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Clusters of primes with square-free translates

Roger C. Baker and Paul Pollack

Abstract. Let R be a finite set of integers satisfying appropriate local
conditions. We show the existence of long clusters of primes p in bounded
length intervals with p — b squarefree for all b € R. Moreover, we can
enforce that the primes p in our cluster satisfy any one of the following
conditions: (1) p lies in a short interval [N, N + NT72+€], (2) p belongs to
a given inhomogeneous Beatty sequence, (3) with ¢ € (%, 1) fixed, p° lies
in a prescribed interval mod 1 of length p~*+ete,

1. Introduction

Recent work on small gaps between primes owes a considerable debt to the inno-
vative use of the Selberg sieve by Goldston, Pintz, and Yildirim [8]. This paper
contains the result, for the sequence of primes pq, po, ...,

(1.1) liminf Zntt—Pr g
n— 00 log pn,

By adapting the method, Zhang [20] achieved the breakthrough result
liminf (pn41 — pn) < 00.
n—oo

Not long afterwards, Maynard [11] refined the sieve weights of Goldston, Pintz,
and Yildirim to obtain the stronger result, for ¢ = 2,3, ...
(1.2) liminf (pii—1 — pn) < t2e*.

n—oo
The implied constant is absolute. Similar results were obtained at the same time
by Tao (unpublished). Tao’s use of weights is available in the paper [16] by the
Polymath group; for some problems, this is a more convenient approach than that

of Maynard [11]. Polymath [15] also refined the work of Zhang [20] to obtain new
equidistribution estimates for primes in arithmetic progressions. When combined
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with techniques in [16], the outcome (see [16]) is a set of results that are explicit
for the left-hand side of (1.2), for small ¢, and give O (t exp (( — %) t)) fort > 2
in place of the bound in (1.2). The latter result has been sharpened further by
Baker and Irving [2]. In a different direction, Ford, Green, Konyagin, Maynard,
and Tao [7] have used the Maynard-Tao method in giving a breakthrough result
on large gaps between primes.

It is natural to ask whether a given infinite sequence of primes B = {p}, ph, ...}
satisfies a bound analogous to (1.2), say
(1.3) liminf (pl, .,y —pl,) < F(B,t) (t=2,3,...).

n—oo

In the present paper we answer affirmatively a question of this kind raised by
Benatar [5]. Let by be a fixed nonzero integer and

B = {p:pprime, p— by is square-free}.

Does (1.3) hold for t = 27 (Benatar was able to obtain the analogue of (1.1) for
primes in B.) It is of some interest to consider more generally a set of translates

(1.4) R ={b1,....bs}
and the set
(1.5) B(R) = {p: p prime, p — b is squarefree for all b € R}.

There are simple local conditions that R must satisfy.

Definition. A set {b1,...,bs} of nonzero integers is reasonable if for every prime
p there is an integer v, p { v, with

beZv (modp?) (£=1,...,5).

A little thought shows that, if there are infinitely many primes p with p —
bi,...,p — bs all square-free, then {b1,...,bs} is a reasonable set.

Theorem 1. Lett > 1 and € > 0. Let R be a reasonable set of cardinality s and
define B(R) by (1.5). The sequence pl,ph, ... of primes in B(R) satisfies

liminf (p],;, 1 = p,,) < exp(C1(e)s exp((4 + &)t)).

From now on, let R be a fixed reasonable set of cardinality s, given by (1.4).
We now pursue the possibility of finding clusters of primes p for which p — b is
squarefree for all b € R, and p is chosen from a given subset A of [N,2N] for a
sufficiently large positive integer N. This is in the spirit of the papers of Maynard
[12] and Baker and Zhao [3], which contain overlapping theorems of the following
kind: Given sufficient arithmetic reqularity of A C [N,2N], there is a set S of t
primes in A with diameter

(1.6) D(S) :=maxn —minn < F(t) (t=2,3,...).

nes nes
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Here F' depends on certain properties of A. Theorems 2, 3, and 4 are of this
kind, for three different choices of A, with the additional requirement that p — b is
squarefree for all p in S and b in R.

Our first example A is

Ai1(¢) =ZN[N,N + N,

where ¢ is a constant in (7/12,1]. The existence of a set S of ¢ primes in A;(¢)
satisfying (1.6) is due to Maynard [12], with F(t) of the form exp(K (¢)t).

Our second example is suggested by work of Baker and Zhao [3]. Let |w]|
denote the integer part of w. A Beatty sequence is a sequence

lam+ 8], m=1,2,...

where « is a given irrational number, @ > 1 and g is a given real number. We
write As(a, ) for the intersection of this sequence with [N, 2N]. The existence of
a set S of t primes in A(a, 3) is shown in [3], for a family of values of N depending
on «, with

F(t) = (t + log o) exp(7.743t).

Let ¢ be a constant in (8/9,1). A third example, not previously considered in
connection with clusters of primes, is

As(c,e) ={n € [N,2N):n° €I (mod 1)},
where £ > 0 and [ is an interval of length
(1.7) |I| = N~1Fete,

A corollary of Theorem 4 below is that Az(c,e) contains a set S of ¢ primes
whose diameter is bounded as in (1.6). The problem of finding, or enumerating
asymptotically, primes in sets similar to A3 (c, €), but with I of more general length,
has been studied by Balog [4] and others. We note a connection with the problem
of finding primes of the form [n¢]. See e.g. Rivat and Wu [17], where 1 < C' <
243/205. Let v = 1/C. The number of primes of the form [n“], n < z, is given by

(1.8) Yo (== [+ 1))+ O).

p<z

The sum in (1.8) counts the number of p < z with —p” € J, (mod 1), where
Jp=(1—4,,1) with £, ~ yp?'~1.

In [N, 2N], there cannot be two primes p < p; with p; —p = O(1) and p§ — p©
smaller (mod 1) than N¢~!. For

p§ —p° > epSH(py — p) > 2¢(2N)°7 L

This explains the choice of exponent ¢ — 1+ ¢ in (1.7).
We now state results about clusters of primes with square-free translates in
A1 (), A2(a, B) and As(c,e). We write Cq, Cs, ... for certain absolute constants.
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Theorem 2. Lett > 1, 7/12< ¢ < 1. Let

$»—11/20—¢ (7/12 < ¢ < 3/5)
¢—1/2—¢  ($=3/5)
For sufficiently large N, there is a set S of t primes in Ay (¢) such that

(1.9) p — b is squarefree (pe€ S, bER)

D(S) < exp <CQS exp (f;)) .

Theorem 3. Lett > 1. Let o be an irrational number, o > 1 and let B be real.
Let v be a sufficiently large integer such that

and

1
02

u
‘a— —‘ < — for some u with (u,v) = 1.
v

For sufficiently large N = v?, there is a set S of t primes in Asx(a, 8) satisfying
(1.9) and

(1.10) D(S) < exp(Csasexp(7.743t)).

Theorem 4. Lett > 1. Let 8/9 < ¢ < 1 and let 5 be real. Let 0 < ¢ < (9¢—8)/6
and e > 0. Let I = [3, B+ N~1T¢*<]. For sufficiently large N, there is a set S of
t primes in As(c,€) such that (1.9) holds, and

a p1) <o (cusenn ()

We shall deduce these theorems from a general result of the same kind concern-
ing a subset A of [N, 2N] satisfying arithmetic regularity conditions (Theorem 5).
In Section 2 we state Theorem 5 and explain the strategy of proof. Section 3 con-
tains the proof of Theorem 5. In subsequent sections we deduce Theorems 1, 2, 3
and 4 from Theorem 5.

Note that Theorems 3 and 4 lead to conclusions of the form (1.3) both for B a
Beatty sequence and for

B = {p: p prime, {p° — B} < p~'Tet<}

(ﬂ real, % <c< 1).
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2. A general theorem on clusters of primes with square-free
translates.

In the present section we suppose that ¢ is fixed and N is sufficiently large, and
write £ = log N,
log N

0= 17T 7

loglog N
We denote by 7(n) and 7;(n) the usual divisor functions. Let € be a sufficiently
small positive number. Let X (F;...) denote the indicator function of a set E. Let

P(z2) = H .

A set of integers Hy = {h1,...,hg}, 0 < hy < -+ < hy is said to be admissible
if for every prime p, H; (mod p) does not cover all residue classes (mod p). An
admissible set Hj, is said to be compatible with R if

(2.1) By =0 (mod P?) (m=1,...,k)
where
(2.2) P:=P((s+1)k+1)

and further

(2.3) hi—hj+b#0 (i#j, bER).

In the applications in Sections 4-6, it is not difficult to produce sets compatible
with R and which (in the case of Theorem 3) possess another useful property.

A few remarks will clarify the purpose of compatibility. For brevity, we say
that n — R is square-free if n — b is square-free for every b € R, and that C — R is
square-free if n—R is square-free for all n € C. Once we have fixed a suitable set A
in [N,2N] and t € N, we show that for many n in A, at least t of n+hy,...,n+hy
are primes in A. (We need k large, as a function of ¢.) Compatibility of H with
R is now needed to show that only a few n in A have n + h — b not squarefree for
some h € Hy and b € B. Select a ‘satisfactory’ n and let S be a set of ¢ primes in
{n+hi,...,n+ hi}; then D(S) < hy — hy and S — R is square-free.

In the proof of Theorem 5, we use a smooth function F' supported on

Ep =1 (T1,...,2) € [0,1]’“2% <1

with a special property. Let

1 1
Ik(F)::/O /O F(ty,... ty)2%dt, ... dty,

1 1 1
J,g’”)(F):/O /O (/0 F(tl,...,dk)thm) dty ... dt_1dtmyy ... dty
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for 1 < m < k. We choose F' so that

k
(2.4) 7 (F) > (logk — C5) Ik (F) > 0;

m=1

this is possible by [16, Theorem 3.9].
Let P denote the set of prime numbers.

Theorem 5. Lett > 1. Let Hy, be compatible with R. Let N € N, N > Co(R, Hy)-
Let NY/2L18% < M < N and let A C [N,N + M]NZ. Let 0 be a constant,
0<6<3/4. LetY be a positive number,

(2.5) NY4 max(N?, 2% M'?) < Y < M.

Let

Suppose that, for

(2.6) 1<d< (MY H*max(L£30%F N19M—2),
we have
(2.7) > (@)@ V(dg) < YLTF
q<N°
(g,d)=1

Suppose there is a function p(n) : [N,2N]NZ — R such that

(2.8) X(P;n) > p(n) (N <n<2N)
and positive numbers Y1, ..., Y, with

(2.9) Y =Y (km +0(1))L7H (1 <m <k)
where

(2.10) Em > k>0 (1<m<Ek).

Suppose that p(n) = 0 unless (n, P(N?/?)) =1, and

(2.11)

Y,, s
> 1P (q)7sr(q) max S pm)X(A+hm)NAin)— | <YL
=, (@q)=1| _ ¢(q)

q<N n=a (modgq)

for 1 <m < k. Finally, suppose that

2t -2
(2.12) logk —Cs >

+ €.



Then there is a set S in PN A such that S — R is square-free and

#S =t, D(S) < hy, — hy.
IfY > N'/2%¢ the assertion of the theorem is also valid with (2.6) replaced by
(2.13) 1<d< (MY 12N,

A few remarks may help here. Clearly A has got to possess many translations
A + h such that AN (A + h) contains, to within a constant factor, as many
primes as A. This rules out some sets A that we might wish to study, but does
work in Theorems 2—4. The condition (2.11) is essentially a Bombieri-Vinogradov
style theorem for primes in arithmetic progressions, and is usually much harder
to establish for a given A than the requirement (2.7) on integers in arithmetic
progressions.

For the proof of Theorem 5, which we now outline, we introduce ‘Maynard
weights’ w,, (n € N). Let R = N%273 and K = (s + 1)k + 1. Let

w=r J[ »
K<p<Do

We define weights y, and A, as follows for » = (rq,...,7) € NF: . = A\, =0
unless

k k
(2.14) (H n-,W1> =1, u? (H ri> =1.

If (2.14) holds, let

log 1 log 1
2.15 r=F ooy .
( ) Y <logR log R

Now \g4 is defined by
k

(2.16) Aa=]] wdyd: Y .
=t dilrs Vi ‘1:[1 o(r:)

We pick a suitable integer vy = (R, H); see Section 3 for the details. For n =

(mod W), let
2
Wy = ( Z )\d> .

For other n € N, let w,, = 0. Let

(2.17) Si= > w,

N<n<2N
neA

(2.18) Sem)= " > wap(n+ ).

N<n<2N
nEAN(A—h,)
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We shall obtain the asymptotic formulas

(1+ o(1))p(W1)*Y (log R)* I}.(F)
Wkt

(2.19) Sy =

Y

(14 o(1))km G(W1)FY (log R) 1 I (F)

(2.20) Sy(m) = WEFI

as N — oco. To see how to make use of this, let us introduce a probability measure
on A defined by

(2.21) Prin} = % (n € A).

It is not a very long step from (2.19), (2.20) to show that
k
(2.22) Pr( SOXMPAA A+ hy) > t) > ¢/k.
m=1
We will now reach our goal by showing that
(2.23) Pr(n + hy, — by is not squarefee) < Dy*

for given h,, € Hy and by € R. For then there is a probability greater than e/2k
that at least t of n+ hy,...,n+ hy are primes p in A for which p — R is squarefree.
To obtain (2.23), we give upper bounds for the quantities

(2.24) Qp) = {wn:n€Ap* [n+hn—b} (peP)
Our choice of vy will show at once that
(2.25) Qp) =0  (p< D).

Primes p in (Dy, B], for a suitable B, are treated by an analysis similar to the
discussion of S;. Then we ‘aggregate’ primes p > B by bounding

(2.26) St i= > Wy

n€eA
p2|n+h,,—by (some p>B)

to reach (2.23).
We retain the notations introduced in this section in Section 3, where the above
outline is filled out to a complete proof of Theorem 5.



3. Proof of Theorem 5

We first show that there is an integer 1y with

(3.1) (vo+ hm,W1)=1 (1<m<k)

(3.2) P Aivg+hm—be (P<K, 1<(<s, 1<m<k)
and

(3.3) ptvo+hm—by (K<p<Dy 1<l<s, 1<m<k).

By the Chinese remainder theorem, it suffices to specify vg (mod p?) for p < K
and vg (mod p) for K < p < Dg. We use h; =0 (mod p?) (p < K). The property
(3.1) reduces to

(3.4) vpZ0 (modp) (p<K)
and
(3.5) vo+hm 0 (modp) (K<p<Dy 1<m<Ek).

We define by = 0. Now (3.2), (3.3), (3.4), (3.5) can be rewritten as
(3.6) voZ0 (modp), vp #by (modp?) (p<K,1<10<s),
(3.7) Vo + hm —be Z0 (modp) (K <p<Dg,0<l<s,1<m<Ek).

For (3.6), we select v in a reduced residue class (mod p?) not occupied by by
(1 < ¢ <s). For (3.7), we observe that vy can be chosen from the p — 1 reduced
residue classes (mod p), avoiding at most (s 4+ 1)k classes, since p — 1 > (s + 1)k.

To save space, we refer to arguments in [3, 13, 14] in our proof.

Exactly as in the proof of [3, Proposition 1] with ¢ = 1, Wy = W7, we find
that the asymptotic formulas (2.19), (2.20) hold as N — oo. (The value of W7 in

[38]is [ p, but this does not affect the proof.)
p<Do

Exactly as in [3] following the statement of Proposition 2, we derive from (2.19),
(2.20), (2.8), (2.4), (2.12), the inequality

k
(3.8) SN wXPAA nthy)>(t—1+) > wy

m=1 necA neA
Writing E[-] for expectation for the probability measure Pr{n}, (3.8) becomes

k
SO XPAA; 0+ hy)

m=1

E >t—1+4e¢.

It is easy to deduce that

> ™

k
Pr(ZX(IP’ﬂA; n+ hy,) 2t> >
m=1
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As explained above, it remains to prove (2.23) for a given pair m, /.
The upper bound

on M
(3.9) Yoo wl< L N

Wi
N<n<N+M
n=ry (mod W1)

can be proved in exactly the same way as [13, (3.10)].
Let
B = (MY ™12 max(£® N2 M1,

Clearly
. 1
Pr(n + hy, — b is not square-free) < — ( Z Q(p) + Sm7g> .
1
p<B

To obtain (2.23) we need only show that

p(Wh)FY L*
3.10 Q L —F
(3.10) p§<B (p) WED,
and
P(Wh)*y L*
3.11 S e < D LA
(8-11) O TR D,

From (3.1)—(3.3), Q(p) = 0 for p < Dy. Take Dy < p < B. We have

(3.12) Qp) =D Aade > 1.
d,e

neA
n=vo (mod Wy)

nEbefhm (mOdPQ)
n=—h; (mod [d;,e;]) Vi

Fix d, e with AgAe # 0. The inner sum in (3.12) is empty if (d;,e;) > 1 for
a pair ¢, j with ¢ # j (compare [3, §2]). The inner sum is also empty if p|[d;, ;]
since then
pln+h; —(n+hy —bg) =hy —hi — by

which is absurd, since h,, — h; — b, is bounded and is nonzero by hypothesis.
We may now replace (3.12) by

(3.13)
/ Y 5 k
Q)= Y. Al ———— + OV (pPWi [[ldied | ] ¢
d,e 2 . o =1
(di,p):(el,p):l Vi p Wl Z‘l;[l[d“ el]

where 3 denotes a summation restricted by: (d;, e;) = 1 whenever ¢ # j. Expand-
ing the right-hand side of (3.13), we obtain a main term of the shape estimated in
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Lemma 2.5 of [14]. The argument there gives

' Adde 1 /(W) \F
S RSN
ae o Midne] % e ”( v )

(di,p)=(ei,p)=1Vi i=1

uniformly for p > Dy. As already alluded to above in the discussion of Si, the
behavior of the main term here can be read out of the proof of [3, Proposition 1].
Collecting our estimates, we find that

> Ade _ SWON g pkn (FY(1 4 o(1)).
d,e H [di;ei]

(di,p)=(ei,p)=1Vi ;

=1

Clearly this gives

Z Qp Y{ﬁ/(}jfl) cF Z p 2+ max|)\d| Z Z O3 (O)V (p°0).
1

Do<p<B p>Do Do<p<B #<R2W,;

k
(We use (3.13) along with a bound for the number of occurrences of £ as Wy [ [d;, e;].)
i=1
It is not difficult to see that A\g < £* (compare [11], (5.9)). On an application of
(2.7) with d = p? satisfying (2.6), we obtain the bound (3.10).

Let > denote a summation over n with
n; (3.14)

(3.14) N<n<N+M, n=rvy (modW,), p*|n+ hy, — by (some p > B).

Cauchy’s inequality gives

€< Z W,

(3.14)

1/2 1/2
n; (3.14) n=vg (mod W)

N<n<N+M

1/2
M M! 19k/2 0
< ( Z <p2W1+1>> <W11/2/: +N

B<p<(3N)'/?

(by (3.9))

. MEle/Q N N9M1/2 N M1/2N1/4£19k/2
WlBl/Q W11/2Bl/2 W11/2
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To complete the proof we verify (disregarding W) that each of these four terms is
<L YLF1/2 We have

MLIOk/2B=1/2(y ph=1/2)-1 « 1

since B > L¥%(MY~1)2. We have
NOMY2B=1/2(y ph=1/2)=1 « 1

since B > (MY ~1)2 N2 M1, We have

MY2NYALIOk2(y ph=1/2)=1 o
since Y > NYV4L£% M1/2. Finally,

N0y ph=1/2)=1 |

since Y > N?t1/4 This completes the proof of the first assertion of Theorem 5.

Now suppose Y > N2+, We can replace B by By := (MY ~1)N¢ throughout,
and at the last stage of the proof use the bound

(3.15) Sme<w Y1
N<n<N+M
P nthom—by
(some p>Bi)

where
w = max wy,.
n
Now
w = > dade
[d,;,ei]|n1+h7; Vi
for some choice of n; < N + M. The number of possibilities for dy,eq,...,ds, e

in this sum is < N°/3. Hence (3.15) yields

M
Sy < N2 N <p2+1>

B1<p<3N1/2

Ne/2\p

1

< + NV2+e/2 « y ph=1/2,

The second assertion of Theorem 5 follows from this. O
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4. Proof of Theorems 2 and 3.

We begin with Theorem 2, taking x = k,, = 1, p(n) = X(P;n), M =Y = N?,
Y,, = ]i,\H_M lcflgtt' By results of Timofeev [19], we find that (2.11) holds with

6 = 1. Since 29 < ¢, the range of d given by (2.6) is

(4.1) d < L3,

Now (2.7) is a consequence of the elementary bound V(m) < 1.

Turning to the construction of a compatible set Hy, let L = 2(k — 1)s + 1.
Take the first L primes ¢ < --- < qr, greater than L. Select ¢| = q1,¢5,...,q}
recursively from {q1,...,qr} so that ¢; satisfies

(4.2) P2q, # Pq+b, (1<i<j—1,1<(<5s),

a choice which is possible since L > 2(j — 1)s. Now Hy = {P?q},..., P%q,} is an
admissible set compatible with R. The set S given by Theorem 5 satisfies

D(S) < P*(qr, — q1) < exp(O(ks)).

As for the choice of k, the condition (2.12) is satisfied when

k= ’Vexp (it +C’5>-‘ + 1.

Theorem 2 follows at once.
For Theorem 3, we adapt the proof of [3, Theorem 3]. Let y=a~!, N = M =
v? and 0 = % — . We take

A={n€[N,2N):n=|am+ 8] for some m € N} and Y =~+N.
We find as in [3] that
A={n€[N,2N):yn €I (mod 1)},

where I = (v8 — v,v8]. The properties that we shall enforce in constructing
hi,...,h; are

(i) hi,...,hg is compatible with R;
(ii) we have h,, = hl, + h (1 < m < k), where hy € (n — ev,n) (mod 1) and

—hl, € (n,n+¢e7y) (mod 1) for some real n;

(iii) we have
2t —2

logh—C5> ——— =
O8N T (00411 (2 — ¢)
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The condition (ii) gives us enough information to establish (2.11); here we follow
[3] verbatim, using the function p = p; + p2 + p3s — p4 — ps in [3, Lemma 18], and
taking k slightly larger than 0.90411 in (2.10).

Turning to (2.7), with the range of d as in (4.1), we may deduce this bound from
[3, Lemma 12] with M = d, a,, = 1 for m = d, a,, = 0 otherwise, @ < N2/T-¢
K = N/d and H = £LAT!. This requires an examination of the reduction to mixed
sums in [3, Section 5].

It remains to obtain hq,..., hy satisfying (i)—(iii) above. We use the following
lemma.
Lemma 1. Let I be an interval of length v, 0 < v < 1. Let x1,...,x; be real and
ai,...,ay positive.

(a) There exists z such that

#{jﬁjiijZ-l—I(mOdl)}ZJ]/,

(b) For any L € N, we have

J L
Z —VZa] _L Za] Z<+V)
:vjEIJ(:rrllod 1) !

g aje(ma;)

L
Proof. We leave (a) as an exercise. Let T1(0) = Y Ti(m)e(mf) be the trigono-

m=—1L
metric polynomial in [1, Lemma 2.7]. We obtain (b) by a simple modification of

the proof of [1], Theorem 2.1 on revising the upper bound for |7} (m)|:
| sin Tvm| < 1
L +1 mm  — L4+1

Ty (m)| < + . 0

Now let £ be the least integer with

2t —2

= 000411 (Z_9) 5

(4.3) log(ev?) >

and let L = 2(£—1)s+1. As above, select primes ¢i, ..., g, from g1, ..., qr so that

4.2) holds. Applying Lemma 1, choose h’, ..., k) from {P2q,,..., P2¢,} so that,
1 k 1 ¢

for some real 7,

~Yhy, € (nn+ey) (mod 1) (m=1,....k)
and
(4.4) k> eyl

We combine (4.3), (4.4) with (2.12) to obtain (iii). Now there is a bounded h,
h =0 (mod P?), with
vh € (n—ey,n) (mod1).
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This follows from Lemma 1 with z; = j P2, since

! 1
2
e(mjPy
2 < mPl

We now have (i), (ii) and (iii). Theorem 5 yields the required set of primes S with
D(S) < P*(qr — q1) < exp(O({s)),

and the desired bound (1.10) follows from the choice of ¢. This completes the proof
of Theorem 3.

5. Lemmas for the proof of Theorem 4

We begin by extending a theorem of Robert and Sargos [18] (essentially, their
result is the case @ = 1 of Lemma 2).

Lemma 2. Let H>1, N>1, M >1,Q >1, X > HN. For H < h <2H,
N <n < 2N, M <m < 2M and the characters x (mod q), 1 < g < Q, let
a(h,n,q,x) and g(m) be complex numbers,

la(h,n,q, )| <1, [g(m)] < 1.
Let a, 8, v be fized real numbers, a(a — 1)By # 0. Let

Bprme
S0 XY athan) X atmxtme ().

H<h<2H N<n<2N M<m<2M

Then

Z Z So(x)

q<Q x (mod q)

< (HMN)* <Q2HNM% +Q¥*HNM ( -

2

PN SN

+

=

2 —
e
N——
N———

Proof. By Cauchy’s inequality,

S0 (02

(
<EN Y S S gtma)gma)x(m)x(ma)e(Xu(h, n)o(my, ma)),

H<h<2H N<n<2N M<m;<2M

M<mo<2M
with 5
hPnY m§ —mg
U(h,n) = W’ ’U(ml,mQ) = W
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Summing over Y,

Z |50(X)|2

X (mod q)
<HN > Yoosle) D gma)g(ma)e(Xu(h,n)v(mi, ma)).
H<h<2H N<n<2N M<mi<2M
M<ma<2M

m1 =msy (mod q)
Separating the contribution from m; = ms, and summing over ¢,
SN ISP < HAN2M Y ¢(q) + Si,
g<Q x (modq) <Q

where

S =C(e)M*QHN Z Z Z w(my, ma)e(Xu(h,n)v(my, ma)),

H<h<2H N<n<2N M<mi<2M

M<mo<2M
with
0 if my = ma,
w(my, mg) = 3 ) @ P
q<Q mi—ma=qn,n€’ Ce)M Q
Note that

|w(my,m2)| <1

for all my, mso if C(e) is suitably chosen.
We now apply the double large sieve to Sy exactly as in [18, (6.5)]. Using the
upper bounds given in [18], we have

Sy < MSQHNX'/2B/*BL/?,

where
1 1
By = > 1 < (HN)**e ( + )
hi,m1,h2,n2 HN X
\u(hl,nl)fu(hg,ngﬂgl/X
H<h;<2H, N<n;<2N (i=1,2)
< (HN)',
and
1 1
_ 4+
By = > 1< M 5<M2+X>.

mi,m2,M3,My
[v(my,m2)—v(msz,mq)|<1/X
M<m;<2M (1<i<4)
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Hence

X1/2 1
2 2H2N2M MHN 242 .
;23 X(,%:dq) Fobol” < @ +( ) @ (HNM?2)1/2 + (HN)'/2

Lemma 2 follows on an application of Cauchy’s inequality. O

Lemma 3. Fizc,0<c<1. Leth>1,m>1, K > 1, K' <2K,

S = > e(h(mk)°).

K<k<K’,mk=u (mod q)
Then for any q, u,
S < (hm°K°)Y? + K(hmeK°)~1/2,
Proof. We write S in the form

5= % ie(W+h(mk)C)

K<k<K’' r=1

() 3 ().

K<k<K'

and apply [9, Theorem 2.2] to each sum over k. O

6. Proof of Theorem 4
Throughout this section, fix ¢ € (%, 1) and define, for an interval I of length |I| < 1,
A(I)={n €[N,2N):n°€l (mod 1)}.
We choose Hj, compatible with R as in the proof of Theorem 2, so that
hi — h1 < exp(O(ks)).
We apply the second assertion of Theorem 5 with
M=N, Y=N" gx=1, pn)=X(P;n).
We define 6 by
_9c—38 _
== ,
and we choose k = [exp(252 + C5)] + 1, so that (2.12) holds. By our choice of 6,
the range in (2.13) is contained in

0

(6.1) 1<d< N*?,
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It remains to verify (2.7) and (2.11) for a fixed h,,. We consider (2.11) first.
The set (A + hy,) NA consists of those n in [N, 2N) with

n¢ — B [0, N"1TE) (mod 1), (n+4 hy)¢ — B € [0, N"1T) (mod 1).

Since

(N4 hp)¢ =n° +O(NY) (N <n<2N),
we have
(6.2) A(l) C (A+hpm)NAC A(L)

where, for a given A,

Il = [ﬂvﬁ—’_N_lJrCJ’_a)v
Ip =B, +N""TeFe (1 - L747%),

By a standard partial summation argument it will suffice to show that, for any
choice of uq relatively prime to g,

<yrL4

> w@)msk(a)

q<NY

n n) — —ldcte 4
> (A( )X((A+ hp)NAn) — N ¢(q))

n=uq (modq)
N<n<N'

for N’ € [N,2N). (The implied constant here and below may depend on A.) In
view of (6.2), we need only show that for any A > 0,

(6.3)
S @) Y (A(n)X(A(In;n) —N‘l*“aqjq)) <YLA(=1,2).
g<N?® n=uq (modq)

N<n<N'

The sum in (6.3) is bounded by Y, +_,, where

Zl = Z 112 (q)73(q) Z A(n) — N-Hete Z Aln)

g<N? n=uq (modq) n=uq (modq)
n°el; (mod1) N<n<N’
N§n<N/

and

Do, =N Y WP @)ms(e)

g<N°®

3 (A(n) - ¢(qq)> ’

n=uqg (modq)
N<n<N'

Deploying the Cauchy-Schwarz inequality in the same way as in [11, (5.20)], it
follows from the Bombieri-Vinogradov theorem that

Zz < NeteL=4,
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Moreover,

S P@mlg [N Y Am) -1l Y Am)| < NetegA
q<N? n=uq (modq) n=uq (modq)
N<n<N’ N<n<N’

(trivially for j = 1, and by the Brun-Titchmarsh inequality for j = 2). Thus it
remains to show that

ST ome@| Y. ALl Y Am)| < NetELTA
q<N? n=uq (modgq) n=uq (modgq)
n°€l; (modl) N<n<N’
N<n<N’

Let H = N'=¢=¢£A+3k We apply Lemma 1, with a; = A(N +j — 1) for N + j —
1 = uq (modg) and a; = 0 otherwise, and L = H. Using the Brun-Titchmarsh
inequality, we find that

S oAm-ILl Y Am)

n=uq (modq) n=uq (modq)
n°€l; (mod1) N<n<N’
N<n<N’
N A Lere 3 3
< LTATF 4 NTTere A(n)e(hn®)|.
¢(q) 1<h<H |  N<n<N’

n=uq (modq)

Recalling the upper estimate 735(q) < N¢&/20 for ¢ < N?, it suffices to show that

Z Z Oq,h Z A(n)e(hn®) < N1=¢/10

g<N9%1<h<H N<n<N’
n=uq (mod q)

for complex numbers oy, with |og | < 1.
We apply a standard dyadic dissection argument, finding that it suffices to
show that

(6.4) S>> ogn Y. Am)e(hn®) < N'TE/

q<N?® H1<h<2H; N<n<N’
n=uq (modgq)

for 1 < H; < H. The next step is a standard decomposition of the von Mangoldt
function; see for example [6, Section 24]. In order to obtain (6.4), it suffices to
show, under each of two sets of conditions on M, K, (gr)kre[x,2k), that

(6.5) S>> o Y. > amgre(h(mk)®) < N'7</%

g<N® Hy<h<2H, M<m<2M K<k<2K

N<mk<N'
mk = uq (mod q)
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for complex numbers a,,, gr with |a,,| < 1,|gx] < 1. The first set of conditions is
(6.6) NY? « K < N?/3.

The second set of conditions is

(6.7) K> N3 g, =

1 ifK<k<K,
0 if K’ <k<2K.

We first obtain (6.5) under the condition (6.6). We replace (6.5) by

1 X C
#(q) § X (uq) Z Tg,h Z E amgiX(m)x(k)e(h(mk)©)
X (mod q) Hi1<hi1<2H; M<m<2M K<k<2K
N<mk<N'

g<N?

< Nl—E/S.

A further dyadic dissection argument reduces our task to showing that

(6.8)

SO Y o Y angedmx(Reth(mk)e)| < QNI
Q<g<2Q x (modq) | Hi<h<2H, M<m<2M K<k<2K
for Q < N?.

We now apply Lemma 2 with X = H;N€¢ and (H;, K, M) in place of (H, N, M).
The condition X > H; K follows easily since K < N€¢. Thus the left-hand side of
(6.8) is

< (HIN)E/s(Q2H1N1/2K1/2 + Q3/2H1N%+£K1/4 + Q3/2Hf/4NK_1/4)
< NE/7(Q2H1N5/6 4 Q3/2H1N2/3+C/4 4 Q3/2Hf/4N7/8)
using (6.6). Each term in the last expression is < QN'~¢/7:

NE/7Q2H1N5/6(QN1—6/7)—1 < N9+5/6—C+26/7 < 17
NE/7Q3/2H1N2/3+C/4(QN176/7)71 <<N0/2+2/373c/4+25/7 <1,
Ne/7Q3/2Hf/4N7/8(QN175/7)71 « NO/2+5/8=3c/a+2¢/T 1

We now obtain (6.5) under the condition (6.7). By Lemma 3, the left-hand side
of (6.5) is

< N°MHy ((HyN)'? + K (HN%)~'/?)
< Hf/2N1+C/2+9K—l _|_ H11/2N1_C/2+9

< N11/6—0+9 _|_N3/2—C+9 < N1—6/8.
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Turning to (2.7), (under the condition (2.13) on d) by a similar argument to
that leading to (6.5), it suffices to show that

(6.9) >y > e(hn®)

q<N? H1<h<2H; N<n<N’
(g,d)=1 n=ugqq (mod qd)

< N1—8/3d—1

for d < N272¢, H; < N'=¢, N < N’ < 2N. By Lemma 3, the left-hand side of
(6.9) is
< NYH,((H,N®)"/? + N(H,N¢)~'/2),

Each of the two terms here is < N17¢/3d=1. To see this,
Ner/2Nc/2(N1—a/3d—1)—1 < NO+1/2—cN2=2¢ 4
and
N9H11/2N1—c/2(Nl—s/Sd—l)—l <« NOt1/2—cn2-2¢ o q

This completes the proof of Theorem 4. a
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