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Three kinds of natural numbers

Among simple even numbers, some are superabundant, others
are deficient: these two classes are as two extremes opposed one
to the other; as for those that occupy the middle point between
the two, they are said to be perfect.

– Nicomachus (ca. 100 AD), Introductio Arithmetica

Let s(n) =
∑

d |n,d<n d be the sum of the proper divisors of n.

Abundant: s(n) > n.
Deficient: s(n) < n.
Perfect: s(n) = n.

Ex: 5 is deficient (s(5) = 1), 12 is abundant (s(12) = 16), and 6 is
perfect (s(6) = 6).

2 of 23



Three kinds of natural numbers

Among simple even numbers, some are superabundant, others
are deficient: these two classes are as two extremes opposed one
to the other; as for those that occupy the middle point between
the two, they are said to be perfect.

– Nicomachus (ca. 100 AD), Introductio Arithmetica

Let s(n) =
∑

d |n,d<n d be the sum of the proper divisors of n.

Abundant: s(n) > n.
Deficient: s(n) < n.
Perfect: s(n) = n.

Ex: 5 is deficient (s(5) = 1), 12 is abundant (s(12) = 16), and 6 is
perfect (s(6) = 6).

2 of 23



The superabundant number is . . . as if an adult animal was formed
from too many parts or members, having “ten tongues”, as the
poet says, and ten mouths, or nine lips, and provided with three
lines of teeth; or with a hundred arms, or having too many fingers
on one of its hands. . . . The deficient number is . . . as if an animal
lacked members or natural parts . . . if he does not have a tongue
or something like that.

. . . In the case of those that are found between the too much and
the too little, that is in equality, is produced virtue, just measure,
propriety, beauty and things of that sort — of which the most
exemplary form is that type of number which is called perfect.
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Because as we know, there are known knowns; there are things we know we

know. We also know there are known unknowns; that is to say we know

there are some things we do not know. – Donald Rumsfeld

Theorem (Euclid – Euler)

If 2n − 1 is prime, then

N := 2n−1(2n − 1)

is perfect. Conversely, if N is an even perfect
number, then N has this form.

But what about odd perfect numbers?
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Is there a simple formula for odd perfect numbers, like for even
perfect numbers? Probably not.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers with ≤ k
distinct prime factors.
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How do we understand s(n) anyway?

It is more convenient to work with the sum of all positive divisors of
n, including n itself, which is denoted σ(n). That is,

σ(n) =
∑
d |n

d .

Then s(n) = σ(n)− n, and thus

n perfect⇐⇒ σ(n) = 2n.
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Example

Compute the sum of all positive divisors of 945 (i.e., σ(945)).

We factor 945 = 33 · 5 · 7.

The divisors of 945 are the numbers
3a5b7c , where 0 ≤ a ≤ 3, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1.

These are precisely the numbers that show up when we expand

(1 + 3 + 32 + 33)(1 + 5)(1 + 7).

So

σ(945) = (1 + 3 + 32 + 33)(1 + 5)(1 + 7)

= 40 · 6 · 8 = 1920.

[σ(945) = 1920 is a little more than 2 · 945, so 945 is abundant. In fact, 945 is the first odd abundant number.]
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In general, if the prime factorization of n has the form pe1
1 · · · p

ek
k , then

σ(n) = (1 + p1 + · · ·+ pe1
1 ) · · · (1 + pk + · · ·+ pekk )

= σ(pe1
1 ) · · ·σ(pekk ).

A function f from the positive integers to the complex numbers with
the property that

f (n) = f (pe1
1 ) · · · f (pekk )

is called a multiplicative function. So σ is an example of a
multiplicative function.

Other examples:

(1) f (n) = n is multiplicative,

(2) h(n) = σ(n)/n is multiplicative.

Ex. (2) is important for us: n is perfect ⇐⇒ h(n) = 2.

9 of 23



In general, if the prime factorization of n has the form pe1
1 · · · p

ek
k , then

σ(n) = (1 + p1 + · · ·+ pe1
1 ) · · · (1 + pk + · · ·+ pekk )

= σ(pe1
1 ) · · ·σ(pekk ).

A function f from the positive integers to the complex numbers with
the property that

f (n) = f (pe1
1 ) · · · f (pekk )

is called a multiplicative function. So σ is an example of a
multiplicative function.

Other examples:

(1) f (n) = n is multiplicative,

(2) h(n) = σ(n)/n is multiplicative.

Ex. (2) is important for us: n is perfect ⇐⇒ h(n) = 2.

9 of 23



In general, if the prime factorization of n has the form pe1
1 · · · p

ek
k , then

σ(n) = (1 + p1 + · · ·+ pe1
1 ) · · · (1 + pk + · · ·+ pekk )

= σ(pe1
1 ) · · ·σ(pekk ).

A function f from the positive integers to the complex numbers with
the property that

f (n) = f (pe1
1 ) · · · f (pekk )

is called a multiplicative function. So σ is an example of a
multiplicative function.

Other examples:

(1) f (n) = n is multiplicative,

(2) h(n) = σ(n)/n is multiplicative.

Ex. (2) is important for us: n is perfect ⇐⇒ h(n) = 2.

9 of 23



Lemma
No proper multiple of a perfect number is perfect.

Proof.
Suppose n is perfect. We will prove every proper multiple of n is
abundant.

Suppose m = nk, where k > 1. The divisors of m include all the
numbers dk, where d | n. So

σ(m) ≥ kσ(n) + 1,

= 2kn + 1 = 2m + 1.

So m is abundant.
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Time to wake up

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers with ≤ k
distinct prime factors.

We will give a supernatural proof of Dickson’s theorem.
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Supernatural numbers

Definition
A supernatural number is a formal product

2e23e35e5 · · · =
∏

p prime

pep ,

where each ep ∈ {0, 1, 2, 3, . . . } ∪ {∞}.

Examples

1. Every natural number is a supernatural number.

2. 2 · 3∞ · 17 is also a supernatural number, as is
∏

p p
∞.

There is a natural notion of what it means for one supernatural
number to divide another.
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Definition (p-adic valuation)

If N is a supernatural number, and p is a prime, we let vp(N) be the
exponent of p in the factorization of N. Thus,
vp(N) ∈ {0, 1, 2, . . . } ∪ {∞}.

Definition (supernatural convergence)

If N1,N2,N3, . . . is a sequence of supernatural numbers, and N is a
supernatural number, we say Ni → N if:

For every prime p, we have vp(Ni )→ vp(N).

Examples

• 2, 3, 5, 7, 11, 13, . . . converges to 1.

• 2, 22 · 32, 23 · 33 · 53, . . . converges to
∏

p p
∞.
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Lemma
Every sequence of supernatural numbers has a subsequence that
converges to a supernatural number.

Proof.
Exercise! (Related to Tychonoff’s theorem.)

14 of 23



For each positive integer k , let Sk be the set of supernatural numbers
where at most k exponents are nonzero.

Lemma
If N1,N2,N3, . . . is a sequence of elements of Sk converging
supernaturally to a limit N. Then N ∈ Sk .
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Lemma
If N1,N2,N3, . . . is a sequence of supernatural numbers converging
supernaturally to a limit N. If N is a natural number, then N divides
Ni eventually (= for all large i).

Proof.
Let p be a prime dividing N. Say vp(N) = ep. By definition,
vp(Ni ) = ep for all large i . Choose i large enough that this holds
simultaneously for all the (finitely) many primes p dividing N.

Then for all large i , we have vp(N) ≤ vp(Ni ) for all primes p. So
N | Ni .
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Recall that h(N) = σ(N)
N . We can extend h(N) to Sk . How?

If N ∈ Sk , define
h(N) =

∏
p

h(pep).

This is “morally” a finite product.

Here we understand

h(p∞) = lim
e→∞

h(pe) = lim
e→∞

(pe+1 − 1)/(p − 1)

pe
=

p

p − 1
.

If N is a natural number with ≤ k prime factors, then h(N) makes
sense with N thought of as either a natural number, or an element of
Sk , and we get the same real number answer.
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Lemma (Continuity lemma)

If N1,N2,N3, . . . is a sequence of elements of Sk converging
supernaturally to N, then h(Ni )→ h(N).
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Proof of Dickson’s theorem.
Suppose for a contradiction that there are infinitely many odd perfect
numbers with ≤ k distinct prime factors.

Then we can choose a supernaturally convergent sequence of distinct
such numbers, say N1,N2,N3, . . . . Say Ni → N, where

N = pe1
1 · · · p

er
r ,

where r ≤ k.

Each h(Ni ) = 2, so h(N) = lim h(Ni ) = 2.

Observation: At least one of the exponents ej =∞. Otherwise, N is
a natural number, and N divides Ni for all large i . At most one Ni

can equal N. So from some point on, N is a proper divisor of Ni , a
contradiction!
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Write
N = pe1

1 · · · p
er
r ,

where r ≤ k and h(N) = 2.

Can order the primes so that e1, . . . , e` <∞, and e`+1, . . . , er =∞.
Then

2 =
pe1+1

1 − 1

pe1
1 (p1 − 1)

· · ·
pe`+1
` − 1

pe`` (p` − 1)
· p`+1

p`+1 − 1
· · · pr

pr − 1
.

Clear some denominators:

2pe1
1 · · · p

e`
` (p`+1 − 1) · · · (pr − 1)

=
pe1+1

1 − 1

p1 − 1
· · ·

pe`+1
` − 1

p` − 1
· p`+1 · · · pr .

Can assume p`+1 < · · · < pr . Then pr divides RHS but not LHS !
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Where do we stand today?

After Heath-Brown, Cook, and Nielsen, we have the following explicit
forms of Dickson’s theorem.

Theorem
If N is odd and perfect with ≤ k distinct prime factors, then N < 24k .

As a complement to this:

Theorem (P.)

The number of odd perfect N with ≤ k distinct prime factors is < 4k
2
.
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Exercises

An amicable pair is a pair of integers n,m with
σ(n) = σ(m) = n + m. For instance, 220 and 284.

1. Prove that for each k , there are only finitely many amicable pairs
n,m with Ω(nm) ≤ k . Here Ω(a) is the sum of the exponents in
the prime factorization of a.

2. (Harder!) Prove that for each k, there are only finitely many
relatively prime amicable pairs n,m with ω(nm) ≤ k. Here ω(a) is
the number of distinct prime factors of a.
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THANK YOU!

23 of 23


	Introduction

