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Let {an} be a sequence of nonnegative real numbers. Under very mild
hypotheses, we obtain upper bounds of the expected order of magnitude
for sums of the form

∑
n≤x anτr(n), where τr(n) is the r-fold divisor

function. This sharpens previous estimates of Friedlander and Iwaniec.
The proof uses combinatorial ideas of Erdős and Wolke.

1 Introduction

Let A = {an} be a sequence of nonnegative real numbers, and let A(x) =
∑

n≤x an.
In analytic number theory, one frequently encounters the problem of estimating sums
of the form

Dr(x) :=
∑
n≤x

anτr(n),

where τr(n) =
∑

d1···dr=n 1 is the r-fold divisor function. Since τr(n) � nε (with
an implied constant depending on r and ε), one has trivially that Dr(x)� A(x)xε.
However, this is quite crude, and it is desirable to find bounds closer to the expected
order A(x)(log x)r−1. The following result in this direction was proved by Friedlander
and Iwaniec in [3]. We let

Ad(x) :=
∑
n≤x

n≡0 (mod d)

an.

Proposition 1.1. Let x ≥ 3, and let k, r be integers with k, r ≥ 2. Suppose that
for all d ≤ x1/k, we have Ad(x)� A(x)g(d), where g is a nonnegative multiplicative
function satisfying

g(p`)� p−` for all primes p and all ` ≥ 1, and
∏
p≤x

(1 + g(p))� log x. (1)
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Then
Dr(x)� A(x)(log x)k

(r−1)k

.

The implied constant may depend on r, k, and the implicit constants in the assump-
tions on Ad(x) and g.

Remark. Assuming that {an} is supported on squarefree n, the same authors proved
the sharper estimate Dr(x)� A(x)(log x)r

k/k.

In the arguments of [3], the fundamental components — as well as the main objects
of study — are inequalities of the shape

τr(n) ≤ cr,k
∑
d|n

d≤n1/k

f(d), (2)

where cr,k is a constant depending only on r and k and f is a “small” multiplicative
function. From this, one obtains an estimate of the form∑

n≤x

anτr(n)� A(x)
∑
d≤x1/k

f(d)g(d),

and the remaining sum on d can shown to be (log x)O(1). For further discussion of
inequalities of the type (2) (and some close relatives), see [12], [6], [2], [4], and [7].

In this note, we show how to prove an upper bound of the expected correct order,
with no additional hypotheses. The components of the proof can all be traced back
to work of Erdős [1] and Wolke [11]. In fact, by developing Erdős’s methods, Wolke
obtained results on partial sums of divisor-like functions over sequences satisfying
very general sieve hypotheses. However, Wolke’s set-up is sufficiently different that
one cannot directly deduce an improvement of Proposition 1.1 from his results. So
it seems that it may still be of some interest to have in the literature a nearly
self-contained proof of the following estimate.

Theorem 1.2. Under the same hypotheses as Proposition 1.1,

Dr(x)� A(x)(log x)r−1.

The implied constant may depend on r, k, and the implicit constants in the assump-
tions on Ad(x) and g.

A variant of this argument was recently used by the author to study the partial
sums of τ2(#E(Fp)), where E/Q is a fixed non-CM elliptic curve and p runs over
the primes of good reduction [8].

2 Proof of Theorem 1.2

We will assume throughout that x is sufficiently large in terms of r, k, and all of the
implied constants in our assumptions — for if n is bounded in terms of these quantities,
then the theorem follows from the trivial estimate Dr(x) ≤ A(x) ·maxn≤x τr(n)�
A(x).
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For each n ≤ x, let us write n = (p1 · · · pj)(pj+1 · · · pJ), where p1 ≤ p2 ≤ · · · ≤ pJ
and j is chosen as large as possible with p1 · · · pj ≤ x1/k. Suppose to begin with
that J − j ≤ 2k. It is elementary to check that τr is a submultiplicative function,
i.e., τr(ab) ≤ τr(a)τr(b) for all positive integers a and b (one reference for this is [9]).
Hence,

τr(n) ≤ (τr(pj+1) · · · τr(pJ))τr(p1 · · · pj)

≤ r2kτr(p1 · · · pj) = r2k
∑

d1···dr−1|p1···pj

1�
∑

d1···dr−1|n
d1···dr−1≤x1/k

1.

Thus, the sum of anτr(n) over these n is

�
∑

d1···dr−1≤x1/k
Ad1···dr−1(x)� A(x)

∑
d1···dr−1≤x1/k

g(d1 · · · dr−1)

≤ A(x)
∑
n≤x

g(n)τr−1(n) ≤ A(x)
∏
p≤x

(
1 + (r − 1)g(p) +

∑
`≥2

g(p`)τr−1(p
`)

)
.

Since g(p`)� p−` and τr−1(p
`)� p`/10 (say), we see that

∑
p

∑
`≥2 g(p`)τr−1(p

`)� 1.
Thus,

∏
p≤x

(
1 + (r − 1)g(p) +

∑
`≥2

g(p`)τr−1(p
`)

)

≤

(∏
p≤x

(1 + g(p))

)r−1

exp

(∑
p

∑
`≥2

g(p`)τr−1(p
`)

)
� (log x)r−1.

Putting it all together, this part of the sum contributes � A(x)(log x)r−1, as desired.

Suppose now the integer n ≤ x is such that J − j > 2k. Then pj+1 < x
1
2k , since

otherwise n ≥ pj+1 · · · pJ ≥ p2k+1
j+1 > x. Since pj < x

1
2k , we can choose an integer

T ≥ 2k with
x

1
T+1 ≤ pj < x

1
T .

Then J − j ≤ T + 1, and τr(pj+1 · · · pJ) ≤ rT+1. From the pointwise bound
τr(·) ≤ τ2(·)r−1 and the maximal order of the usual divisor function τ2, we see
that τr(pj+1 · · · pJ) ≤ exp(C log x/ log log x) for a certain constant C, depending only
on r. Hence,

τr(pj+1 · · · pJ) ≤ min{rT+1, exp(C log x/ log log x)} =: MT .

By the choice of j,
p1 · · · pj > x

1
k /pj+1 > x

1
2k .

By symmetry,

τr(n) ≤MT · τr(p1 · · · pj) ≤ rMT ·
∑

d1···dr−1|p1···pj
d1>x1/2kr

1�MT

∑
d1···dr−1|n

x1/2kr<d1···dr−1≤x1/k
p|d1···dr−1⇒p≤x1/T

1.
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We sum on n and then on T , keeping in mind that Ad1···dr−1(x)� A(x)g(d1 · · · dr−1)
whenever d1 · · · dr−1 ≤ x1/k. We find that the sum over the n not already accounted
for above is

� A(x)
∑

2k≤T≤ log x
log 2

MT

∑
x1/2kr<d1···dr−1≤x1/k
p|d1···dr−1⇒p≤x1/T

g(d1 · · · dr−1)

≤ A(x)
∑

2k≤T≤ log x
log 2

MT

∑
x1/2kr<m≤x1/k
p|m⇒p≤x1/T

g(m)τr−1(m). (3)

We bound (3) by considering two ranges for T . Suppose first that T is very large, in
the sense that x1/T ≤ (log x)2. Since g(p`)� p−`, we see that g(m) ≤ τ2(m)O(1)/m,
and so g(m) ≤ exp(O(log x/ log log x))m−1 for all m ≤ x. An upper bound of the
same shape holds for τr−1(m) and for MT . Hence, this range of T contributes

� A(x) · log x · exp(O(log x/ log log x)) ·
∑

m>x1/2kr

p|m⇒p≤(log x)2

1

m
.

We can assume log x ≥ (2kr)5. So if t ≥ x1/2kr, then (log t)5/2 ≥ (log x)2. Hence,
every m ≤ t with prime factors bounded by (log x)2 also has its prime factors bounded
by (log t)5/2. From the theory of smooth numbers, the count of m ≤ t with all prime
factors bounded by (log t)5/2 is t3/5+o(1), as t → ∞, and so is O(t2/3) for all t ≥ 1.
(For a more general result, see [5, eq. (1.14)].) Thus,

∑
m>x

1
2kr

p|m⇒p≤(log x)2

1

m
=
∞∑
`=0

∑
2`x

1
2kr<m≤2`+1x

1
2kr

p|m⇒p≤(log x)2

1

m
� x−

1
6kr

∞∑
`=0

2−`/3 � x−
1

6kr .

Plugging this back in above, we see that this range of T contributes � A(x), which
is acceptable for us.

Now suppose that x1/T > (log x)2. We argue as in the proof of [11, Lemma 3]. It
will be convenient notationally to set

y = x1/T and z = x1/2kr.

For any positive η < 1
3
, we have (Rankin’s trick)∑

m>z
p|m⇒p≤y

g(m)τr−1(m) ≤
∑

m: p|m⇒p≤y

g(m)τr−1(m)
(m
z

)η
≤ exp

(
− η log z + (r − 1)

∑
p≤y

g(p)pη +
∑
p

∑
`≥2

g(p`)p`ητr−1(p
`)

)
� exp

(
− η log z + (r − 1)

∑
p≤y

g(p)pη
)

;
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the assumption that η < 1
3

is used in moving from the second line to the third, to
guarantee that the double sum on p and ` is O(1). Now∑

p≤y

g(p)pη ≤
∑
p≤x

g(p) +
∑
p≤y

g(p)(pη − 1).

Using the inequality exp(t) = (1 + t) exp(O(t2)), valid for nonnegative and bounded
t, we find that

exp

(
(r − 1)

∑
p≤x

g(p)

)
= exp

(∑
p≤x

g(p)

)r−1

≤

(∏
p≤x

(1 + g(p))

)r−1

exp

(
O

(∑
p

g(p)2
))
� (log x)r−1.

Also, ∑
p≤y

g(p)(pη − 1) =
∑
p≤y

g(p)
∞∑
`=1

(η log p)`

`!
�

∞∑
`=1

η`

`!

∑
p≤y

(log p)`

p
.

To deal with the inner sum, notice that for all t ≥ 2, we have
∑

p≤t(log p)` ≤
π(t)(log t)` � t(log t)`−1. By partial summation,

∑
p≤y

(log p)`

p
� (log y)`. (Impor-

tantly, the implied constant here can be chosen independently of `.) Inserting this
above, we find that

∑
p≤y

g(p)(pη − 1)�
∞∑
`=1

(η log y)`

`!
≤ yη.

Assembling what we have found so far,∑
m>z

p|m⇒p≤y

g(m)τr−1(m)� exp(O(yη)− η log z) · (log x)r−1.

Choose η = 1
3kr

T log T
log z

. Since x1/T > (log x)2, we have T < log x
2 log log x

, and so

η =
T log T
3
2

log x
<
T log log x

3
2

log x
<

1

3
.

Moreover, with choice of η, we have η log z = 1
3kr
T log T , while

yη = exp

(
log y
3
2

log x
T log T

)
= exp

(
2

3
log T

)
= T 2/3.

Hence, ∑
m>x1/2kr

p|m⇒p≤x1/T

g(m)τr−1(m)� exp(O(T 2/3)) exp

(
− 1

3kr
T log T

)
· (log x)r−1.
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Inserting this back into (3), and recalling that MT ≤ rT+1 = exp(O(T )), we find
that the contribution from the remaining n is

� A(x)(log x)r−1
∑
T

exp(O(T )) exp(O(T 2/3)) exp

(
− 1

3kr
T log T

)
.

The sum on T is O(1), leading to an upper bound of � A(x)(log x)r−1.

Remarks. The conditions on g can be somewhat relaxed: Suppose we replace the two
conditions in (1) with the assumption that g(n) ≤ τ(n)O(1)/n. Minor modifications
of our arguments will then show that∑

n≤x

anτr(n)� A(x) exp((r − 1)
∑
p≤x

g(p)).

Moreover, it is clear from the proof of Theorem 1.2 that we did not need to take
A(x) =

∑
n≤x an; all of the arguments hold if A(x) is any upper bound on that sum.

These two remarks should be useful in situations where the available upper bounds
on Ad(x) are somewhat crude.
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