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Backstory

Let o(n) := >_4, d denote the sum of the divisors of n. Thus, for

example,
o(l4) =1+2+4+7+ 14 = 24.

Many of the oldest problems in number theory can be considered
attempts to better understand the behavior of o(n).
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Backstory

Let o(n) := >_4, d denote the sum of the divisors of n. Thus, for

example,
o(l4) =1+2+4+7+ 14 = 24.

Many of the oldest problems in number theory can be considered
attempts to better understand the behavior of o(n).

Definition

A natural number n is called perfect if o(n) = 2n and multiply
perfect if o(n) = kn for some k. In other words, n is multiply perfect
if o(n) =0 (mod n).

For example, n = 28 is perfect (since o(n) = 56) and
n =120 is multiply perfect (since ¢(120) = 360).
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We don't know if there are infinitely many perfect numbers
or whether there are infinitely many multiply perfect numbers.

We have had better luck with upper bounds.
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Theorem
We have the following estimates for V/(x), the number of perfect
numbers up to x:

Volkmann, 1955  V/(x) = O(x*/%)
Hornfeck, 1955  V(x) = O(x'/?)
Kanold, 1956  V/(x) = o(x'/?)
Erdés, 1956  V/(x) = O(x!/?79)
Kanold, 1957  V/(x) = O(x/ |o|;i 2 )
(

Hornfeck & Wirsing, 1957  V(x) = O(x°)

The Hornfeck—Wirsing estimate hold also for the number of multiply
perfect n < x.
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Every 1 can make a difference

Definition
A natural number n is called quasiperfect (or slightly excessive) if
o(n) =2n+1. A number is called multiply quasiperfect if o(n) =1

(mod n).
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A natural number n is called quasiperfect (or slightly excessive) if
o(n) =2n+1. A number is called multiply quasiperfect if o(n) =1
(mod n).

Question
Can we show that the number of multiply quasiperfect n < x is
eventually smaller than x€?

Answer: No.
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Every 1 can make a difference

Definition

A natural number n is called quasiperfect (or slightly excessive) if
o(n) =2n+1. A number is called multiply quasiperfect if o(n) =1
(mod n).

Question

Can we show that the number of multiply quasiperfect n < x is
eventually smaller than x€?

Answer: No. Every prime p satisfies o(p) = p+1=1 (mod p).

New question

Can we show that the number of composite multiply quasiperfect

n < x is eventually smaller than x¢?
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Theorem
The number of composite multiply quasi-perfect numbers up to x is

at most

x'/2 exp <(2 +0o(1))4/ Iolgolgogx> .

Theorem (Anavi, P., Pomerance)

Consider the congruence o(n) = a (mod n). If there is a multiply

perfect number m with o(m) = a, then every number n = mp with

p t m satisfies this congruence (trivial solutions).

The number of solutions n to the congruence not of this form

(sporadic solutions) is at most
x1/2+o() as x — 0o,

uniformly for |a| < x/*.
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Messing with perfection

Definition

A natural number n is called near-perfect if n is the sum of all of its
proper divisors except one of them, called the redundant divisor.
Equivalently, n is near-perfect with redundant divisor d when

o(n) =2n+d, where d is a proper divisor of n.
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Messing with perfection

Definition

A natural number n is called near-perfect if n is the sum of all of its
proper divisors except one of them, called the redundant divisor.
Equivalently, n is near-perfect with redundant divisor d when

o(n) =2n+d, where d is a proper divisor of n.

Example

196 is near-perfect with redundant divisor 7, since

0(196) =2-196 + 7.

The near-perfect numbers are (OEIS #A181595)

12, 18, 20, 24, 40, 56, 88, 104, 196, 224, 234, 368, 464, 650, 992, 1504,
1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, ...
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We cannot prove that there are infinitely many near-perfect numbers,
though we have certain Euclid-style families. For instance, if
Mp := 2P — 1 is prime, then

—1pg2
2P~ 2

is near-perfect with redundant divisor M.
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We cannot prove that there are infinitely many near-perfect numbers,
though we have certain Euclid-style families. For instance, if
Mp := 2P — 1 is prime, then
p—1p42
2P M3
is near-perfect with redundant divisor M,,.
In the opposite direction, we can prove the following:

Theorem (Anavi, P., Pomerance, Shevelev)

The number of near-perfect numbers in [1,x] is at most x3/4+°(1) a5
X — 00.
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Sketch of the proof

If o(n) =2n+ d, then o(n) = d (mod n). Moreover, n is a sporadic
solution to this congruence.

For each d < x/*, we can apply our theorem to get an upper bound

of &~ x1/2 for each such d, and so an upper bound of
~ x2 . x4 = x3/% total.

Suppose d > x/*. Since d | n and d | o(n), we have
ged(n, o(n)) > d > x¥*. Now we use the following theorem with
1

Theorem (P.)

Fix 0 < o < 1. The number of n < x with gcd(n,o(n)) > x“ is
x1—a+o(1)
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A man'’s reach should exceed his grasp

Say that n is k-nearly-perfect if n is the sum of all its proper divisors
with at most k exceptions.

e If k =1, the k-nearly-perfects consist of the perfect numbers and
the near-perfect numbers. The number of these up to x is at most
x3/4t°(1)  So we save a power of x over the trivial upper bound.
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A man'’s reach should exceed his grasp

Say that n is k-nearly-perfect if n is the sum of all its proper divisors
with at most k exceptions.

e If k =1, the k-nearly-perfects consist of the perfect numbers and
the near-perfect numbers. The number of these up to x is at most
x3/41t0(1) " So we save a power of x over the trivial upper bound.

e If k>4, we don't save a power of x; this is because
6bp=p+2p+3p

is 4-near-perfect for each p > 3.
¢ Problem: What about k =2 and kK =37

One can also study n with exactly k redundant divisors. We can
prove that for all large k, the counting function of such numbers

grows at least as fast as x/ log x.
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Thank you!

11 of 11



	Introduction

