprime solutions to* $x^n + y^n = z^n$ *with* $x, y, z \in A = \mathbb{F}_q[t]$, $xyz \neq 0$, *and* x, y, z *not all constant.*
Fermat’s last theorem, ctd.

Conjecture (modified)

If \(n \geq 3 \) and \(p \mid n \), then there are no coprime solutions to \(x^n + y^n = z^n \) with \(x, y, z \in A = \mathbb{F}_q[t] \), \(xyz \neq 0 \), and \(x, y, z \) not all constant.

Theorem (Liouville – Korkine – Greenleaf)

The modified conjecture is true!

There are various ways to prove this. Perhaps the simplest proof uses Mason’s theorem.
Mason’s theorem

For a polynomial f over a field F, let $R(f)$ be the product of the distinct monic irreducibles dividing f (the \textbf{squarefree part} of f), and let $r(f) = \deg R(f)$.

\textbf{Theorem (Mason, 1984)}

Let F be any field. Suppose $f, g, h \in F[t]$ are nonzero and that there is no irreducible dividing all of $f, g,$ and h. Suppose that $f + g = h$ and that it is \textbf{not} the case that $f' = g' = h' = 0$. Then

$$\max\{\deg f, \deg g, \deg h\} \leq r(fgh) - 1.$$
Theorem (Mason, 1984)

Let F be any field. Suppose $f, g, h \in F[t]$ are nonzero and that there is no irreducible dividing all of $f, g,$ and h. Suppose that $f + g = h$ and that it is not the case that $f' = g' = h' = 0$. Then

$$\max\{\deg f, \deg g, \deg h\} \leq r(fgh) - 1.$$

Now we return to Fermat’s last theorem for polynomials. Suppose $x^n + y^n = z^n$ with x, y, z nonzero elements of $\mathbb{F}_q[t]$, coprime, not all constant. Suppose also that $p \nmid n$. We have to show $n < 3$.

We can assume $x, y, \text{ and } z$ are not all polynomials in t^p; otherwise, take pth roots of the equation $x^n + y^n = z^n$ (repeat as necessary).
Now $f = x^n$, $g = y^n$, and $h = z^n$ satisfy the relation $f + g = h$.

Moreover, not all of $f', g', h' = 0$, since $p \nmid n$ and not all of $x, y,$ and z are polynomials in t^p.

So Mason’s theorem applies and shows that

$$n \max\{\deg x, \deg y, \deg z\} \leq r(x^n y^n z^n) - 1$$

$$= r(xyz) - 1$$

$$< \deg (xyz)$$

$$\leq 3 \max\{\deg x, \deg y, \deg z\}.$$

Hence, $n < 3$.
Proof of Mason’s theorem

We give a proof due to Noah Snyder (1999).

Recall that $R(f)$ denotes the product of the distinct monic irreducibles dividing f and that $r(f) = \deg R(f)$.

Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$f/R(f) \mid \gcd(f, f').$$
Proof of Mason’s theorem, ctd.

Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$f/R(f) \mid \gcd(f, f').$$

Exercise: Check that $R(f)$ and $\gcd(f, f')$ do not change under extensions of F.
Lemma

Let f be a nonzero polynomial in $F[t]$. Then

$$
f / R(f) \mid \gcd(f, f').$$

Exercise: Check that $R(f)$ and $\gcd(f, f')$ do not change under extensions of F.

Hence, we can assume F is algebraically closed. Write

$$f = c \prod (t - \alpha_i)^{e_i}.$$

By the product rule, $(t - \alpha_i)^{e_i - 1} \mid f'$ for each i, and hence

$$\prod (t - \alpha_i)^{e_i - 1} \mid \gcd(f, f').$$

The left hand side is $f / R(f)$.

Proof of Mason’s theorem, ctd.

Using $f + g = h$, one checks $h'g - g'h = fg' - f'g$.

This common element is divisible by $\gcd(f, f')$, $\gcd(g, g')$, and $\gcd(h, h')$. Thus, it is divisible by the (coprime!) elements $f/R(f)$, $g/R(g)$, and $h/R(h)$.

Hence, $h'g - g'h$ is divisible by

$$fgh/(R(f)R(g)R(h)) = fgh/R(fgh).$$
Proof of Mason’s theorem, ctd.

We want to show all of \(\deg f, \deg h, \deg h \) are smaller than
\(r(fgh) = \deg R(fgh) \).

Assume for the sake of contradiction that \(\deg f \geq \deg R(fgh) \). Then
\[
\deg(fgh/R(fgh)) = \deg gh + (\deg f - \deg R(fgh)) \\
\geq \deg (gh) \\
> \deg (h'g - g'h).
\]

Since \(fgh/R(fgh) \mid h'g - g'h \), these inequalities imply that
\(h'g - g'h = 0 \). But then \(h \mid h' \), so \(h' = 0 \). Since \(h'g - g'h = 0 \),
we get \(g' = 0 \). Since \(f = h - g \), we get \(f' = h' - g' = 0 \).
Proof of Mason’s theorem, ctd.

So all of $f', g', h' = 0$. But we assumed that this was not the case! So the only possibility left is that

$$\deg f \leq \deg R(fgh) - 1 = r(fgh) - 1.$$

But f and g play symmetric roles, since $f + g = h$. So the same bound on the degree holds for $\deg g$.

Finally, since $f + g = h$, we conclude that the same bound holds for $\deg h$.

This completes the proof of Mason’s theorem (and so also of FLT).
As we have just seen, Mason’s theorem allows one to give a very short proof of Fermat’s last theorem for polynomials.

There is an analogous conjecture for integers, known as the abc-conjecture.

Conjecture (Oesterlé–Masser)

For every $\epsilon > 0$, there are only finitely many triples of coprime positive integers a, b, c, satisfying $a + b = c$ and having

$$c > \left(\prod_{p|abc} p \right)^{1+\epsilon}.$$

Quite recently, Mochizuki has claimed a proof. This would have many important arithmetic consequences.
Fermat knew that every prime $p \equiv 1 \pmod{4}$ was a sum of two squares. A complete characterization of which integers are sums of two squares is attributed to Euler.

Theorem

The positive integer n is a sum of two squares if and only if every prime $p \equiv 3 \pmod{4}$ shows up to an even exponent (possibly zero) in the prime factorization of n.
Sums of two squares, ctd.

OK, which elements of $A = \mathbb{F}_q[t]$ are sums of two squares?

When q is even — i.e., $p = 2$ — then everything that is a sum of two squares is a square itself. So let’s assume that q is odd.

A natural guess, after Euler’s result, might be the following.

Conjecture

Let $f \in A$. Then f can be written as a sum of two squares in A if and only if every prime P with $|P| \equiv 3 \pmod{4}$ shows up to an even exponent in the prime factorization of A.

Theorem (Leahey, 1967)

This is true!
OK, which elements of $A = \mathbb{F}_q[t]$ are sums of two squares?

When q is even — i.e., $p = 2$ — then everything that is a sum of two squares is a square itself. So let’s assume that q is odd.

A natural guess, after Euler’s result, might be the following.

Conjecture

Let $f \in A$. Then f can be written as a sum of two squares in A if and only if every prime P with $|P| \equiv 3 \pmod{4}$ shows up to an even exponent in the prime factorization of A.

Theorem (Leahey, 1967)

This is true!
A more general theorem was proved by Joly (1970).

Theorem

Let F be a field of characteristic $\neq 2$. Suppose that -1 is not a square in F, but that every element of F is a sum of two squares. Then the following are equivalent:

1. f is a sum of two squares,
2. if P is an irreducible dividing f for which -1 is not a square in $F[t]/(P)$, then P appears to an even power in the prime factorization of f.

For the proofs, Leahey and Joly use the arithmetic of $F[t][i] = F[i][t]$. This is analogous to studying sums of two squares as norms from $\mathbb{Z}[i]$.
Higher powers

Instead of considering sums of squares, let’s consider sums of kth powers.

For each k, let $\Sigma(k, \mathbb{Z})$ be the set of integers that can be written as a finite sum of kth powers of elements of \mathbb{Z}.

It is easy to see that if k is odd, then $\Sigma(k, \mathbb{Z}) = \mathbb{Z}$, while when k is even, $\Sigma(k, \mathbb{Z}) = \mathbb{Z}_{\geq 0}$. The following conjecture was made by Edward Waring (1770).

Conjecture

Every element of $\Sigma(k, \mathbb{Z})$ can be written as the sum of at most $w(k, \mathbb{Z})$ kth powers, where $w(k, \mathbb{Z}) < \infty$.]

For example, Lagrange’s theorem shows that $w(2, \mathbb{Z}) = 4$ is acceptable.
As another example, notice that

\[(t + 1)^3 + (-t)^3 + (-t)^3 + (t - 1)^3 = 6t.\]

So every multiple of 6 is a sum of four cubes in \(\mathbb{Z}\). Since \(n - n^3\) is always a multiple of 6, we see that \(w(3, \mathbb{Z}) = 5\) is admissible.
As another example, notice that

$$(t + 1)^3 + (-t)^3 + (-t)^3 + (t - 1)^3 = 6t.$$

So every multiple of 6 is a sum of four cubes in \mathbb{Z}. Since $n - n^3$ is always a multiple of 6, we see that $w(3, \mathbb{Z}) = 5$ is admissible.

The first proof of the existence of a finite $w(k, \mathbb{Z})$ for every k is due to Hilbert.

Theorem (Hilbert, 1909)

Waring was right!

All known proofs of this theorem are fairly intricate.
Paley’s theorem

If R is a ring (always understood to be commutative, with 1), we let $\Sigma(k, R)$ be the set of elements of R that have an expression as a finite sum of kth powers.

Theorem (Paley, 1932)

Let $A = \mathbb{F}_q[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A)$ kth powers, where $w(k, A) < \infty$.
If R is a ring (always understood to be commutative, with 1), we let $\Sigma(k, R)$ be the set of elements of R that have an expression as a finite sum of kth powers.

Theorem (Paley, 1932)

Let $A = \mathbb{F}_q[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A)$ kth powers, where $w(k, A) < \infty$.

In fact, we will show that $w(k, A)$ can be chosen to depend **only** on k (and **not** on q). Rather than follow Paley, we give an argument using methods of Vaserstein (1987).
Preliminaries: two results of Tornheim (1938)

Theorem

Let F be a field of positive characteristic. Then $\Sigma(k, F)$ is a subfield of F.

Proof: By definition, $\Sigma(k, F)$ is closed under \cdot. It is also closed under \cdot, since

$$
(\sum_{i} \alpha^k_i)(\sum_{j} \beta^k_j) = \sum_{i,j} (\alpha_i \beta_j)^k.
$$

It is closed under taking additive inverses, since (e.g.)

$$
-\sum_{i} \alpha^k_i = \left(\sum_{i} \alpha^k_i + \cdots + \sum_{i} \alpha^k_i\right)_{p-1 \text{ times}}.
$$
Finally, it is closed under taking multiplicative inverses: Suppose $0 \neq \alpha \in \Sigma(k, F)$. Then $\alpha^{-k} \in F^K \subset \Sigma(k, F)$, and $\alpha^{k-1} \in \Sigma(k, F)$ (since we already proved closure under multiplication).

Thus, using closure under \cdot once again,

$$\alpha^{-1} = \alpha^{-k} \alpha^{k-1} \in \Sigma(k, F).$$
Preliminaries: two results of Tornheim (1938)

Theorem

Let \(F = \mathbb{F}_q \) be a finite field. Then every element of \(\Sigma(k, F) \) is expressible as a sum of \(k \) \(k \)-th powers in \(F \).

It is helpful to introduce some notation from additive number theory. If \(B \) and \(C \) are subsets of an additive group, we let

\[
B \oplus C = \{ b + c : b \in B, c \in C \}.
\]

We define the \(\ell \)-fold sumset of \(B \) to be

\[
\ell B = \underbrace{B \oplus B \oplus \cdots \oplus B}_{\ell \text{ times}}.
\]

Now let \(B \) be the set of \(k \)-th powers in the field \(F = \mathbb{F}_q \).
Since $0 \in B$, we have a sequence of inclusions

$$0B = \{0\} \subset B \subset 2B \subset 3B \subset \ldots.$$

We look for the first positive integer i for which $(i + 1)B = iB$. In that case,

$$(i + 2)B = (i + 1)B + B = iB + B = (i + 1)B,$$

and so the sequence of sumsets stabilizes:

$$iB = (i + 1)B = (i + 2)B = \cdots = \Sigma(k, F).$$

Key observation: $(i + 1)B \setminus iB$ is stable under multiplication by $(F^\times)^k$.
Consequently, whenever \((i + 1)B\) properly contains \(B\), the set-difference \((i + 1)B \setminus IB\) is a union of cosets of \((F^\times)^k\). The total number of cosets of \((F^\times)^k\) in \(F^\times\) is

\[\gcd(q - 1, k) \leq k.\]

Consequently, there can be at most \(\gcd(q - 1, k) \leq k\) strict inclusions in the sequence

\[
\{0\} = 0A \subset A \subset 2A \subset 3A \subset \ldots.
\]

Thus, every element of \(\Sigma(k, F)\) is a sum of at most \(\gcd(q - 1, k) \leq k\) \(k\)th powers.

Since 0 is a \(k\)th power, we can use exactly \(k\) such powers in the representation, if we wish.
Recall that our goal is to prove the following theorem.

Theorem

Let $A = \mathbb{F}_q[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A)$ kth powers, where $w(k, A) < \infty$ can be chosen to depend only on k.

First, we show that we can assume $p \nmid k$. Suppose that the theorem is proved under this extra assumption.

Say $k = p^e k'$, where $p \nmid k'$. If $f \in \Sigma(k, A)$, then

$$f = \sum f_i^k = \left(\sum f_i^{k/p^e} \right)^{p^e}.$$

Let

$$g = \sum f_i^{k/p^e} \in \Sigma(k/p^e, A).$$
Reduction to the case when $p \nmid k$

We have $f = g^{p^e}$, where

$$g = \sum f_i^{k/p^e} \in \Sigma(k/p^e, A).$$

Since $p \nmid \frac{k}{p^e}$, we know that every element of $\Sigma(k/p^e, A)$ is a sum of $w(k/p^e, A)$ (k/p^e)th powers.

In particular, g is a sum of $w(k/p^e, A)$ (k/p^e)th powers. Thus, $f = g^{p^e}$ is a sum of $w(k/p^e, A)$ kth powers.

So the theorem follows with

$$w(\mathbb{F}_q[t], k) = w(\mathbb{F}_q[t], k/p^e).$$
Waring’s problem for polynomials

Theorem

Let $A = \mathbb{F}_q[t]$. Then every element of $\Sigma(k, A)$ can be written as a sum of at most $w(k, A)$ kth powers, where $w(k, A) < \infty$ can be chosen to depend only on k.

Case 1: $p > k$. In this case, we show that $\Sigma(k, A) = A$ and that one can take $w(k, A) = k^2$. Choose distinct elements $\alpha_1, \ldots, \alpha_k$ of \mathbb{F}_p. Consider the $k \times k$ Vandermonde matrix

$$
\begin{pmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_k \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_k^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{k-1} & \alpha_2^{k-1} & \cdots & \alpha_k^{k-1}
\end{pmatrix}.
$$
Since the matrix is invertible, we can solve the system

\[
\sum_{i=1}^{k} \beta_i \alpha_i^s = \begin{cases}
0 & \text{if } s = 0, 1, 2, \ldots, k - 2, \\
k^{-1} & \text{if } s = k - 1
\end{cases}
\]

for \(\beta_1, \ldots, \beta_k \in \mathbb{F}_p \).

It follows that in \(\mathbb{F}_p[y] \),

\[
\sum_{i=1}^{k} \beta_i (y + \alpha_i)^k = y + \gamma, \quad \text{where} \quad \gamma = \sum_{i=1}^{k} \beta_i \alpha_i^k \in \mathbb{F}_p.
\]

Thus,

\[
\sum_{i=1}^{k} \beta_i (y + (\alpha_i - \gamma))^k = y.
\]
Waring’s problem for polynomials

We have (for constants $\alpha_i, \beta_i, \gamma$ all in \mathbb{F}_p)

$$\sum_{i=1}^{k} \beta_i(y + (\alpha_i - \gamma))^k = y.$$

We can expand each β_i as a sum of k kth powers in \mathbb{F}_p. This gives y as a sum of k^2 kth powers in $\mathbb{F}_p[y]$.

Replacing y with an arbitrary element f of $A = \mathbb{F}_q[t]$, we get that every $f \in A$ is a sum of k^2 kth powers in $\mathbb{F}_p[f] \subset \mathbb{F}_q[t]$. This completes the proof of Case 1.
Waring’s problem for polynomials

Case 2: \(p \leq k \)

We observe that the argument given for Case 1 in fact proves the following result (with \(F = \mathbb{F}_p \)).

Lemma

Let \(F \) be a field of characteristic coprime to \(k \) and where \(F \) has more than \(k \) elements. Then \(y \) can be written in the form

\[
\sum \beta_i \ell_i(y)^k,
\]

where each \(\beta_i \in F \) and each \(\ell_i(y) \) is a (linear) polynomial with coefficients from \(F \).
Waring’s problem for polynomials, case 2

Lemma

Let F be a field of characteristic coprime to k and where F has more than k elements. Then y can be written in the form

$$\sum \beta_i \ell_i(y)^k,$$

where each $\beta_i \in F$ and each $\ell_i(y)$ is a (linear) polynomial with coefficients from F.

We choose $F = \Sigma(k, \mathbb{F}_p(t))$. Using that each $\beta_i \in \Sigma(k, \mathbb{F}_p(t))$, we obtain that y is a finite sum of kth powers in $\mathbb{F}_p(t)[y]$.

Now we clear denominators. Multiplying by $D(t)^k \in \mathbb{F}_p[t]$ for a suitable $D(t)$, we get an identity

$$M(t)y = \text{(finite sum of } k\text{th powers in } \mathbb{F}_p[t][y]),$$

where $M(t) = D(t)^k$.

58 / 63
Waring’s problem for polynomials, case 2

We get an identity in $\mathbb{F}_p[t][y]$:

$$M(t)y = \text{(finite sum of } k\text{th powers in } \mathbb{F}_p[t][y]).$$

We can now characterize $\Sigma(k, A)$, where $A = \mathbb{F}_q[t]$.

Lemma

An element $f \in A$ is a sum of kth powers in A if and only if its reduction mod M is a sum of kth powers in $A/(M)$.

If f is a sum of kth powers, then it is a sum of kth powers mod M. In the other direction, if $f \equiv f_1^k + \cdots + f_s^k \pmod{M}$, then

$$f(t) - (f_1(t)^k + \cdots + f_s(t)^k) = M(t)q(t)$$

for some $q(t) \in \mathbb{F}_q[t]$. Plug $y = q(t)$ into our identity above.
Waring’s problem for polynomials, case 2

We still have to show that an \(f \in \Sigma(k, A) \) is a sum of \(O_k(1) \) \(k \)-th powers in \(A \).

So suppose \(f \in \Sigma(k, A) \). We have just seen that to write \(f \) as a sum of \(k \)-th powers, it suffices to first write \(f \mod M \) as a sum of \(k \)-th powers in \(A/(M) \), say

\[
 f \equiv f_1^k + \cdots + f_s^k \pmod{M},
\]

and then apply the identity

\[
 M(t)y = \text{(finite sum of } k\text{-th powers in } \mathbb{F}_p[t][y]).
\]

to write \(f - (f_1^k + \cdots + f_s^k) \) as a sum of \(k \)-th powers. The identity depends only on \(p \) and \(k \), and since \(p \leq k \), the number of terms in the identity is bounded solely in terms of \(k \).
Waring’s problem for polynomials, case 2

So it remains only to show we can always choose $s = O_k(1)$.

In other words, we have reduced the proof of the theorem to the following lemma.

Lemma

Let $A = \mathbb{F}_q[t]$, and let M be a nonzero element of A. Then every element of $\Sigma(k, A/(M))$ can be written as a sum of at most $w(k, A/(M))$ kth powers, where $w(k, A/(M))$ is bounded solely in terms of k.

In fact, we will show that we can take $w(k, A/(M)) = k + 1$.

By the Chinese remainder theorem, it suffices to prove this stronger claim when M is a power of an irreducible polynomial, say $M = P^e$.
So suppose that \(f \mod P^e \) is a sum of \(k \)th powers modulo \(P^e \). Then \(f \mod P \) is a sum of \(k \)th powers mod \(P \).

Since \(\Sigma(k, A/(P)) \) is a field, it is also true that \(f - 1 \mod P \) is a sum of \(k \)th powers mod \(P \).

Since \(A/(P) \) is a finite field, Tornheim says we only need \(k \) \(k \)th powers: We can write \(f - 1 \equiv f_1^k + \cdots + f_k^k \) (mod \(P \)). Thus,

\[
f - (f_1^k + \cdots f_k^k) \equiv 1 \pmod{P}.
\]

Using once more that \(p \nmid k \), Hensel’s lemma implies that
\[
f - (f_1^k + \cdots f_k^k) \equiv f_{k+1}^k \pmod{P^e}.
\]

Hence,

\[
f \equiv f_1^k + f_2^k + \cdots + f_{k+1}^k \pmod{P^e}.
\]
Liu and Wooley (2007) have shown that one can take

$$w(k, \mathbb{F}_q[t]) \leq (1 + o(1)) k \log k$$

as \(k \to \infty \), uniformly in \(q \).