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Backstory

Let σ(n) :=
∑

d |n d denote the sum of the divisors of n. Thus, for
example,

σ(14) = 1 + 2 + 7 + 14 = 24.

Many of the oldest problems in number theory can be considered
attempts to better understand the behavior of σ(n).

Definition
A natural number n is called perfect if σ(n) = 2n and multiply
perfect if σ(n) = kn for some k . In other words, n is multiply perfect
if σ(n) ≡ 0 (mod n).

For example, n = 28 is perfect (since σ(n) = 56) and
n = 120 is multiply perfect (since σ(120) = 360).
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We don’t know if there are infinitely many perfect numbers
or whether there are infinitely many multiply perfect numbers.

We have had better luck with upper bounds.
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Theorem
We have the following estimates for V (x), the number of perfect
numbers up to x:

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)

The Hornfeck–Wirsing estimate hold also for the number of multiply
perfect n ≤ x.
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Every 1 can make a difference

Definition
A natural number n is called quasiperfect (or slightly excessive) if
σ(n) = 2n + 1. A number is called multiply quasiperfect if σ(n) ≡ 1
(mod n).

Question
Can we show that the number of multiply quasiperfect n ≤ x is
eventually smaller than xε?

Answer: No. Every prime p satisfies σ(p) = p + 1 ≡ 1 (mod p).

New question

Can we show that the number of composite multiply quasiperfect
n ≤ x is eventually smaller than xε?
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Theorem
The number of composite multiply quasi-perfect numbers up to x is
at most

x1/2 exp

(
(2 + o(1))

√
log x

log log x

)
.

Theorem (Anavi, P., Pomerance)

Consider the congruence σ(n) ≡ a (mod n). If there is a multiply
perfect number m with σ(m) = a, then every number n = mp with
p - m satisfies this congruence (trivial solutions).
The number of solutions n to the congruence not of this form
(sporadic solutions) is at most

x1/2+o(1), as x →∞,

uniformly for |a| ≤ x1/4.
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Messing with perfection

Definition
A natural number n is called near-perfect if n is the sum of all of its
proper divisors except one of them, called the redundant divisor.
Equivalently, n is near-perfect with redundant divisor d when

σ(n) = 2n + d , where d is a proper divisor of n.

Example

196 is near-perfect with redundant divisor 7, since
σ(196) = 2 · 196 + 7.

The near-perfect numbers are (OEIS #A181595)
12, 18, 20, 24, 40, 56, 88, 104, 196, 224, 234, 368, 464, 650, 992, 1504,

1888, 1952, 3724, 5624, 9112, 11096, 13736, 15376, . . .
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We cannot prove that there are infinitely many near-perfect numbers,
though we have certain Euclid-style families. For instance, if
Mp := 2p − 1 is prime, then

2p−1M2
p

is near-perfect with redundant divisor Mp.

In the opposite direction, we can prove the following:

Theorem (Anavi, P., Pomerance, Shevelev)

The number of near-perfect numbers in [1, x ] is at most x3/4+o(1), as
x →∞.

8 of 11



We cannot prove that there are infinitely many near-perfect numbers,
though we have certain Euclid-style families. For instance, if
Mp := 2p − 1 is prime, then

2p−1M2
p

is near-perfect with redundant divisor Mp.

In the opposite direction, we can prove the following:

Theorem (Anavi, P., Pomerance, Shevelev)

The number of near-perfect numbers in [1, x ] is at most x3/4+o(1), as
x →∞.

8 of 11



Sketch of the proof

If σ(n) = 2n + d , then σ(n) ≡ d (mod n). Moreover, n is a sporadic
solution to this congruence.

For each d ≤ x1/4, we can apply our theorem to get an upper bound
of ≈ x1/2 for each such d , and so an upper bound of
≈ x1/2 · x1/4 = x3/4 total.

Suppose d > x1/4. Since d | n and d | σ(n), we have
gcd(n, σ(n)) ≥ d > x1/4. Now we use the following theorem with
α = 1

4 .

Theorem (P.)

Fix 0 < α < 1. The number of n ≤ x with gcd(n, σ(n)) > xα is
x1−α+o(1).
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A man’s reach should exceed his grasp

Say that n is k-nearly-perfect if n is the sum of all its proper divisors
with at most k exceptions.

• If k = 1, the k-nearly-perfects consist of the perfect numbers and
the near-perfect numbers. The number of these up to x is at most
x3/4+o(1). So we save a power of x over the trivial upper bound.

• If k ≥ 4, we don’t save a power of x ; this is because

6p = p + 2p + 3p

is 4-near-perfect for each p > 3.

• Problem: What about k = 2 and k = 3?

One can also study n with exactly k redundant divisors. We can
prove that for all large k , the counting function of such numbers
grows at least as fast as x/ log x .
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Thank you!
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