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Integers vs. polynomials

Throughout, q denotes a prime power, and Fq denotes the
finite field of order q (unique up to isomorphism).

The ring of integers Z and the ring of polynomials Fq[t] share a
number of features. Both are:

Euclidean domains (and so PIDs)

Finite quotient domains (R/I is finite for nonzero I)

Rings with only finitely many units.

This means that much of the elementary theory carries over
almost word-for-word — these parallels are stressed in many
abstract algebra courses. Examples include unique
factorization, Fermat’s little theorem, and Wilson’s theorem.
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A brief dictionary

Integers Polynomials

Z, generic element n A = Fq[t], generic element f
units: {±1} units: F×q
prime number irreducible polynomial
positive integer monic polynomial
absolute value |f | = qdeg f (so |f | = |A/fA|)
dyadic interval [x, 2x] polynomials of a given degree
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Quadratic reciprocity

But the analogies run deeper than this. In this lecture, I want
to dwell on a few of my favorite examples.

Recall that if p is an odd prime and a ∈ Z, the Legendre symbol

(
a

p

)
=


0 if p | a,
1 if a ≡ � (mod p),

−1 if a 6≡ � (mod p).

Theorem (Quadratic reciprocity law, Gauss)

For distinct odd primes p and q,(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .
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Quadratic reciprocity

What should quadratic reciprocity look like in A = Fq[t]?

Suppose P is a monic irreducible element in Fq[t]. Then A/P
is a field of size qdegP . Hence, the nonzero squares form an
index 2 subgroup of (A/P )× whenever q is odd. So let’s
assume that.

We can again define a Legendre symbol. If f ∈ A, set

(
f

P

)
=


0 if P | f,
1 if f ≡ � (mod P ),

−1 if f 6≡ � (mod P ).

This is multiplicative in the top entry and “periodic” modulo
P , in analogy with the usual Legendre symbol.
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Quadratic reciprocity

Example

Let q = 3, so that A = F3[t]. Let P = t2 + 1 ∈ A. Then A/P
is the field with 32 elements, and so the unit group of A/P is
the cyclic group of order 8. By direct computation, the
8 = 1

2 · 4 squares in (A/P )× are represented by

1, −1, t, 2t.

Continuing, suppose Q = t3 − t+ 1. Then Q ≡ t+ 1
(mod P ), and so (

Q

P

)
= −1.
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Quadratic reciprocity

Suppose P and Q are distinct monic irreducibles in A. Then
the most naive guess for a quadratic reciprocity law would be(

P

Q

)(
Q

P

)
= (−1)

|P |−1
2
|Q|−1

2 .

Theorem (Dedekind, 1857)

This is correct!

The proof of our theorem can be established
completely analogously to Gausss fifth proof [of QR]
and is based on [Gauss’s lemma] . . . its consequences,
up to . . . the proof of the theorem, are so similar to
the ones in the cited treatise of Gauss that no one
can fail to find the complete proof.
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A short proof of quadratic reciprocity in A = Fq[t]

We will prove quadratic reciprocity where the exponent on −1
looks a bit different. Of course, we only care about this
exponent modulo 2.

Say P has degree d and Q has degree e. Then modulo 2,

|P | − 1

2
=
qd − 1

2
=
q − 1

2
(1 + q + q2 + · · ·+ qd−1) ≡ dq − 1

2
.

Similarly, |Q|−12 ≡ e q−12 . Thus,

|P | − 1

2

|Q| − 1

2
≡ deq − 1

2
(mod 2).
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A short proof of quadratic reciprocity in A = Fq[t],
ctd.

So we can replace the exponent of −1 with de q−12 ; this leads
to the form of QR that we will actually prove:

Theorem

Let P and Q be distinct monic irreducibles in
A = Fq[t], where q is odd. Say degP = d and
degQ = e. Then(

P

Q

)(
Q

P

)
= (−1)de

q−1
2 .

The argument we will give is due essentially to F. K. Schmidt,
with some fine tuning by L. Carlitz.
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A short proof of QR in A = Fq[t], ctd.

Lemma

Let P be a monic irreducible in A. For every f ∈ A, we have(
f

P

)
≡ f

|P |−1
2 (mod P ).

This is clear if f ≡ 0 (mod P ), so suppose otherwise.

If

f ≡ g2 (mod P ), then f
|P |−1

2 ≡ g|P |−1 ≡ 1 ≡
(f
P

)
(mod P ).

Finally, suppose f 6≡ � (mod P ). Now there are at most |P |−12

solutions mod P to X
|P |−1

2 ≡ 1 (mod P ), since A/P is a field.

There are also |P |−12 squares mod P . So f
|P |−1

2 6≡ 1 (mod P ).

But (f
|P |−1

2 )2 ≡ f |P |−1 ≡ 1 (mod P ), forcing

f
|P |−1

2 ≡ −1 ≡
(f
P

)
(mod P ).

13 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

A short proof of QR in A = Fq[t], ctd.

Lemma

Let P be a monic irreducible in A. For every f ∈ A, we have(
f

P

)
≡ f

|P |−1
2 (mod P ).

This is clear if f ≡ 0 (mod P ), so suppose otherwise. If

f ≡ g2 (mod P ), then f
|P |−1

2 ≡ g|P |−1 ≡ 1 ≡
(f
P

)
(mod P ).

Finally, suppose f 6≡ � (mod P ). Now there are at most |P |−12

solutions mod P to X
|P |−1

2 ≡ 1 (mod P ), since A/P is a field.

There are also |P |−12 squares mod P . So f
|P |−1

2 6≡ 1 (mod P ).

But (f
|P |−1

2 )2 ≡ f |P |−1 ≡ 1 (mod P ), forcing

f
|P |−1

2 ≡ −1 ≡
(f
P

)
(mod P ).

14 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

A short proof of QR in A = Fq[t], ctd.

Lemma

Let P be a monic irreducible in A. For every f ∈ A, we have(
f

P

)
≡ f

|P |−1
2 (mod P ).

This is clear if f ≡ 0 (mod P ), so suppose otherwise. If

f ≡ g2 (mod P ), then f
|P |−1

2 ≡ g|P |−1 ≡ 1 ≡
(f
P

)
(mod P ).

Finally, suppose f 6≡ � (mod P ). Now there are at most |P |−12

solutions mod P to X
|P |−1

2 ≡ 1 (mod P ), since A/P is a field.

There are also |P |−12 squares mod P . So f
|P |−1

2 6≡ 1 (mod P ).

But (f
|P |−1

2 )2 ≡ f |P |−1 ≡ 1 (mod P ), forcing

f
|P |−1

2 ≡ −1 ≡
(f
P

)
(mod P ).

15 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

A short proof of QR in A = Fq[t], ctd.

Idea of the proof: Find explicit expressions for
(
P
Q

)
and

(Q
P

)
in

terms of the roots of P and Q and then compare.

Let F stand for the algebraic closure of Fq. Both P and Q split
into distinct linear factors over F, and we can write

P (t) = (t− α)(t− αq) · · · (t− αqd−1
)

and
Q(t) = (t− β)(t− βq) · · · (t− βqe−1

).

We would like to evaluate P
|Q|−1

2 mod Q, since this gives
(
P
Q

)
.

We compute P
|Q|−1

2 mod t− βqi for each i, starting with

P
|Q|−1

2 mod t− β (the case i = 0).
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A short proof of QR in A = Fq[t], ctd.

Using that P has coefficients belonging to Fq, we see that

P (t)
|Q|−1

2 = P (t)
qe−1

2 = P (t)(1+q+···+q
e−1) q−1

2

= (P (t)P (tq) · · ·P (tq
e−1

))
q−1
2 .

Modulo t− β, this is congruent to

(P (β)P (βq) · · ·P (βq
e−1

))
q−1
2 .

Remembering that P (t) =
∏d−1
i=0 (t− αqi), we get

P (t)
|Q|−1

2 ≡

e−1∏
j=0

d−1∏
i=0

(βq
j − αqi)


q−1
2

(mod t− β).
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A short proof of QR in A = Fq[t], ctd.

OK, so we have now that

P (t)
|Q|−1

2 ≡

e−1∏
j=0

d−1∏
i=0

(βq
j − αqi)


q−1
2

(mod t− β).

How does the right hand side change if we replace the modulus
t− β with t− βq`?

It doesn’t! Hence,

e−1∏
j=0

(
d−1∏
i=0

(βq
j − αqi)

) q−1
2

≡ P (t)
|Q|−1

2 ≡
(
P

Q

)
(mod Q(t)).

Both sides are constants (elements of F); this implies(
P

Q

)
=

e−1∏
j=0

d−1∏
i=0

(βq
j − αqi)


q−1
2

.
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A short proof of QR in A = Fq[t], ctd.

So in F, we have the equation

(
P

Q

)
=

e−1∏
j=0

d−1∏
i=0

(βq
j − αqi)


q−1
2

.

Similarly:

(
Q

P

)
=

e−1∏
j=0

d−1∏
i=0

(αq
i − βqj )


q−1
2

. Thus,

(
P

Q

)
= (−1)de

q−1
2

(
Q

P

)
, whence

(
P

Q

)(
Q

P

)
= (−1)de

q−1
2 .

The final identity is true not only in F but also in Z, since both
sides are ±1. Done!
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Fermat’s last theorem

Perhaps the most celebrated mathematical success story in
recent memory is the resolution of the following longstanding
conjecture of Fermat.

Theorem (Wiles and Taylor, 1995)

Let n > 3. Then there are no integer solutions to

xn + yn = zn

with xyz 6= 0.
24 / 63
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Fermat’s last theorem, ctd.

One could formulate the exact same conjecture for polynomials.

Conjecture

If n > 3, there are no solutions to xn + yn = zn with
x, y, z ∈ A = Fq[t] and xyz 6= 0.

But this is false. For example, there might well be constant
solutions. Even worse, whenever x+ y = z in A, then
xp

k
+ yp

k
= zp

k
, where p = char(F ).

Conjecture (modified)

If n ≥ 3 and p - n, then there are no coprime solutions to
xn + yn = zn with x, y, z ∈ A = Fq[t], xyz 6= 0, and x, y, z
not all constant.
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solutions. Even worse, whenever x+ y = z in A, then
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Fermat’s last theorem, ctd.

Conjecture (modified)

If n ≥ 3 and p - n, then there are no coprime solutions to
xn + yn = zn with x, y, z ∈ A = Fq[t], xyz 6= 0, and x, y, z
not all constant.

Theorem (Liouville – Korkine – Greenleaf)

The modified conjecture is true!

There are various ways to prove this. Perhaps the simplest
proof uses Mason’s theorem.
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Mason’s theorem

For a polynomial f over a field F , let R(f) be the product of
the distinct monic irreducibles dividing f (the squarefree part
of f), and let r(f) = degR(f).

Theorem (Mason, 1984)

Let F be any field. Suppose f, g, h ∈ F [t] are nonzero and that
that there is no irreducible dividing all of f, g, and h. Suppose
that f + g = h and that it is not the case that
f ′ = g′ = h′ = 0. Then

max{deg f,deg g,deg h} ≤ r(fgh)− 1.
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Deduction of FLT for Fq[t]

Theorem (Mason, 1984)

Let F be any field. Suppose f, g, h ∈ F [t] are nonzero and that
that there is no irreducible dividing all of f, g, and h. Suppose
that f + g = h and that it is not the case that
f ′ = g′ = h′ = 0. Then

max{deg f,deg g,deg h} ≤ r(fgh)− 1.

Now we return to Fermat’s last theorem for polynomials.
Suppose xn + yn = zn with x, y, z nonzero elements of Fq[t],
coprime, not all constant.
Suppose also that p - n. We have to show n < 3.

We can assume x, y, and z are not all polynomials in tp;
otherwise, take pth roots of the equation xn + yn = zn (repeat
as necessary).29 / 63
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Deduction of FLT, continued

Now f = xn, g = yn, and h = zn satisfy the relation
f + g = h.

Moreover, not all of f ′, g′, h′ = 0, since p - n and not all of
x, y, and z are polynomials in tp.

So Mason’s theorem applies and shows that

nmax{deg x,deg y,deg z} ≤ r(xnynzn)− 1

= r(xyz)− 1

< deg (xyz)

≤ 3 max{deg x,deg y,deg z}.

Hence, n < 3.
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Proof of Mason’s theorem

We give a proof due to Noah Snyder (1999).

Recall that R(f) denotes the product of the distinct monic
irreducibles dividing f and that r(f) = degR(f).

Lemma

Let f be a nonzero polynomial in F [t]. Then

f/R(f) | gcd(f, f ′).
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Proof of Mason’s theorem, ctd.

Lemma

Let f be a nonzero polynomial in F [t]. Then

f/R(f) | gcd(f, f ′).

Exercise: Check that R(f) and gcd(f, f ′) do not change
under extensions of F .

Hence, we can assume F is algebraically closed. Write
f = c

∏
(t− αi)ei . By the product rule, (t− αi)ei−1 | f ′ for

each i, and hence∏
(t− αi)ei−1 | gcd(f, f ′).

The left hand side is f/R(f).
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Proof of Mason’s theorem, ctd.

Lemma

Let f be a nonzero polynomial in F [t]. Then

f/R(f) | gcd(f, f ′).

Exercise: Check that R(f) and gcd(f, f ′) do not change
under extensions of F .

Hence, we can assume F is algebraically closed. Write
f = c

∏
(t− αi)ei . By the product rule, (t− αi)ei−1 | f ′ for

each i, and hence∏
(t− αi)ei−1 | gcd(f, f ′).

The left hand side is f/R(f).
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Proof of Mason’s theorem, ctd.

Using f + g = h, one checks h′g − g′h = fg′ − f ′g.

This common element is divisible by gcd(f, f ′), gcd(g, g′), and
gcd(h, h′). Thus, it is divisible by the (coprime!) elements
f/R(f), g/R(g), and h/R(h).

Hence, h′g − g′h is divisible by

fgh/(R(f)R(g)R(h)) = fgh/R(fgh).
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Proof of Mason’s theorem, ctd.

We want to show all of deg f, deg h,deg h are smaller than
r(fgh) = degR(fgh).

Assume for the sake of contradiction that deg f ≥ degR(fgh).
Then

deg(fgh/R(fgh)) = deg gh+ (deg f − degR(fgh))

≥ deg (gh)

> deg (h′g − g′h).

Since fgh/R(fgh) | h′g − g′h, these inequalities imply that
h′g − g′h = 0. But then h | h′, so h′ = 0. Since h′g − g′h = 0,
we get g′ = 0. Since f = h− g, we get f ′ = h′ − g′ = 0.
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Proof of Mason’s theorem, ctd.

So all of f ′, g′, h′ = 0. But we assumed that this was not the
case! So the only possibility left is that

deg f ≤ degR(fgh)− 1 = r(fgh)− 1.

But f and g play symmetric roles, since f + g = h. So the
same bound on the degree holds for deg g.

Finally, since f + g = h, we conclude that the same bound
holds for deg h.

This completes the proof of Mason’s theorem (and so also of
FLT).
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abc?

As we have just seen, Mason’s theorem allows one to give a
very short proof of Fermat’s last theorem for polynomials.

There is an analogous conjecture for integers, known as the
abc-conjecture.

Conjecture (Oesterlé–Masser)

For every ε > 0, there are only finitely many triples of coprime
positive integers a, b, c, satisfying a+ b = c and having

c > (
∏
p|abc

p)1+ε.

Quite recently, Mochizuki has claimed a proof. This would
have many important arithmetic consequences.
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Sums of two squares

Fermat knew that every prime p ≡ 1 (mod 4) was a sum of
two squares. A complete characterization of which integers are
sums of two squares is attributed to Euler.

Theorem

The positive integer n is a sum of two
squares if and only if every prime
p ≡ 3 (mod 4) shows up to an even
exponent (possibly zero) in the prime
factorization of n.
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Sums of two squares, ctd.

OK, which elements of A = Fq[t] are sums of two squares?

When q is even — i.e., p = 2 — then everything that is a sum
of two squares is a square itself. So let’s assume that q is odd.

A natural guess, after Euler’s result, might be the following.

Conjecture

Let f ∈ A. Then f can be written as a sum of two squares in
A if and only if every prime P with |P | ≡ 3 (mod 4) shows up
to an even exponent in the prime factorization of A.

Theorem (Leahey, 1967)

This is true!
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Sums of two squares, ctd.

OK, which elements of A = Fq[t] are sums of two squares?

When q is even — i.e., p = 2 — then everything that is a sum
of two squares is a square itself. So let’s assume that q is odd.

A natural guess, after Euler’s result, might be the following.

Conjecture

Let f ∈ A. Then f can be written as a sum of two squares in
A if and only if every prime P with |P | ≡ 3 (mod 4) shows up
to an even exponent in the prime factorization of A.

Theorem (Leahey, 1967)

This is true!
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Sums of two squares, ctd.

A more general theorem was proved by Joly (1970).

Theorem

Let F be a field of characteristic 6= 2. Suppose that −1 is not
a square in F , but that every element of F is a sum of two
squares. Then the following are equivalent:

1 f is a sum of two squares,

2 if P is an irreducible dividing f for which −1 is not a
square in F [t]/(P ), then P appears to an even power in
the prime factorization of f .

For the proofs, Leahey and Joly use the arithmetic of
F [t][i] = F [i][t]. This is analogous to studying sums of two
squares as norms from Z[i].
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Higher powers

Instead of considering sums of squares, let’s consider sums of
kth powers.

For each k, let Σ(k,Z) be the set of integers that can be
written as a finite sum of kth powers of elements of Z.

It is easy to see that if k is odd, then Σ(k,Z) = Z, while when
k is even, Σ(k,Z) = Z≥0. The following conjecture was made
by Edward Waring (1770).

Conjecture

Every element of Σ(k,Z) can be written as the sum of at most
w(k,Z) kth powers, where w(k,Z) <∞.

For example, Lagrange’s theorem shows that w(2,Z) = 4 is
acceptable.
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Waring’s problem

As another example, notice that

(t+ 1)3 + (−t)3 + (−t)3 + (t− 1)3 = 6t.

So every multiple of 6 is a sum of four cubes in Z. Since n−n3
is always a multiple of 6, we see that w(3,Z) = 5 is admissible.

The first proof of the existence of a finite w(k,Z) for every k is
due to Hilbert.

Theorem (Hilbert, 1909)

Waring was right!

All known proofs of this theorem are fairly intricate.
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Waring’s problem

As another example, notice that

(t+ 1)3 + (−t)3 + (−t)3 + (t− 1)3 = 6t.

So every multiple of 6 is a sum of four cubes in Z. Since n−n3
is always a multiple of 6, we see that w(3,Z) = 5 is admissible.

The first proof of the existence of a finite w(k,Z) for every k is
due to Hilbert.

Theorem (Hilbert, 1909)

Waring was right!

All known proofs of this theorem are fairly intricate.44 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

Paley’s theorem

If R is a ring (always understood to be commutative, with 1),
we let Σ(k,R) be the set of elements of R that have an
expression as a finite sum of kth powers.

Theorem (Paley, 1932)

Let A = Fq[t]. Then every element of
Σ(k,A) can be written as a sum of at
most w(k,A) kth powers, where
w(k,A) <∞.

In fact, we will show that w(k,A) can be chosen
to depend only on k (and not on q). Rather than
follow Paley, we give an argument using methods
of Vaserstein (1987).
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Paley’s theorem

If R is a ring (always understood to be commutative, with 1),
we let Σ(k,R) be the set of elements of R that have an
expression as a finite sum of kth powers.

Theorem (Paley, 1932)

Let A = Fq[t]. Then every element of
Σ(k,A) can be written as a sum of at
most w(k,A) kth powers, where
w(k,A) <∞.

In fact, we will show that w(k,A) can be chosen
to depend only on k (and not on q). Rather than
follow Paley, we give an argument using methods
of Vaserstein (1987).
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Preliminaries: two results of Tornheim (1938)

Theorem

Let F be a field of positive characteristic. Then Σ(k, F ) is a
subfield of F .

Proof: By definition, Σ(k, F ) is closed under +. It is also
closed under ·, since

(
∑
i

αki )(
∑
j

βkj ) =
∑
i,j

(αiβj)
k.

It is closed under taking additive inverses, since (e.g.)

−
∑
i

αki =

(∑
i

αki + · · ·+
∑
i

αki

)
︸ ︷︷ ︸

p−1 times

.
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First theorem, ctd.

Finally, it is closed under taking multiplicative inverses:
Suppose 0 6= α ∈ Σ(k, F ). Then α−k ∈ FK ⊂ Σ(k, F ), and
αk−1 ∈ Σ(k, F ) (since we already proved closure under
multiplication).

Thus, using closure under · once again,

α−1 = α−kαk−1 ∈ Σ(k, F ).

48 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

Preliminaries: two results of Tornheim (1938)

Theorem

Let F = Fq be a finite field. Then every element of Σ(k, F ) is
expressible as a sum of k kth powers in F .

It is helpful to introduce some notation from additive number
theory. If B and C are subsets of an additive group, we let

B ⊕ C = {b+ c : b ∈ B, c ∈ C}.

We define the `-fold sumset of B to be

`B = B ⊕B ⊕ · · · ⊕B︸ ︷︷ ︸
` times

.

Now let B be the set of kth powers in the field F = Fq.
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Preliminaries: two results of Tornheim (1938)

Since 0 ∈ B, we have a sequence of inclusions

0B = {0} ⊂ B ⊂ 2B ⊂ 3B ⊂ . . . .

We look for the first positive integer i for which (i+ 1)B = iB.
In that case,

(i+ 2)B = (i+ 1)B +B = iB +B = (i+ 1)B,

and so the sequence of sumsets stabilizes:

iB = (i+ 1)B = (i+ 2)B = · · · = Σ(k, F ).

Key observation: (i+ 1)B \ iB is stable under multiplication
by (F×)k.
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Preliminaries: two results of Tornheim (1938)

Consequently, whenever (i+ 1)B properly contains B, the
set-difference (i+ 1)B \ iB is a union of cosets of (F×)k. The
total number of cosets of (F×)k in F× is

gcd(q − 1, k) ≤ k.

Consequently. there can be at most gcd(q − 1, k) ≤ k strict
inclusions in the sequence

{0} = 0A ⊂ A ⊂ 2A ⊂ 3A ⊂ . . . .

Thus, every element of Σ(k, F ) is a sum of at most
gcd(q − 1, k) ≤ k kth powers.

Since 0 is a kth power, we can use exactly k such powers in
the representation, if we wish.51 / 63
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Back to Waring’s problem for polynomials over
finite fields

Recall that our goal is to prove the following theorem.

Theorem

Let A = Fq[t]. Then every element of Σ(k,A) can be written
as a sum of at most w(k,A) kth powers, where w(k,A) <∞
can be chosen to depend only on k.

First, we show that we can assume p - k. Suppose that the
theorem is proved under this extra assumption.

Say k = pek′, where p - k′. If f ∈ Σ(k,A), then

f =
∑

fki =
(∑

f
k/pe

i

)pe
.

Let
g =

∑
f
k/pe

i ∈ Σ(k/pe, A).
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Reduction to the case when p - k

We have f = gp
e
, where

g =
∑

f
k/pe

i ∈ Σ(k/pe, A).

Since p - k
pe , we know that every element of Σ(k/pe, A) is a

sum of w(k/pe, A) (k/pe)th powers.

In particular, g is a sum of w(k/pe, A) (k/pe)th powers. Thus,
f = gp

e
is a sum of w(k/pe, A) kth powers.

So the theorem follows with

w(Fq[t], k) = w(Fq[t], k/pe).
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Waring’s problem for polynomials

Theorem

Let A = Fq[t]. Then every element of Σ(k,A) can be written
as a sum of at most w(k,A) kth powers, where w(k,A) <∞
can be chosen to depend only on k.

Case 1: p > k. In this case, we show that Σ(k,A) = A and
that one can take w(k,A) = k2. Choose distinct elements
α1, . . . , αk of Fp. Consider the k × k Vandermonde matrix

1 1 · · · 1
α1 α2 · · · αk
α2
1 α2

2 · · · α2
k

...
...

. . .
...

αk−11 αk−12 · · · αk−1k

 .
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Waring’s problem for polynomials

Since the matrix is invertible, we can solve the system

k∑
i=1

βiα
s
i =

{
0 if s = 0, 1, 2, . . . , k − 2,

k−1 if s = k − 1

for β1, . . . , βk ∈ Fp.

It follows that in Fp[y],

k∑
i=1

βi(y + αi)
k = y + γ, where γ =

k∑
i=1

βiα
k
i ∈ Fp.

Thus,
k∑
i=1

βi(y + (αi − γ))k = y.
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Waring’s problem for polynomials

We have (for constants αi, βi, γ all in Fp)

k∑
i=1

βi(y + (αi − γ))k = y.

We can expand each βi as a sum of k kth powers in Fp. This
gives y as a sum of k2 kth powers in Fp[y].

Replacing y with an arbitrary element f of A = Fq[t], we get
that every f ∈ A is a sum of k2 kth powers in Fp[f ] ⊂ Fq[t].
This completes the proof of Case 1.
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Waring’s problem for polynomials

Case 2: p ≤ k
We observe that the argument given for Case 1 in fact proves
the following result (with F = Fp).

Lemma

Let F be a field of characteristic coprime to k and where F has
more than k elements. Then y can be written in the form∑

βi`i(y)k,

where each βi ∈ F and each `i(y) is a (linear) polynomial with
coefficients from F .
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Waring’s problem for polynomials, case 2

Lemma

Let F be a field of characteristic coprime to k and where F has
more than k elements. Then y can be written in the form∑

βi`i(y)k,

where each βi ∈ F and each `i(y) is a (linear) polynomial with
coefficients from F .

We choose F = Σ(k,Fp(t)). Using that each βi ∈ Σ(k,Fp(t)),
we obtain that y is a finite sum of kth powers in Fp(t)[y].

Now we clear denominators. Multiplying by D(t)k ∈ Fp[t] for a
suitable D(t), we get an identity

M(t)y = (finite sum of kth powers in Fp[t][y]),

where M(t) = D(t)k.58 / 63
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Waring’s problem for polynomials, case 2

We get an identity in Fp[t][y]:

M(t)y = (finite sum of kth powers in Fp[t][y]).

We can now characterize Σ(k,A), where A = Fq[t].

Lemma

An element f ∈ A is a sum of kth powers in A if and only if its
reduction mod M is a sum of kth powers in A/(M).

If f is a sum of kth powers, then it is a sum of kth powers mod
M . In the other direction, if f ≡ fk1 + · · ·+ fks (mod M), then

f(t)− (f1(t)
k + · · ·+ fs(t)

k) = M(t)q(t)

for some q(t) ∈ Fq[t]. Plug y = q(t) into our identity above.59 / 63
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Waring’s problem for polynomials, case 2

We still have to show that an f ∈ Σ(k,A) is a sum of Ok(1)
kth powers in A.

So suppose f ∈ Σ(k,A). We have just seen that to write f as
a sum of kth powers, it suffices to first write f mod M as a
sum of kth powers in A/(M), say

f ≡ fk1 + · · ·+ fks (mod M),

and then apply the identity

M(t)y = (finite sum of kth powers in Fp[t][y]).

to write f − (fk1 + · · ·+ fks ) as a sum of kth powers. The
identity depends only on p and k, and since p ≤ k, the number
of terms in the identity is bounded solely in terms of k.60 / 63

Paul Pollack Analogies between Z and Fq [t]



Analogies
between Z
and Fq [t]

Paul Pollack

A dictionary

Reciprocity

Fermat’s last
theorem

Mason’s
theorem

Sums of two
squares

Waring’s
problem

Waring’s problem for polynomials, case 2

So it remains only to show we can always choose s = Ok(1).

In other words, we have reduced the proof of the theorem to
the following lemma.

Lemma

Let A = Fq[t], and let M be a nonzero element of A. Then
every element of Σ(k,A/(M)) can be written as a sum of at
most w(k,A/(M)) kth powers, where w(k,A/(M)) is
bounded solely in terms of k.

In fact, we will show that we can take w(k,A/(M)) = k + 1.

By the Chinese remainder theorem, it suffices to prove this
stronger claim when M is a power of an irreducible polynomial,
say M = P e.61 / 63
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So suppose that f mod P e is a sum of kth powers modulo P e.
Then f mod P is a sum of kth powers mod P .

Since Σ(k,A/(P )) is a field, it is also true that f − 1 mod P is
a sum of kth powers mod P .

Since A/(P ) is a finite field, Tornheim says we only need k kth
powers: We can write f − 1 ≡ fk1 + · · ·+ fkk (mod P ). Thus,

f − (fk1 + . . . fkk ) ≡ 1 (mod P ).

Using once more that p - k, Hensel’s lemma implies that
f − (fk1 + . . . fkk ) ≡ fkk+1 (mod P e). Hence,

f ≡ fk1 + fk2 + · · ·+ fkk+1 (mod P e).
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The state of the art on Waring for polynomials

Liu and Wooley (2007) have shown that one can take

w(k,Fq[t]) ≤ (1 + o(1))k log k

as k →∞, uniformly in q.
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