Clusters of primes with square-free translates

Roger C. Baker and Paul Pollack

Abstract

Let \mathcal{R} be a finite set of integers satisfying appropriate local conditions. We show the existence of long clusters of primes p in bounded length intervals with $p-b$ squarefree for all $b \in \mathcal{R}$. Moreover, we can enforce that the primes p in our cluster satisfy any one of the following conditions: (1) p lies in a short interval $\left[N, N+N^{\frac{7}{12}+\varepsilon}\right]$, (2) p belongs to a given inhomogeneous Beatty sequence, (3) with $c \in\left(\frac{8}{9}, 1\right)$ fixed, p^{c} lies in a prescribed interval mod 1 of length $p^{-1+c+\varepsilon}$.

1. Introduction

Recent work on small gaps between primes owes a considerable debt to the innovative use of the Selberg sieve by Goldston, Pintz, and Yildirim [8]. This paper contains the result, for the sequence of primes p_{1}, p_{2}, \ldots,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}-p_{n}}{\log p_{n}}=0 \tag{1.1}
\end{equation*}
$$

By adapting the method, Zhang [20] achieved the breakthrough result

$$
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right)<\infty
$$

Not long afterwards, Maynard [11] refined the sieve weights of Goldston, Pintz, and Yildirim to obtain the stronger result, for $t=2,3, \ldots$.

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(p_{n+t-1}-p_{n}\right) \ll t^{3} e^{4 t} \tag{1.2}
\end{equation*}
$$

The implied constant is absolute. Similar results were obtained at the same time by Tao (unpublished). Tao's use of weights is available in the paper [16] by the Polymath group; for some problems, this is a more convenient approach than that of Maynard [11]. Polymath [15] also refined the work of Zhang [20] to obtain new equidistribution estimates for primes in arithmetic progressions. When combined

[^0]with techniques in [16], the outcome (see [16]) is a set of results that are explicit for the left-hand side of (1.2), for small t, and give $O\left(t \exp \left(\left(4-\frac{28}{157}\right) t\right)\right.$ for $t \geq 2$ in place of the bound in (1.2). The latter result has been sharpened further by Baker and Irving [2]. In a different direction, Ford, Green, Konyagin, Maynard, and Tao [7] have used the Maynard-Tao method in giving a breakthrough result on large gaps between primes.

It is natural to ask whether a given infinite sequence of primes $\mathcal{B}=\left\{p_{1}^{\prime}, p_{2}^{\prime}, \ldots\right\}$ satisfies a bound analogous to (1.2), say

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left(p_{n+t-1}^{\prime}-p_{n}^{\prime}\right) \ll F(\mathcal{B}, t) \quad(t=2,3, \ldots) \tag{1.3}
\end{equation*}
$$

In the present paper we answer affirmatively a question of this kind raised by Benatar [5]. Let b_{1} be a fixed nonzero integer and

$$
\mathcal{B}=\left\{p: p \text { prime }, p-b_{1} \text { is square-free }\right\}
$$

Does (1.3) hold for $t=2$? (Benatar was able to obtain the analogue of (1.1) for primes in \mathcal{B}.) It is of some interest to consider more generally a set of translates

$$
\begin{equation*}
\mathcal{R}=\left\{b_{1}, \ldots, b_{s}\right\} \tag{1.4}
\end{equation*}
$$

and the set

$$
\begin{equation*}
\mathcal{B}(\mathcal{R})=\{p: p \text { prime, } p-b \text { is squarefree for all } b \in \mathcal{R}\} \tag{1.5}
\end{equation*}
$$

There are simple local conditions that \mathcal{R} must satisfy.
Definition. A set $\left\{b_{1}, \ldots, b_{s}\right\}$ of nonzero integers is reasonable if for every prime p there is an integer $v, p \nmid v$, with

$$
b_{\ell} \not \equiv v \quad\left(\bmod p^{2}\right) \quad(\ell=1, \ldots, s) .
$$

A little thought shows that, if there are infinitely many primes p with $p-$ $b_{1}, \ldots, p-b_{s}$ all square-free, then $\left\{b_{1}, \ldots, b_{s}\right\}$ is a reasonable set.
Theorem 1. Let $t>1$ and $\varepsilon>0$. Let \mathcal{R} be a reasonable set of cardinality s and define $\mathcal{B}(\mathcal{R})$ by (1.5). The sequence $p_{1}^{\prime}, p_{2}^{\prime}, \ldots$ of primes in $\mathcal{B}(\mathcal{R})$ satisfies

$$
\liminf _{n \rightarrow \infty}\left(p_{n+t-1}^{\prime}-p_{n}^{\prime}\right) \leq \exp \left(C_{1}(\varepsilon) s \exp ((4+\varepsilon) t)\right)
$$

From now on, let \mathcal{R} be a fixed reasonable set of cardinality s, given by (1.4). We now pursue the possibility of finding clusters of primes p for which $p-b$ is squarefree for all $b \in \mathcal{R}$, and p is chosen from a given subset \mathcal{A} of $[N, 2 N]$ for a sufficiently large positive integer N. This is in the spirit of the papers of Maynard [12] and Baker and Zhao [3], which contain overlapping theorems of the following kind: Given sufficient arithmetic regularity of $\mathcal{A} \subset[N, 2 N]$, there is a set \mathcal{S} of t primes in \mathcal{A} with diameter

$$
\begin{equation*}
D(\mathcal{S}):=\max _{n \in \mathcal{S}} n-\min _{n \in \mathcal{S}} n \ll F(t) \quad(t=2,3, \ldots) \tag{1.6}
\end{equation*}
$$

Here F depends on certain properties of \mathcal{A}. Theorems 2,3 , and 4 are of this kind, for three different choices of \mathcal{A}, with the additional requirement that $p-b$ is squarefree for all p in \mathcal{S} and b in \mathcal{R}.

Our first example \mathcal{A} is

$$
\mathcal{A}_{1}(\phi)=\mathbb{Z} \cap\left[N, N+N^{\phi}\right],
$$

where ϕ is a constant in $(7 / 12,1]$. The existence of a set \mathcal{S} of t primes in $\mathcal{A}_{1}(\phi)$ satisfying (1.6) is due to Maynard [12], with $F(t)$ of the form $\exp (K(\phi) t)$.

Our second example is suggested by work of Baker and Zhao [3]. Let $\lfloor w\rfloor$ denote the integer part of w. A Beatty sequence is a sequence

$$
\lfloor\alpha m+\beta\rfloor, m=1,2, \ldots
$$

where α is a given irrational number, $\alpha>1$ and β is a given real number. We write $\mathcal{A}_{2}(\alpha, \beta)$ for the intersection of this sequence with $[N, 2 N]$. The existence of a set \mathcal{S} of t primes in $\mathcal{A}(\alpha, \beta)$ is shown in [3], for a family of values of N depending on α, with

$$
F(t)=(t+\log \alpha) \exp (7.743 t) .
$$

Let c be a constant in $(8 / 9,1)$. A third example, not previously considered in connection with clusters of primes, is

$$
\mathcal{A}_{3}(c, \varepsilon)=\left\{n \in[N, 2 N): n^{c} \in I \quad(\bmod 1)\right\}
$$

where $\varepsilon>0$ and I is an interval of length

$$
\begin{equation*}
|I|=N^{-1+c+\varepsilon} . \tag{1.7}
\end{equation*}
$$

A corollary of Theorem 4 below is that $\mathcal{A}_{3}(c, \varepsilon)$ contains a set \mathcal{S} of t primes whose diameter is bounded as in (1.6). The problem of finding, or enumerating asymptotically, primes in sets similar to $\mathcal{A}_{3}(c, \varepsilon)$, but with I of more general length, has been studied by Balog [4] and others. We note a connection with the problem of finding primes of the form $\left[n^{C}\right]$. See e.g. Rivat and $\mathrm{Wu}[17]$, where $1<C<$ $243 / 205$. Let $\gamma=1 / C$. The number of primes of the form $\left[n^{C}\right], n \leq x$, is given by

$$
\begin{equation*}
\sum_{p \leq x}\left(\left\lfloor-p^{\gamma}\right]-\left[-(p+1)^{\gamma}\right]\right)+O(1) \tag{1.8}
\end{equation*}
$$

The sum in (1.8) counts the number of $p \leq x$ with $-p^{\gamma} \in J_{p}(\bmod 1)$, where $J_{p}=\left(1-\ell_{p}, 1\right)$ with $\ell_{p} \sim \gamma p^{\gamma-1}$.

In $[N, 2 N]$, there cannot be two primes $p<p_{1}$ with $p_{1}-p=O(1)$ and $p_{1}^{c}-p^{c}$ smaller $(\bmod 1)$ than N^{c-1}. For

$$
p_{1}^{c}-p^{c} \geq c p_{1}^{c-1}\left(p_{1}-p\right) \geq 2 c(2 N)^{c-1} .
$$

This explains the choice of exponent $c-1+\varepsilon$ in (1.7).
We now state results about clusters of primes with square-free translates in $\mathcal{A}_{1}(\phi), A_{2}(\alpha, \beta)$ and $\mathcal{A}_{3}(c, \varepsilon)$. We write C_{2}, C_{3}, \ldots for certain absolute constants.

Theorem 2. Let $t>1,7 / 12<\phi<1$. Let

$$
\psi= \begin{cases}\phi-11 / 20-\varepsilon & (7 / 12<\phi<3 / 5) \\ \phi-1 / 2-\varepsilon & (\phi \geq 3 / 5)\end{cases}
$$

For sufficiently large N, there is a set \mathcal{S} of t primes in $\mathcal{A}_{1}(\phi)$ such that

$$
\begin{equation*}
p-b \text { is squarefree }(p \in \mathcal{S}, b \in \mathcal{R}) \tag{1.9}
\end{equation*}
$$

and

$$
D(\mathcal{S})<\exp \left(C_{2} s \exp \left(\frac{2 t}{\psi}\right)\right)
$$

Theorem 3. Let $t>1$. Let α be an irrational number, $\alpha>1$ and let β be real. Let v be a sufficiently large integer such that

$$
\left|\alpha-\frac{u}{v}\right|<\frac{1}{v^{2}} \quad \text { for some } u \text { with }(u, v)=1 \text {. }
$$

For sufficiently large $N=v^{2}$, there is a set \mathcal{S} of t primes in $\mathcal{A}_{2}(\alpha, \beta)$ satisfying (1.9) and

$$
\begin{equation*}
D(\mathcal{S})<\exp \left(C_{3} \alpha s \exp (7.743 t)\right) \tag{1.10}
\end{equation*}
$$

Theorem 4. Let $t>1$. Let $8 / 9<c<1$ and let β be real. Let $0<\psi<(9 c-8) / 6$ and $\varepsilon>0$. Let $I=\left[\beta, \beta+N^{-1+c+\varepsilon}\right]$. For sufficiently large N, there is a set \mathcal{S} of t primes in $\mathcal{A}_{3}(c, \varepsilon)$ such that (1.9) holds, and

$$
\begin{equation*}
D(\mathcal{S})<\exp \left(C_{4} s t \exp \left(\frac{2 t}{\psi}\right)\right) \tag{1.11}
\end{equation*}
$$

We shall deduce these theorems from a general result of the same kind concerning a subset \mathcal{A} of $[N, 2 N]$ satisfying arithmetic regularity conditions (Theorem 5). In Section 2 we state Theorem 5 and explain the strategy of proof. Section 3 contains the proof of Theorem 5. In subsequent sections we deduce Theorems 1, 2, 3 and 4 from Theorem 5.

Note that Theorems 3 and 4 lead to conclusions of the form (1.3) both for \mathcal{B} a Beatty sequence and for

$$
\mathcal{B}=\left\{p: p \text { prime, }\left\{p^{c}-\beta\right\}<p^{-1+c+\varepsilon}\right\}
$$

(β real, $\frac{8}{9}<c<1$).

2. A general theorem on clusters of primes with square-free translates.

In the present section we suppose that t is fixed and N is sufficiently large, and write $\mathcal{L}=\log N$,

$$
D_{0}=\frac{\log N}{\log \log N}
$$

We denote by $\tau(n)$ and $\tau_{k}(n)$ the usual divisor functions. Let ε be a sufficiently small positive number. Let $X(E ; \ldots)$ denote the indicator function of a set E. Let

$$
P(z)=\prod_{p<z} p
$$

A set of integers $\mathcal{H}_{k}=\left\{h_{1}, \ldots, h_{k}\right\}, 0 \leq h_{1}<\cdots<h_{k}$ is said to be admissible if for every prime $p, \mathcal{H}_{k}(\bmod p)$ does not cover all residue classes $(\bmod p)$. An admissible set \mathcal{H}_{k} is said to be compatible with \mathcal{R} if

$$
\begin{equation*}
h_{m} \equiv 0 \quad\left(\bmod P^{2}\right) \quad(m=1, \ldots, k) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P:=P((s+1) k+1) \tag{2.2}
\end{equation*}
$$

and further

$$
\begin{equation*}
h_{i}-h_{j}+b \neq 0 \quad(i \neq j, b \in \mathcal{R}) . \tag{2.3}
\end{equation*}
$$

In the applications in Sections 4-6, it is not difficult to produce sets compatible with \mathcal{R} and which (in the case of Theorem 3) possess another useful property.

A few remarks will clarify the purpose of compatibility. For brevity, we say that $n-\mathcal{R}$ is square-free if $n-b$ is square-free for every $b \in \mathcal{R}$, and that $\mathcal{C}-\mathcal{R}$ is square-free if $n-\mathcal{R}$ is square-free for all $n \in \mathcal{C}$. Once we have fixed a suitable set \mathcal{A} in $[N, 2 N]$ and $t \in \mathbb{N}$, we show that for many n in \mathcal{A}, at least t of $n+h_{1}, \ldots, n+h_{k}$ are primes in \mathcal{A}. (We need k large, as a function of t.) Compatibility of \mathcal{H} with \mathcal{R} is now needed to show that only a few n in \mathcal{A} have $n+h-b$ not squarefree for some $h \in \mathcal{H}_{k}$ and $b \in \mathcal{B}$. Select a 'satisfactory' n and let \mathcal{S} be a set of t primes in $\left\{n+h_{1}, \ldots, n+h_{k}\right\}$; then $D(\mathcal{S}) \leq h_{k}-h_{1}$ and $\mathcal{S}-\mathcal{R}$ is square-free.

In the proof of Theorem 5, we use a smooth function F supported on

$$
\mathcal{E}_{k}:=\left\{\left(x_{1}, \ldots, x_{k}\right) \in[0,1]^{k}: \sum_{j=1}^{k} x_{j} \leq 1\right\}
$$

with a special property. Let

$$
\begin{aligned}
I_{k}(F) & :=\int_{0}^{1} \cdots \int_{0}^{1} F\left(t_{1}, \ldots, t_{k}\right)^{2} d t_{1} \ldots d t_{k} \\
J_{k}^{(m)}(F) & =\int_{0}^{1} \ldots \int_{0}^{1}\left(\int_{0}^{1} F\left(t_{1}, \ldots, d_{k}\right)^{2} d t_{m}\right) d t_{1} \ldots d t_{-1} d t_{m+1} \ldots d t_{k}
\end{aligned}
$$

for $1 \leq m \leq k$. We choose F so that

$$
\begin{equation*}
\sum_{m=1}^{k} J_{k}^{(m)}(F)>\left(\log k-C_{5}\right) I_{k}(F)>0 \tag{2.4}
\end{equation*}
$$

this is possible by [16, Theorem 3.9].
Let \mathbb{P} denote the set of prime numbers.
Theorem 5. Let $t>1$. Let \mathcal{H}_{k} be compatible with \mathcal{R}. Let $N \in \mathbb{N}, N>C_{0}\left(\mathcal{R}, \mathcal{H}_{k}\right)$. Let $N^{1 / 2} \mathcal{L}^{18 k} \leq M \leq N$ and let $\mathcal{A} \subset[N, N+M] \cap \mathbb{Z}$. Let θ be a constant, $0<\theta<3 / 4$. Let Y be a positive number,

$$
\begin{equation*}
N^{1 / 4} \max \left(N^{\theta}, \mathcal{L}^{9 k} M^{1 / 2}\right) \ll Y \ll M \tag{2.5}
\end{equation*}
$$

Let

$$
V(q):=\max _{a}\left|\sum_{n \equiv a(\bmod q)} X(\mathcal{A} ; n)-\frac{Y}{q}\right|
$$

Suppose that, for

$$
\begin{equation*}
1 \leq d \leq\left(M Y^{-1}\right)^{4} \max \left(\mathcal{L}^{36 k}, N^{4 \theta} M^{-2}\right) \tag{2.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{\substack{q \leq N^{\theta} \\(q, d)=1}} \mu^{2}(q) \tau_{3 k}(q) V(d q) \ll Y \mathcal{L}^{-k-\varepsilon} d^{-1} \tag{2.7}
\end{equation*}
$$

Suppose there is a function $\rho(n):[N, 2 N] \cap \mathbb{Z} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
X(\mathbb{P} ; n) \geq \rho(n) \quad(N \leq n \leq 2 N) \tag{2.8}
\end{equation*}
$$

and positive numbers Y_{1}, \ldots, Y_{k}, with

$$
\begin{equation*}
Y_{m}=Y\left(\kappa_{m}+o(1)\right) \mathcal{L}^{-1} \quad(1 \leq m \leq k) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\kappa_{m} \geq \kappa>0 \quad(1 \leq m \leq k) \tag{2.10}
\end{equation*}
$$

Suppose that $\rho(n)=0$ unless $\left(n, P\left(N^{\theta / 2}\right)\right)=1$, and

$$
\begin{equation*}
\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q) \max _{(a, q)=1}\left|\sum_{n \equiv a(\bmod q)} \rho(n) X\left(\left(\mathcal{A}+h_{m}\right) \cap \mathcal{A} ; n\right)-\frac{Y_{m}}{\phi(q)}\right| \ll Y \mathcal{L}^{-k-\varepsilon} \tag{2.11}
\end{equation*}
$$

for $1 \leq m \leq k$. Finally, suppose that

$$
\begin{equation*}
\log k-C_{5}>\frac{2 t-2}{\kappa \theta}+\varepsilon \tag{2.12}
\end{equation*}
$$

Then there is a set \mathcal{S} in $\mathbb{P} \cap \mathcal{A}$ such that $\mathcal{S}-\mathcal{R}$ is square-free and

$$
\# \mathcal{S}=t, \quad D(\mathcal{S}) \leq h_{k}-h_{1} .
$$

If $Y>N^{1 / 2+\varepsilon}$, the assertion of the theorem is also valid with (2.6) replaced by

$$
\begin{equation*}
1 \leq d \leq\left(M Y^{-1}\right)^{2} N^{2 \varepsilon} \tag{2.13}
\end{equation*}
$$

A few remarks may help here. Clearly \mathcal{A} has got to possess many translations $\mathcal{A}+h$ such that $\mathcal{A} \cap(\mathcal{A}+h)$ contains, to within a constant factor, as many primes as \mathcal{A}. This rules out some sets \mathcal{A} that we might wish to study, but does work in Theorems 2-4. The condition (2.11) is essentially a Bombieri-Vinogradov style theorem for primes in arithmetic progressions, and is usually much harder to establish for a given \mathcal{A} than the requirement (2.7) on integers in arithmetic progressions.

For the proof of Theorem 5, which we now outline, we introduce 'Maynard weights' $w_{n}(n \in \mathbb{N})$. Let $R=N^{\theta / 2-3}$ and $K=(s+1) k+1$. Let

$$
W_{1}=P^{2} \prod_{K<p \leq D_{0}} p
$$

We define weights $y_{\boldsymbol{r}}$ and $\lambda_{\boldsymbol{r}}$ as follows for $\boldsymbol{r}=\left(r_{1}, \ldots, r_{k}\right) \in \mathbb{N}^{k}: y_{\boldsymbol{r}}=\lambda_{\boldsymbol{r}}=0$ unless

$$
\begin{equation*}
\left(\prod_{i=1}^{k} r_{i}, W_{1}\right)=1, \mu^{2}\left(\prod_{i=1}^{k} r_{i}\right)=1 . \tag{2.14}
\end{equation*}
$$

If (2.14) holds, let

$$
\begin{equation*}
y_{\boldsymbol{r}}=F\left(\frac{\log r_{1}}{\log R}, \ldots, \frac{\log r_{k}}{\log R}\right) . \tag{2.15}
\end{equation*}
$$

Now $\lambda_{\boldsymbol{d}}$ is defined by

$$
\begin{equation*}
\lambda_{\boldsymbol{d}}=\prod_{i=1}^{k} \mu\left(d_{i}\right) d_{i} \sum_{\substack{\boldsymbol{r} \\ d_{i} \mid r_{i} \forall i}} \frac{y_{\boldsymbol{r}}}{\prod_{i=1}^{k} \phi\left(r_{i}\right)} . \tag{2.16}
\end{equation*}
$$

We pick a suitable integer $\nu_{0}=\nu_{0}(\mathcal{R}, \mathcal{H})$; see Section 3 for the details. For $n \equiv \nu_{0}$ $\left(\bmod W_{1}\right)$, let

$$
w_{n}=\left(\sum_{d_{i} \mid n+h_{i} \forall i} \lambda_{\boldsymbol{d}}\right)^{2} .
$$

For other $n \in \mathbb{N}$, let $w_{n}=0$. Let

$$
\begin{align*}
S_{1} & =\sum_{\substack{N \leq n<2 N \\
n \in \mathcal{A}}} w_{n}, \tag{2.17}\\
S_{2}(m) & =\sum_{\substack{N \leq n<2 N \\
n \in \mathcal{A} \cap\left(\mathcal{A}-h_{m}\right)}} w_{n} \rho\left(n+h_{m}\right) . \tag{2.18}
\end{align*}
$$

We shall obtain the asymptotic formulas

$$
\begin{align*}
S_{1} & =\frac{(1+o(1)) \phi\left(W_{1}\right)^{k} Y(\log R)^{k} I_{k}(F)}{W_{1}^{k+1}}, \tag{2.19}\\
S_{2}(m) & =\frac{(1+o(1)) \kappa_{m} \phi\left(W_{1}\right)^{k} Y(\log R)^{k+1} J_{k}^{(m)}(F)}{W_{1}^{k+1} \mathcal{L}} \tag{2.20}
\end{align*}
$$

as $N \rightarrow \infty$. To see how to make use of this, let us introduce a probability measure on \mathcal{A} defined by

$$
\begin{equation*}
\operatorname{Pr}\{n\}=\frac{w_{n}}{S_{1}} \quad(n \in \mathcal{A}) \tag{2.21}
\end{equation*}
$$

It is not a very long step from $(2.19),(2.20)$ to show that

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{m=1}^{k} X\left(\mathbb{P} \cap \mathcal{A} ; n+h_{m}\right) \geq t\right)>\varepsilon / k \tag{2.22}
\end{equation*}
$$

We will now reach our goal by showing that

$$
\begin{equation*}
\operatorname{Pr}\left(n+h_{m}-b_{\ell} \text { is not squarefee }\right) \ll D_{0}^{-1} \tag{2.23}
\end{equation*}
$$

for given $h_{m} \in \mathcal{H}_{k}$ and $b_{\ell} \in \mathcal{R}$. For then there is a probability greater than $\varepsilon / 2 k$ that at least t of $n+h_{1}, \ldots, n+h_{k}$ are primes p in \mathcal{A} for which $p-\mathcal{R}$ is squarefree.

To obtain (2.23), we give upper bounds for the quantities

$$
\begin{equation*}
\Omega(p):=\sum\left\{w_{n}: n \in \mathcal{A}, p^{2} \mid n+h_{m}-b_{\ell}\right\} \quad(p \in \mathbb{P}) \tag{2.24}
\end{equation*}
$$

Our choice of ν_{0} will show at once that

$$
\begin{equation*}
\Omega(p)=0 \quad\left(p \leq D_{0}\right) \tag{2.25}
\end{equation*}
$$

Primes p in $\left(D_{0}, B\right]$, for a suitable B, are treated by an analysis similar to the discussion of S_{1}. Then we 'aggregate' primes $p>B$ by bounding

$$
\begin{equation*}
S_{m, \ell}:=\sum_{\substack{n \in \mathcal{A} \\ p^{2} \mid n+h_{m}-b_{\ell}(\text { some } p>B)}} w_{n} \tag{2.26}
\end{equation*}
$$

to reach (2.23).
We retain the notations introduced in this section in Section 3, where the above outline is filled out to a complete proof of Theorem 5 .

3. Proof of Theorem 5

We first show that there is an integer ν_{0} with

$$
\begin{gather*}
\left(\nu_{0}+h_{m}, W_{1}\right)=1 \quad(1 \leq m \leq k) \tag{3.1}\\
p^{2} \nmid \nu_{0}+h_{m}-b_{\ell} \quad(p \leq K, 1 \leq \ell \leq s, 1 \leq m \leq k) \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
p \nmid \nu_{0}+h_{m}-b_{\ell} \quad\left(K<p \leq D_{0}, 1 \leq \ell \leq s, 1 \leq m \leq k\right) . \tag{3.3}
\end{equation*}
$$

By the Chinese remainder theorem, it suffices to specify $\nu_{0}\left(\bmod p^{2}\right)$ for $p \leq K$ and $\nu_{0}(\bmod p)$ for $K<p \leq D_{0}$. We use $h_{j} \equiv 0\left(\bmod p^{2}\right)(p \leq K)$. The property (3.1) reduces to

$$
\begin{equation*}
\nu_{0} \not \equiv 0 \quad(\bmod p) \quad(p \leq K) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{0}+h_{m} \not \equiv 0 \quad(\bmod p) \quad\left(K<p \leq D_{0}, 1 \leq m \leq k\right) \tag{3.5}
\end{equation*}
$$

We define $b_{0}=0$. Now (3.2), (3.3), (3.4), (3.5) can be rewritten as

$$
\begin{gather*}
\nu_{0} \not \equiv 0 \quad(\bmod p), \nu_{0} \not \equiv b_{\ell} \quad\left(\bmod p^{2}\right) \quad(p \leq K, 1 \leq \ell \leq s), \tag{3.6}\\
\nu_{0}+h_{m}-b_{\ell} \not \equiv 0(\bmod p)\left(K<p \leq D_{0}, 0 \leq \ell \leq s, 1 \leq m \leq k\right) . \tag{3.7}
\end{gather*}
$$

For (3.6), we select ν_{0} in a reduced residue class $\left(\bmod p^{2}\right)$ not occupied by b_{ℓ} $(1 \leq \ell \leq s)$. For (3.7), we observe that ν_{0} can be chosen from the $p-1$ reduced residue classes $(\bmod p)$, avoiding at most $(s+1) k$ classes, since $p-1>(s+1) k$.

To save space, we refer to arguments in $[3,13,14]$ in our proof.
Exactly as in the proof of [3, Proposition 1] with $q_{0}=1, W_{2}=W_{1}$, we find that the asymptotic formulas (2.19), (2.20) hold as $N \rightarrow \infty$. (The value of W_{1} in [3] is $\prod_{p \leq D_{0}} p$, but this does not affect the proof.)

Exactly as in [3] following the statement of Proposition 2, we derive from (2.19), (2.20), (2.8), (2.4), (2.12), the inequality

$$
\begin{equation*}
\sum_{m=1}^{k} \sum_{n \in \mathcal{A}} w_{n} X\left(\mathbb{P} \cap \mathcal{A}, n+h_{m}\right)>(t-1+\varepsilon) \sum_{n \in \mathcal{A}} w_{n} \tag{3.8}
\end{equation*}
$$

Writing $\mathbb{E}[\cdot]$ for expectation for the probability measure $\operatorname{Pr}\{n\}$, (3.8) becomes

$$
\mathbb{E}\left[\sum_{m=1}^{k} X\left(\mathbb{P} \cap \mathcal{A} ; n+h_{m}\right)\right]>t-1+\varepsilon .
$$

It is easy to deduce that

$$
\operatorname{Pr}\left(\sum_{m=1}^{k} X\left(\mathbb{P} \cap \mathcal{A} ; n+h_{m}\right) \geq t\right)>\frac{\varepsilon}{k} .
$$

As explained above, it remains to prove (2.23) for a given pair m, ℓ.
The upper bound

$$
\begin{equation*}
\sum_{\substack{N \leq n<N+M \\ n \equiv \nu_{0}\left(\bmod W_{1}\right)}} w_{n}^{2} \ll \mathcal{L}^{19 k} \frac{M}{W_{1}}+N^{2 \theta} \tag{3.9}
\end{equation*}
$$

can be proved in exactly the same way as [13, (3.10)].
Let

$$
B=\left(M Y^{-1}\right)^{2} \max \left(\mathcal{L}^{18 k}, N^{2 \theta} M^{-1}\right)
$$

Clearly

$$
\operatorname{Pr}\left(n+h_{m}-b_{\ell} \text { is not square-free }\right) \leq \frac{1}{S_{1}}\left(\sum_{p \leq B} \Omega(p)+S_{m, \ell}\right) .
$$

To obtain (2.23) we need only show that

$$
\begin{equation*}
\sum_{p \leq B} \Omega(p) \ll \frac{\phi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{W_{1}^{k+1} D_{0}} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{m, \ell} \ll \frac{\phi\left(W_{1}\right)^{k} Y \mathcal{L}^{k}}{W_{1}^{k+1} D_{0}} \tag{3.11}
\end{equation*}
$$

From (3.1)-(3.3), $\Omega(p)=0$ for $p \leq D_{0}$. Take $D_{0}<p \leq B$. We have

$$
\begin{equation*}
\Omega(p)=\sum_{\boldsymbol{d}, \boldsymbol{e}} \lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}} \sum_{\substack{n \in \mathcal{A} \\ n \equiv \nu_{0}\left(\bmod W_{1}\right) \\ n \equiv b_{\ell}-h_{m}\left(\bmod p^{2}\right) \\ n \equiv-h_{i}\left(\bmod \left[d_{i}, e_{i}\right]\right) \forall i}} 1 \tag{3.12}
\end{equation*}
$$

Fix $\boldsymbol{d}, \boldsymbol{e}$ with $\lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}} \neq 0$. The inner sum in (3.12) is empty if $\left(d_{i}, e_{j}\right)>1$ for a pair i, j with $i \neq j$ (compare [3, §2]). The inner sum is also empty if $p \mid\left[d_{i}, e_{i}\right]$ since then

$$
p \mid n+h_{i}-\left(n+h_{m}-b_{\ell}\right)=h_{m}-h_{i}-b_{\ell}
$$

which is absurd, since $h_{m}-h_{i}-b_{\ell}$ is bounded and is nonzero by hypothesis.
We may now replace (3.12) by

$$
\begin{equation*}
\Omega(p)=\sum_{\substack{\boldsymbol{d}, \boldsymbol{e} \\\left(d_{i}, p\right)=\left(e_{i}, p\right)=1 \forall i}}^{\prime} \lambda_{\boldsymbol{d}} \lambda_{e}\left\{\frac{Y}{p^{2} W_{1} \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}+O\left(V\left(p^{2} W_{1} \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]\right)\right)\right\} \tag{3.13}
\end{equation*}
$$

where \sum^{\prime} denotes a summation restricted by: $\left(d_{i}, e_{j}\right)=1$ whenever $i \neq j$. Expanding the right-hand side of (3.13), we obtain a main term of the shape estimated in

Lemma 2.5 of [14]. The argument there gives

$$
\sum_{\substack{\boldsymbol{d}, \boldsymbol{e} \\\left(d_{i}, p\right)=\left(e_{i}, p\right)=1 \forall i}}^{\prime} \frac{\lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}=\sum_{\boldsymbol{d}, \boldsymbol{e}}^{\prime} \frac{\lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}+O\left(\frac{1}{p}\left(\frac{\phi(W)}{W} \mathcal{L}\right)^{k}\right)
$$

uniformly for $p>D_{0}$. As already alluded to above in the discussion of S_{1}, the behavior of the main term here can be read out of the proof of [3, Proposition 1]. Collecting our estimates, we find that

$$
\sum_{\substack{\boldsymbol{d}, \boldsymbol{e} \\\left(d_{i}, p\right)=\left(e_{i}, p\right)=1 \forall i}}^{\prime} \frac{\lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}}}{\prod_{i=1}^{k}\left[d_{i}, e_{i}\right]}=\frac{\phi\left(W_{1}\right)^{k}}{W_{1}^{k}}(\log R)^{k} I_{k}(F)(1+o(1)) .
$$

Clearly this gives

$$
\sum_{D_{0}<p \leq B} \Omega(p) \ll \frac{Y \phi\left(W_{1}\right)^{k}}{W_{1}^{k+1}} \mathcal{L}^{k} \sum_{p>D_{0}} p^{-2}+\left(\max _{\boldsymbol{d}}\left|\lambda_{\boldsymbol{d}}\right|\right)^{2} \sum_{D_{0}<p \leq B} \sum_{\ell \leq R^{2} W_{1}} \mu^{2}(\ell) \tau_{3 k}(\ell) V\left(p^{2} \ell\right)
$$

(We use (3.13) along with a bound for the number of occurrences of ℓ as $W_{1} \prod_{i=1}^{k}\left[d_{i}, e_{i}\right]$.)
It is not difficult to see that $\lambda_{\boldsymbol{d}} \ll \mathcal{L}^{k}$ (compare [11], (5.9)). On an application of
(2.7) with $d=p^{2}$ satisfying (2.6), we obtain the bound (3.10).

Let $\sum_{n ;(3.14)}$ denote a summation over n with

$$
\begin{equation*}
N \leq n<N+M, n \equiv \nu_{0}\left(\bmod W_{1}\right), p^{2} \mid n+h_{m}-b_{\ell}(\text { some } p>B) \tag{3.14}
\end{equation*}
$$

Cauchy's inequality gives

$$
\begin{aligned}
S_{m, \ell} & \leq \sum_{n ;(3.14)} w_{n} \\
& \leq\left(\sum_{n ;(3.14)} 1\right)^{1 / 2}\left(\sum_{\substack{n=\nu_{0}\left(\bmod W_{1}\right) \\
N \leq n<N+M}} w_{n}^{2}\right)^{1 / 2} \\
& \ll\left(\sum_{B<p \leq(3 N)^{1 / 2}}\left(\frac{M}{p^{2} W_{1}}+1\right)\right)^{1 / 2}\left(\frac{M^{1 / 2}}{W_{1}^{1 / 2}} \mathcal{L}^{19 k / 2}+N^{\theta}\right)
\end{aligned}
$$

(by (3.9))

$$
\ll \frac{M \mathcal{L}^{19 k / 2}}{W_{1} B^{1 / 2}}+\frac{N^{\theta} M^{1 / 2}}{W_{1}^{1 / 2} B^{1 / 2}}+\frac{M^{1 / 2} N^{1 / 4} \mathcal{L}^{19 k / 2}}{W_{1}^{1 / 2}}+N^{\frac{1}{4}+\theta} .
$$

To complete the proof we verify (disregarding W_{1}) that each of these four terms is $\ll Y \mathcal{L}^{k-1 / 2}$. We have

$$
M \mathcal{L}^{19 k / 2} B^{-1 / 2}\left(Y \mathcal{L}^{k-1 / 2}\right)^{-1} \ll 1
$$

since $B \geq \mathcal{L}^{18 k}\left(M Y^{-1}\right)^{2}$. We have

$$
N^{\theta} M^{1 / 2} B^{-1 / 2}\left(Y \mathcal{L}^{k-1 / 2}\right)^{-1} \ll 1
$$

since $B \geq\left(M Y^{-1}\right)^{2} N^{2 \theta} M^{-1}$. We have

$$
M^{1 / 2} N^{1 / 4} \mathcal{L}^{19 k / 2}\left(Y \mathcal{L}^{k-1 / 2}\right)^{-1} \ll 1
$$

since $Y \gg N^{1 / 4} \mathcal{L}^{9 k} M^{1 / 2}$. Finally,

$$
N^{1 / 4+\theta}\left(Y \mathcal{L}^{k-1 / 2}\right)^{-1} \ll 1
$$

since $Y \gg N^{\theta+1 / 4}$. This completes the proof of the first assertion of Theorem 5 .
Now suppose $Y>N^{\frac{1}{2}+\varepsilon}$. We can replace B by $B_{1}:=\left(M Y^{-1}\right) N^{\varepsilon}$ throughout, and at the last stage of the proof use the bound

$$
\begin{equation*}
S_{m, \ell} \leq w \sum_{\substack{N \leq n \leq N+M \\ p^{2} \mid n+h_{m}-b_{\ell} \\\left(\text { some } p>B_{1}\right)}} 1 \tag{3.15}
\end{equation*}
$$

where

$$
w:=\max _{n} w_{n}
$$

Now

$$
w=\sum_{\left[d_{i}, e_{i}\right] \mid n_{1}+h_{i} \forall i} \lambda_{\boldsymbol{d}} \lambda_{\boldsymbol{e}}
$$

for some choice of $n_{1} \leq N+M$. The number of possibilities for $d_{1}, e_{1}, \ldots, d_{k}, e_{k}$ in this sum is $\ll N^{\varepsilon / 3}$. Hence (3.15) yields

$$
\begin{aligned}
S_{m, \ell} & \ll N^{\varepsilon / 2} \sum_{B_{1}<p \leq 3 N^{1 / 2}}\left(\frac{M}{p^{2}}+1\right) \\
& \ll \frac{N^{\varepsilon / 2} M}{B_{1}}+N^{1 / 2+\varepsilon / 2} \ll Y \mathcal{L}^{k-1 / 2}
\end{aligned}
$$

The second assertion of Theorem 5 follows from this.

4. Proof of Theorems 2 and 3.

We begin with Theorem 2, taking $\kappa=\kappa_{m}=1, \rho(n)=X(\mathbb{P} ; n), M=Y=N^{\phi}$, $Y_{m}=\int_{N}^{N+M} \frac{d t}{\log t}$. By results of Timofeev [19], we find that (2.11) holds with $\theta=\psi$. Since $2 \psi<\phi$, the range of d given by (2.6) is

$$
\begin{equation*}
d \ll \mathcal{L}^{36 k} \tag{4.1}
\end{equation*}
$$

Now (2.7) is a consequence of the elementary bound $V(m) \ll 1$.
Turning to the construction of a compatible set \mathcal{H}_{k}, let $L=2(k-1) s+1$. Take the first L primes $q_{1}<\cdots<q_{L}$ greater than L. Select $q_{1}^{\prime}=q_{1}, q_{2}^{\prime}, \ldots, q_{k}^{\prime}$ recursively from $\left\{q_{1}, \ldots, q_{L}\right\}$ so that q_{j} satisfies

$$
\begin{equation*}
P^{2} q_{j}^{\prime} \neq P^{2} q_{i}^{\prime} \pm b_{\ell} \quad(1 \leq i \leq j-1,1 \leq \ell \leq s) \tag{4.2}
\end{equation*}
$$

a choice which is possible since $L>2(j-1) s$. Now $\mathcal{H}_{k}=\left\{P^{2} q_{1}^{\prime}, \ldots, P^{2} q_{k}^{\prime}\right\}$ is an admissible set compatible with \mathcal{R}. The set \mathcal{S} given by Theorem 5 satisfies

$$
D(\mathcal{S}) \leq P^{2}\left(q_{L}-q_{1}\right) \ll \exp (O(k s))
$$

As for the choice of k, the condition (2.12) is satisfied when

$$
k=\left\lceil\exp \left(\frac{2 t}{\psi}+C_{5}\right)\right\rceil+1
$$

Theorem 2 follows at once.
For Theorem 3, we adapt the proof of [3, Theorem 3]. Let $\gamma=\alpha^{-1}, N=M=$ v^{2} and $\theta=\frac{2}{7}-\varepsilon$. We take

$$
\mathcal{A}=\{n \in[N, 2 N): n=\lfloor\alpha m+\beta\rfloor \text { for some } m \in \mathbb{N}\} \quad \text { and } \quad Y=\gamma N
$$

We find as in [3] that

$$
\mathcal{A}=\{n \in[N, 2 N): \gamma n \in I(\bmod 1)\}
$$

where $I=(\gamma \beta-\gamma, \gamma \beta]$. The properties that we shall enforce in constructing h_{1}, \ldots, h_{k} are
(i) h_{1}, \ldots, h_{k} is compatible with \mathcal{R};
(ii) we have $h_{m}=h_{m}^{\prime}+h(1 \leq m \leq k)$, where $h \gamma \in(\eta-\varepsilon \gamma, \eta)(\bmod 1)$ and

$$
-\gamma h_{m}^{\prime} \in(\eta, \eta+\varepsilon \gamma)(\bmod 1) \text { for some real } \eta
$$

(iii) we have

$$
\log k-C_{5}>\frac{2 t-2}{0.90411\left(\frac{2}{7}-\varepsilon\right)}
$$

The condition (ii) gives us enough information to establish (2.11); here we follow [3] verbatim, using the function $\rho=\rho_{1}+\rho_{2}+\rho_{3}-\rho_{4}-\rho_{5}$ in [3, Lemma 18], and taking κ slightly larger than 0.90411 in (2.10).

Turning to (2.7), with the range of d as in (4.1), we may deduce this bound from [3, Lemma 12] with $M=d, a_{m}=1$ for $m=d, a_{m}=0$ otherwise, $Q \leq N^{2 / 7-\varepsilon}$, $K=N / d$ and $H=\mathcal{L}^{A+1}$. This requires an examination of the reduction to mixed sums in [3, Section 5].

It remains to obtain h_{1}, \ldots, h_{k} satisfying (i)-(iii) above. We use the following lemma.
Lemma 1. Let I be an interval of length $\nu, 0<\nu<1$. Let x_{1}, \ldots, x_{J} be real and a_{1}, \ldots, a_{J} positive.
(a) There exists z such that

$$
\#\left\{j \leq J: x_{j} \in z+I(\bmod 1)\right\} \geq J \nu
$$

(b) For any $L \in \mathbb{N}$, we have

$$
\left|\sum_{\substack{j=1 \\ x_{j} \in I(\bmod 1)}}^{J} a_{j}-\nu \cdot \sum_{j=1}^{J} a_{j}\right| \leq \frac{1}{L+1} \sum_{j=1}^{J} a_{j}+2 \sum_{m=1}^{L}\left(\frac{1}{L+1}+\nu\right)\left|\sum_{j=1}^{J} a_{j} e\left(m x_{j}\right)\right| .
$$

Proof. We leave (a) as an exercise. Let $T_{1}(\theta)=\sum_{m=-L}^{L} \widehat{T}_{1}(m) e(m \theta)$ be the trigonometric polynomial in [1, Lemma 2.7]. We obtain (b) by a simple modification of the proof of [1], Theorem 2.1 on revising the upper bound for $\left|\widehat{T}_{1}(m)\right|$:

$$
\left|\widehat{T}_{1}(m)\right| \leq \frac{1}{L+1}+\frac{|\sin \pi \nu m|}{\pi m} \leq \frac{1}{L+1}+\nu
$$

Now let ℓ be the least integer with

$$
\begin{equation*}
\log (\varepsilon \gamma \ell) \geq \frac{2 t-2}{0.90411\left(\frac{2}{7}-\varepsilon\right)}+C_{5} \tag{4.3}
\end{equation*}
$$

and let $L=2(\ell-1) s+1$. As above, select primes $q_{1}^{\prime}, \ldots, q_{\ell}^{\prime}$ from q_{1}, \ldots, q_{L} so that (4.2) holds. Applying Lemma 1, choose $h_{1}^{\prime}, \ldots, h_{k}^{\prime}$ from $\left\{P^{2} q_{1}^{\prime}, \ldots, P^{2} q_{\ell}^{\prime}\right\}$ so that, for some real η,

$$
-\gamma h_{m}^{\prime} \in(\eta, \eta+\varepsilon \gamma) \quad(\bmod 1) \quad(m=1, \ldots, k)
$$

and

$$
\begin{equation*}
k \geq \varepsilon \gamma \ell \tag{4.4}
\end{equation*}
$$

We combine (4.3), (4.4) with (2.12) to obtain (iii). Now there is a bounded h, $h \equiv 0\left(\bmod P^{2}\right)$, with

$$
\gamma h \in(\eta-\varepsilon \gamma, \eta) \quad(\bmod 1)
$$

This follows from Lemma 1 with $x_{j}=j P^{2} \gamma$, since

$$
\sum_{j=1}^{J} e\left(m j P^{2} \gamma\right) \ll \frac{1}{\left\|m P^{2} \gamma\right\|}
$$

We now have (i), (ii) and (iii). Theorem 5 yields the required set of primes \mathcal{S} with

$$
D(\mathcal{S}) \leq P^{2}\left(q_{L}-q_{1}\right) \ll \exp (O(\ell s))
$$

and the desired bound (1.10) follows from the choice of ℓ. This completes the proof of Theorem 3 .

5. Lemmas for the proof of Theorem 4

We begin by extending a theorem of Robert and Sargos [18] (essentially, their result is the case $Q=1$ of Lemma 2).
Lemma 2. Let $H \geq 1, N \geq 1, M \geq 1, Q \geq 1, X \gg H N$. For $H<h \leq 2 H$, $N<n \leq 2 N, M<m \leq 2 M$ and the characters $\chi(\bmod q), 1 \leq q \leq Q$, let $a(h, n, q, \chi)$ and $g(m)$ be complex numbers,

$$
|a(h, n, q, \chi)| \leq 1, \quad|g(m)| \leq 1
$$

Let α, β, γ be fixed real numbers, $\alpha(\alpha-1) \beta \gamma \neq 0$. Let

$$
S_{0}(\chi)=\sum_{H<h \leq 2 H} \sum_{N<n \leq 2 N} a(h, n, q, \chi) \sum_{M<m \leq 2 M} g(m) \chi(m) e\left(\frac{X h^{\beta} n^{\gamma} m^{\alpha}}{H^{\beta} N^{\gamma} M^{\alpha}}\right) .
$$

Then

$$
\begin{aligned}
& \sum_{q \leq Q} \sum_{\chi(\bmod q)}\left|S_{0}(\chi)\right| \\
& \ll(H M N)^{\varepsilon}\left(Q^{2} H N M^{\frac{1}{2}}+Q^{3 / 2} H N M\left(\frac{X^{\frac{1}{4}}}{(H N)^{\frac{1}{4}} M^{\frac{1}{2}}}+\frac{1}{(H N)^{\frac{1}{4}}}\right)\right)
\end{aligned}
$$

Proof. By Cauchy's inequality,

$$
\begin{aligned}
& \left|S_{0}(\chi)\right|^{2} \\
& \quad \leq H N \sum_{H<h \leq 2 H} \sum_{N<n \leq 2 N} \sum_{\substack{M<m_{1} \leq 2 M \\
M<m_{2} \leq 2 M}} g\left(m_{1}\right) \overline{g\left(m_{2}\right)} \chi\left(m_{1}\right) \overline{\chi\left(m_{2}\right)} e\left(X u(h, n) v\left(m_{1}, m_{2}\right)\right),
\end{aligned}
$$

with

$$
u(h, n)=\frac{h^{\beta} n^{\gamma}}{H^{\beta} N^{\gamma}}, \quad v\left(m_{1}, m_{2}\right)=\frac{m_{1}^{\alpha}-m_{2}^{\alpha}}{M^{\alpha}} .
$$

Summing over χ,

$$
\begin{aligned}
& \sum_{\chi(\bmod q)}\left|S_{0}(\chi)\right|^{2} \\
& \quad \leq H N \sum_{H<h \leq 2 H} \sum_{N<n \leq 2 N} \phi(q) \sum_{\substack{M<m_{1} \leq 2 M \\
M<m_{2} \leq 2 M \\
m_{1} \equiv m_{2}(\bmod q)}} g\left(m_{1}\right) \overline{g\left(m_{2}\right)} e\left(X u(h, n) v\left(m_{1}, m_{2}\right)\right) .
\end{aligned}
$$

Separating the contribution from $m_{1}=m_{2}$, and summing over q,

$$
\sum_{q \leq Q} \sum_{\chi(\bmod q)}\left|S_{0}(\chi)\right|^{2} \leq H^{2} N^{2} M \sum_{q \leq Q} \phi(q)+S_{1}
$$

where
$S_{1}=C(\varepsilon) M^{\varepsilon} Q H N \sum_{H<h \leq 2 H} \sum_{N<n \leq 2 N} \sum_{\substack{M<m_{1} \leq 2 M \\ M<m_{2} \leq 2 M}} w\left(m_{1}, m_{2}\right) e\left(X u(h, n) v\left(m_{1}, m_{2}\right)\right)$,
with

$$
w\left(m_{1}, m_{2}\right)= \begin{cases}0 & \text { if } m_{1}=m_{2}, \\ \sum_{q \leq Q} \sum_{m_{1}-m_{2}=q n, n \in \mathbb{Z}} \frac{g\left(m_{1}\right) \overline{g\left(m_{2}\right)} \phi(q)}{C(\varepsilon) M^{\varepsilon} Q} & \text { if } m_{1} \neq m_{2} .\end{cases}
$$

Note that

$$
\left|w\left(m_{1}, m_{2}\right)\right| \leq 1
$$

for all m_{1}, m_{2} if $C(\varepsilon)$ is suitably chosen.
We now apply the double large sieve to S_{1} exactly as in [18, (6.5)]. Using the upper bounds given in [18], we have

$$
S_{1} \ll M^{\varepsilon} Q H N X^{1 / 2} \mathcal{B}_{1}^{1 / 2} \mathcal{B}_{2}^{1 / 2}
$$

where

$$
\begin{aligned}
\mathcal{B}_{1}=\sum_{\substack{h_{1}, n_{1}, h_{2}, n_{2} \\
\left|u\left(h_{1}, n_{1}\right)-u\left(h_{2}, n_{2}\right)\right| \leq 1 / X \\
H<h_{i} \leq 2 H, N<N<n_{i} \leq 2 N}} 1 & \ll(H N)^{2+\varepsilon}\left(\frac{1}{H N}+\frac{1}{X}\right) \\
& \ll(H N)^{1+\varepsilon},
\end{aligned}
$$

and

$$
\mathcal{B}_{2}=\sum_{\substack{\left.m_{1}, m_{2}, m_{3}, m_{4}\right) \\ \mid v\left(m_{1}, m_{2}\right)-v\left(m_{3}, m_{4}\right) \leq 1 / X \\ M<m_{i} \leq 2 M(1 \leq i \leq 4)}} 1 \ll M^{4+\varepsilon}\left(\frac{1}{M^{2}}+\frac{1}{X}\right) .
$$

Hence

$$
\sum_{q \leq Q} \sum_{\chi(\bmod q)}\left|S_{0}(\chi)\right|^{2} \ll Q^{2} H^{2} N^{2} M+(M H N)^{2+2 \varepsilon} Q\left(\frac{X^{1 / 2}}{\left(H N M^{2}\right)^{1 / 2}}+\frac{1}{(H N)^{1 / 2}}\right)
$$

Lemma 2 follows on an application of Cauchy's inequality.
Lemma 3. Fix $c, 0<c<1$. Let $h \geq 1, m \geq 1, K>1, K^{\prime} \leq 2 K$,

$$
S=\sum_{K<k \leq K^{\prime}, m k \equiv u(\bmod q)} e\left(h(m k)^{c}\right) .
$$

Then for any q, u,

$$
S \ll\left(h m^{c} K^{c}\right)^{1 / 2}+K\left(h m^{c} K^{c}\right)^{-1 / 2} .
$$

Proof. We write S in the form

$$
\begin{aligned}
S & =\frac{1}{q} \sum_{K<k \leq K^{\prime}} \sum_{r=1}^{q} e\left(\frac{r(m k-u)}{q}+h(m k)^{c}\right) \\
& =\frac{1}{q} \sum_{r=1}^{q} e\left(-\frac{u r}{q}\right) \sum_{K<k \leq K^{\prime}} e\left(\frac{r m k}{q}+h(m k)^{c}\right),
\end{aligned}
$$

and apply [9, Theorem 2.2] to each sum over k.

6. Proof of Theorem 4

Throughout this section, fix $c \in\left(\frac{8}{9}, 1\right)$ and define, for an interval I of length $|I|<1$,

$$
\mathcal{A}(I)=\left\{n \in[N, 2 N): n^{c} \in I \quad(\bmod 1)\right\} .
$$

We choose \mathcal{H}_{k} compatible with \mathcal{R} as in the proof of Theorem 2 , so that

$$
h_{k}-h_{1} \ll \exp (O(k s))
$$

We apply the second assertion of Theorem 5 with

$$
M=N, \quad Y=N^{c+\varepsilon}, \quad \kappa=1, \quad \rho(n)=X(\mathbb{P} ; n) .
$$

We define θ by

$$
\theta=\frac{9 c-8}{6}-\varepsilon,
$$

and we choose $k=\left\lceil\exp \left(\frac{2 t-2}{\theta}+C_{5}\right)\right\rceil+1$, so that (2.12) holds. By our choice of θ, the range in (2.13) is contained in

$$
\begin{equation*}
1 \leq d \leq N^{2-2 c} \tag{6.1}
\end{equation*}
$$

It remains to verify (2.7) and (2.11) for a fixed h_{m}. We consider (2.11) first.
The set $\left(\mathcal{A}+h_{m}\right) \cap \mathcal{A}$ consists of those n in $[N, 2 N)$ with

$$
n^{c}-\beta \in\left[0, N^{-1+c+\varepsilon}\right)(\bmod 1),\left(n+h_{m}\right)^{c}-\beta \in\left[0, N^{-1+c+\varepsilon}\right)(\bmod 1)
$$

Since

$$
\left(n+h_{m}\right)^{c}=n^{c}+O\left(N^{c-1}\right) \quad(N \leq n<2 N),
$$

we have

$$
\begin{equation*}
\mathcal{A}\left(I_{2}\right) \subset\left(\mathcal{A}+h_{m}\right) \cap \mathcal{A} \subset \mathcal{A}\left(I_{1}\right) \tag{6.2}
\end{equation*}
$$

where, for a given A,

$$
\begin{aligned}
& I_{1}=\left[\beta, \beta+N^{-1+c+\varepsilon}\right) \\
& I_{2}=\left[\beta, \beta+N^{-1+c+\varepsilon}\left(1-\mathcal{L}^{-A-3 k}\right)\right) .
\end{aligned}
$$

By a standard partial summation argument it will suffice to show that, for any choice of u_{q} relatively prime to q,

$$
\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|\sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}}\left(\Lambda(n) X\left(\left(\mathcal{A}+h_{m}\right) \cap \mathcal{A} ; n\right)-N^{-1+c+\varepsilon} \frac{q}{\phi(q)}\right)\right| \ll Y \mathcal{L}^{-A}
$$

for $N^{\prime} \in[N, 2 N)$. (The implied constant here and below may depend on A.) In view of (6.2), we need only show that for any $A>0$,

$$
\begin{equation*}
\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|\sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}}\left(\Lambda(n) X\left(\mathcal{A}\left(I_{j}\right) ; n\right)-N^{-1+c+\varepsilon} \frac{q}{\phi(q)}\right)\right| \ll Y \mathcal{L}^{-A}(j=1,2) \tag{6.3}
\end{equation*}
$$

The sum in (6.3) is bounded by $\sum_{1}+\sum_{2}$, where

$$
\sum_{1}=\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|\sum_{\substack{n \equiv u_{q}(\bmod q) \\ n^{c} \in I_{j}(\bmod 1) \\ N \leq n<N^{\prime}}} \Lambda(n)-N^{-1+c+\varepsilon} \sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}} \Lambda(n)\right|
$$

and

$$
\sum_{2}=N^{-1+c+\varepsilon} \sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|\sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}}\left(\Lambda(n)-\frac{q}{\phi(q)}\right)\right|
$$

Deploying the Cauchy-Schwarz inequality in the same way as in [11, (5.20)], it follows from the Bombieri-Vinogradov theorem that

$$
\sum_{2} \ll N^{c+\varepsilon} \mathcal{L}^{-A}
$$

Moreover,

$$
\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|N^{-1+c+\varepsilon} \sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}} \Lambda(n)-\left|I_{j}\right| \sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}} \Lambda(n)\right| \ll N^{c+\varepsilon} \mathcal{L}^{-A}
$$

(trivially for $j=1$, and by the Brun-Titchmarsh inequality for $j=2$). Thus it remains to show that

$$
\sum_{q \leq N^{\theta}} \mu^{2}(q) \tau_{3 k}(q)\left|\sum_{\substack{n \equiv u_{q}(\bmod q) \\ n^{c} \in I_{j}(\bmod 1) \\ N \leq n<N^{\prime}}} \Lambda(n)-\left|I_{j}\right| \sum_{\substack{n \equiv u_{q}(\bmod q) \\ N \leq n<N^{\prime}}} \Lambda(n)\right| \ll N^{c+\varepsilon} \mathcal{L}^{-A}
$$

Let $H=N^{1-c-\varepsilon} \mathcal{L}^{A+3 k}$. We apply Lemma 1 , with $a_{j}=\Lambda(N+j-1)$ for $N+j-$ $1 \equiv u_{q}(\bmod q)$ and $a_{j}=0$ otherwise, and $L=H$. Using the Brun-Titchmarsh inequality, we find that

$$
\begin{aligned}
& \sum_{\substack{n \equiv u_{q}(\bmod q) \\
n^{c} \in I_{j}(\bmod 1) \\
N \leq n<N^{\prime}}} \Lambda(n)-\left|I_{j}\right| \\
& \sum_{\substack{n \equiv u_{q}(\bmod q) \\
N \leq n<N^{\prime}}} \Lambda(n) \mid \\
& \ll \frac{N^{c+\varepsilon}}{\phi(q)} \mathcal{L}^{-A-3 k}+N^{-1+c+\varepsilon} \sum_{1 \leq h \leq H}\left|\sum_{\substack{N \leq n<N^{\prime} \\
n \equiv u_{q}(\bmod q)}} \Lambda(n) e\left(h n^{c}\right)\right| .
\end{aligned}
$$

Recalling the upper estimate $\tau_{3 k}(q) \ll N^{\varepsilon / 20}$ for $q \leq N^{\theta}$, it suffices to show that

$$
\sum_{q \leq N^{\theta}} \sum_{1 \leq h \leq H} \sigma_{q, h} \sum_{\substack{N \leq n<N^{\prime} \\ n \equiv u_{q}(\bmod q)}} \Lambda(n) e\left(h n^{c}\right) \ll N^{1-\varepsilon / 10}
$$

for complex numbers $\sigma_{q, h}$ with $\left|\sigma_{q, h}\right| \leq 1$.
We apply a standard dyadic dissection argument, finding that it suffices to show that

$$
\begin{equation*}
\sum_{q \leq N^{\theta}} \sum_{H_{1} \leq h \leq 2 H_{1}} \sigma_{q, h} \sum_{\substack{N \leq n<N^{\prime} \\ n \equiv u_{q}(\bmod q)}} \Lambda(n) e\left(h n^{c}\right) \ll N^{1-\varepsilon / 9} \tag{6.4}
\end{equation*}
$$

for $1 \leq H_{1} \leq H$. The next step is a standard decomposition of the von Mangoldt function; see for example [6, Section 24]. In order to obtain (6.4), it suffices to show, under each of two sets of conditions on $M, K,\left(g_{k}\right)_{k \in[K, 2 K)}$, that

$$
\begin{equation*}
\sum_{q \leq N^{\theta}} \sum_{H_{1} \leq h \leq 2 H_{1}} \sigma_{q, h} \sum_{\substack{M \leq m<2 M \\ N \leq m k<N^{\prime} \\ m k \equiv u_{q}(\bmod q)}} a_{m} g_{k} e\left(h(m k)^{c}\right) \ll N^{1-\varepsilon / 8} \tag{6.5}
\end{equation*}
$$

for complex numbers a_{m}, g_{k} with $\left|a_{m}\right| \leq 1,\left|g_{k}\right| \leq 1$. The first set of conditions is

$$
\begin{equation*}
N^{1 / 2} \ll K \ll N^{2 / 3} \tag{6.6}
\end{equation*}
$$

The second set of conditions is

$$
K \gg N^{2 / 3}, \quad g_{k}= \begin{cases}1 & \text { if } K \leq k<K^{\prime} \tag{6.7}\\ 0 & \text { if } K^{\prime} \leq k<2 K\end{cases}
$$

We first obtain (6.5) under the condition (6.6). We replace (6.5) by

$$
\begin{gathered}
\sum_{q \leq N^{\theta}} \frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \bar{\chi}\left(u_{q}\right) \sum_{H_{1} \leq h_{1} \leq 2 H_{1}} \sigma_{q, h} \sum_{\substack{M \leq m<2 M \\
N \leq m k<N^{\prime}}} \sum_{\substack{K \leq k<2 K}} a_{m} g_{k} \chi(m) \chi(k) e\left(h(m k)^{c}\right) \\
\ll N^{1-\varepsilon / 8} .
\end{gathered}
$$

A further dyadic dissection argument reduces our task to showing that

$$
\begin{equation*}
\sum_{Q \leq q \leq 2 Q} \sum_{\chi(\bmod q)}\left|\sum_{H_{1} \leq h \leq 2 H_{1}} \sigma_{q, h} \sum_{M \leq m<2 M} \sum_{K \leq k<2 K} a_{m} g_{k} \chi(m) \chi(k) e\left(h(m k)^{c}\right)\right| \ll Q N^{1-\varepsilon / 7} \tag{6.8}
\end{equation*}
$$

for $Q<N^{\theta}$.
We now apply Lemma 2 with $X=H_{1} N^{c}$ and $\left(H_{1}, K, M\right)$ in place of (H, N, M). The condition $X \gg H_{1} K$ follows easily since $K \ll N^{c}$. Thus the left-hand side of (6.8) is

$$
\begin{aligned}
& \ll\left(H_{1} N\right)^{\varepsilon / 8}\left(Q^{2} H_{1} N^{1 / 2} K^{1 / 2}+Q^{3 / 2} H_{1} N^{\frac{1}{2}+\frac{c}{4}} K^{1 / 4}+Q^{3 / 2} H_{1}^{3 / 4} N K^{-1 / 4}\right) \\
& \ll N^{\varepsilon / 7}\left(Q^{2} H_{1} N^{5 / 6}+Q^{3 / 2} H_{1} N^{2 / 3+c / 4}+Q^{3 / 2} H_{1}^{3 / 4} N^{7 / 8}\right)
\end{aligned}
$$

using (6.6). Each term in the last expression is $\ll Q N^{1-\varepsilon / 7}$:

$$
\begin{aligned}
N^{\varepsilon / 7} Q^{2} H_{1} N^{5 / 6}\left(Q N^{1-\varepsilon / 7}\right)^{-1} & \ll N^{\theta+5 / 6-c+2 \varepsilon / 7} \ll 1, \\
N^{\varepsilon / 7} Q^{3 / 2} H_{1} N^{2 / 3+c / 4}\left(Q N^{1-\varepsilon / 7}\right)^{-1} & \ll N^{\theta / 2+2 / 3-3 c / 4+2 \varepsilon / 7} \ll 1, \\
N^{\varepsilon / 7} Q^{3 / 2} H_{1}^{3 / 4} N^{7 / 8}\left(Q N^{1-\varepsilon / 7}\right)^{-1} & \ll N^{\theta / 2+5 / 8-3 c / 4+2 \varepsilon / 7} \ll 1 .
\end{aligned}
$$

We now obtain (6.5) under the condition (6.7). By Lemma 3, the left-hand side of (6.5) is

$$
\begin{aligned}
& \ll N^{\theta} M H_{1}\left(\left(H_{1} N^{c}\right)^{1 / 2}+K\left(H_{1} N^{c}\right)^{-1 / 2}\right) \\
& \ll H_{1}^{3 / 2} N^{1+c / 2+\theta} K^{-1}+H_{1}^{1 / 2} N^{1-c / 2+\theta} \\
& \ll N^{11 / 6-c+\theta}+N^{3 / 2-c+\theta} \ll N^{1-\varepsilon / 8} .
\end{aligned}
$$

Turning to (2.7), (under the condition (2.13) on d) by a similar argument to that leading to (6.5), it suffices to show that

$$
\begin{equation*}
\sum_{\substack{q \leq N^{\theta} \\(q, d)=1}} \sum_{H_{1} \leq h \leq 2 H_{1}}\left|\sum_{\substack{N \leq n \leq N^{\prime} \\ n \equiv u_{q d}(\bmod q d)}} e\left(h n^{c}\right)\right| \ll N^{1-\varepsilon / 3} d^{-1} \tag{6.9}
\end{equation*}
$$

for $d \leq N^{2-2 c}, H_{1} \leq N^{1-c}, N \leq N^{\prime} \leq 2 N$. By Lemma 3, the left-hand side of (6.9) is

$$
\ll N^{\theta} H_{1}\left(\left(H_{1} N^{c}\right)^{1 / 2}+N\left(H_{1} N^{c}\right)^{-1 / 2}\right) .
$$

Each of the two terms here is $\ll N^{1-\varepsilon / 3} d^{-1}$. To see this,

$$
N^{\theta} H_{1}^{3 / 2} N^{c / 2}\left(N^{1-\varepsilon / 3} d^{-1}\right)^{-1} \ll N^{\theta+1 / 2-c} N^{2-2 c} \ll 1
$$

and

$$
N^{\theta} H_{1}^{1 / 2} N^{1-c / 2}\left(N^{1-\varepsilon / 3} d^{-1}\right)^{-1} \ll N^{\theta+1 / 2-c} N^{2-2 c} \ll 1 .
$$

This completes the proof of Theorem 4.

Acknowledgments

The second author is supported by NSF award DMS-1402268. This work began while the second author was visiting BYU. He thanks the BYU mathematics department for their hospitality.

References

[1] R. C. Baker:, Diophantine Inequalities., London Mathematical Society Monographs, New Series, vol. 1, Oxford University Press, Oxford, 1986.
[2] R. C. Baker and A. J. Irving, Bounded intervals containing many primes., arXiv: 1505.01815
[3] R. C. Baker and L. Zhao, Gaps between primes in Beatty sequences., Acta Arith. 172 (2016), 207-242.
[4] A. Balog, On the distribution of $p^{\theta} \bmod 1 .$, Acta Math. Hungar. 45 (1985), 179-199.
[5] J. Benatar, The existence of small gaps in subsets of the integers., Int. J. Number Theory 11 (2015), 801-833.
[6] H. Davenport, Multiplicative number theory., third edition, Graduate Texts in Mathematics, 74. Springer-Verlag, New York 2000.
[7] K. Ford, B. Green, S. Konyagin, J. Maynard and T. Tao, Long gaps between primes., arXiv: 1412.5029
[8] D. A. Goldston, J. Pintz, and C.Y. Yildirim, Primes in tuples. I., Ann. Math. 170 (2009), 819-862.
[9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums., London Mathematical Society Lecture Note Series, 126. Cambridge University Press, Cambridge 1991.
[10] G. Harman, Prime-detecting Sieves., Princeton Univ. Press, Princeton, NJ, 2007.
[11] J. Maynard, Small gaps between primes., Ann. of Math. 181 (2015), no. 2 383-413.
[12] J. Maynard, Dense clusters of primes in subsets., Compos. Math. 152 (2016), 15171554.
[13] P. Pollack, Bounded gaps between primes with a given primitive root., Algebra Number Theory 8 (2014), 1769-1786.
[14] P. Pollack and L. Thompson, Arithmetic functions at consecutive shifted primes., Int. J. Number Theory 11 (2015), 1477-1498.
[15] D. H. J. Polymath, New equidistribution estimates of Zhang type., Algebra Number Theory 8 (2014), 2067-2199.
[16] D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes., Research Mathematical Sciences 2014, 1:12.
[17] J. Rigat and J. Wu, Prime numbers of the form [n^{c}., Glasg. Math. J. 43 (2001), 237-254.
[18] O. Robert and P. Sargos, Three-dimensional exponential sums with monomials., J. Reine Angew. Math. 591 (2006), 1-20.
[19] N. M. Timofeev, Distribution of arithmetic functions in short intervals in the mean with respect to progressions.. Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 341-362.
[20] Y. Zhang, Bounded gaps between primes., Ann. Math. 179 (2014), 1121-1174.

Received ??

Roger C. Baker: Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
E-mail: baker@math.byu.edu

Paul Pollack: Department of Mathematics, University of Georgia, Athens, GA 30602, USA.
E-mail: pollack@uga.edu

[^0]: Mathematics Subject Classification (2010): 11N05.
 Keywords: Maynard-Tao method, primes with square-free translates, mixed exponential sums.

