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PAUL POLLACK

In memory of Kevin James.

Abstract. Recall that D is a half-factorial domain (HFD) when D is atomic and every equation
π1 · · ·πk = ρ1 · · · ρℓ, with all πi and ρj irreducible in D, implies k = ℓ. We explain how techniques
introduced to attack Artin’s primitive root conjecture can be applied to understand half-factoriality
of orders in real quadratic number fields. In particular, we prove that (a) there are infinitely many
real quadratic orders that are half-factorial domains, and (b) under the Generalized Riemann

Hypothesis, Q(
√
2) contains infinitely many HFD orders.

1. Introduction

A half-factorial domain (HFD) is an integral domain D where every nonzero nonunit factors as
a product of irreducibles and where any two factorizations of the same element have the same
length. To spell out the second requirement more precisely, whenever we have an equation

π1 · · · πk = ρ1 · · · ρℓ,
with all the πi and ρj irreducible in D, we insist that k = ℓ. Half-factorial domains first appear
in a 1960 paper of Carlitz [Car60] where it is shown that the ring of integers of a number field K
is an HFD if and only if the class number of K is at most 2. So for instance, Z[

√
−5] — which

appears in introductory algebra courses as the example par excellence of nonunique factorization
— is an HFD.

The term “half-factorial domain” is due to Zaks [Zak76, Zak80], who was the first to single out
these rings as forming a class deserving study in its own right. Zaks observes in [Zak76] that
HFDs, unlike UFDs, need not be integrally closed. He offers the example of Z[

√
−3] (details are

deferred to [Zak80]).

To continue the discussion it is convenient to have available some standard notation and termi-
nology. Let K be a quadratic field. An order in K is a subring of OK that contains a Q-basis

for K. Write K = Q(
√
d), d squarefree, and let ω = ωd =

√
d if d ≡ 2, 3 (mod 4) and ω = 1+

√
d

2

if d ≡ 1 (mod 4). It can be shown that the distinct orders in Q(
√
d) are the rings Z[fω], for

f = 1, 2, 3 . . . (see pp. 45–48 of [Coh80]). Here taking f = 1 recovers OK , the so-called maximal
order. The integer f is referred to as the conductor or index. For example, Z[

√
−3] is the order of

index 2 inside Q(
√
−3).

Several authors have investigated when quadratic orders are HFDs. See for instance [HK83] (the
results of which are reproduced in [GHK06, pp. 226–229]), [Coy01], [Ala16], and [CMO17]. For
imaginary orders, there is surprisingly little to say: Z[

√
−3] is the unique nonmaximal example!

(This striking result appears as [Coy01, Theorem 2.3].) The real quadratic situation is more
complicated.
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Suppose that K is a real quadratic field. From either [HK83] or [Coy01], if K contains any HFD
orders, then K has class number 1 or 2. Furthermore, the index of any HFD order is either p,
with p prime, or 2p, with p an odd prime.

Now fix a real quadratic field K of class number 1 or 2. In [Coy01], Coykendall gives a necessary
and sufficient condition for the conductor p order in K to be an HFD. Let ε be the fundamental
unit of K. Then Z[pω] is half-factorial if and only if

(i) p is inert in K,

(ii) the least positive integer j with εj ∈ Z[pω] is j = p+ 1.

(See Theorems 3.8, 4.2, and Example 3 of [Coy01].) Later, Alan [Ala16] showed that for odd
primes p, (i) and (ii) imply

(iii) ε has norm −1,

(iv) p ≡ −1 (mod 4).

To illustrate, suppose we are looking for HFD orders insideK = Q(
√
2). Note that the fundamental

unit ε = 1 +
√
2 of K has norm −1, so there is no contradiction to condition (iii). From (i) and

(iv), in order that Z[p
√
2] be an HFD it is necessary that p ≡ 3 (mod 8). Thus, we are led to

restrict attention to primes p ≡ 3 (mod 8) and to ask how often such primes satisfy (ii).

In [Ala16], Alan reports on computations suggesting (ii) holds for approximately 75% of primes
p ≡ 3 (mod 8). Both Alan and Coykendall ask whether or not it can be proved that (ii) holds
infinitely often. Our first theorem answers this question in the affirmative, under the assumption of
the Generalized Riemann Hypothesis (GRH).1 Let A =

∏
q prime(1−

1
q(q−1)

) be the Artin constant.

Theorem 1 (conditional on GRH). There are infinitely many primes p ≡ 3 (mod 8) for which
Z[p

√
2] is an HFD. In fact,

(1) #{p ≤ x : p ≡ 3 (mod 8), Z[p
√
2] is an HFD} ∼ 1

2
A · x

log x
, as x → ∞.

Since A = 0.3739558 . . . , and asymptotically 25% of primes are 3 mod 8, the limiting proportion
of p ≡ 3 (mod 8) for which Z[p

√
2] is an HFD is ≈ 74.8%, in line with what Alan found

experimentally.

The proof of Theorem 1, given in §2, uses a method of Chen [Che02] developed to study of Artin’s
primitive root conjecture in quadratic fields. (Closely related results were published by Roskam a
bit earlier [Ros00].) In fact, Chen’s results are a stone’s throw away from immediately implying
Theorem 1, and so our discussion in §2 is more in the nature of a sketch rather than a full proof.

It was conjectured by Coykendall ([Coy01]; see also [Coy05]) that there are infinitely many real
quadratic orders that are HFDs. Certainly this holds if there are infinitely many real quadratic
fields of class number at most 2; though that is doubtless true (cf. [CL84b, CL84a]), a proof
remains elusive. Theorem 1 shows that Coykendall’s conjecture would also follow from GRH. Our
next theorem resolves the conjecture unconditionally.

1Here GRH refers to the Riemann Hypothesis for all Dedekind zeta functions.
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Theorem 2. Infinitely many real quadratic orders are HFDs. In fact, there is a real quadratic
field containing infinitely many HFD orders.

It is natural to ask which real quadratic fields contain infinitely many HFD orders. Call the real
quadratic field K viable if K has class number 1 or 2 and fundamental unit of norm −1. From
our above discussion, viability is necessary for K to contain an HFD order having index an odd
prime p. Viability is also necessary for K to contain an HFD order of index 2p. In fact, if the
order of index 2p is an HFD, so is the order of index p (see Corollary 3.6 in [Coy01]). So viability
is a necessary condition for K to contain infinitely many HFD orders.

Under GRH, Chen’s methods will show viability is also sufficient. We do not know how to remove
the assumption of GRH here, but we can at least show unconditionally that viability suffices
“almost always”.

Theorem 3. All but (at most) finitely many viable K contain infinitely many HFD orders.

The proofs of Theorems 2 and 3 use ideas introduced by Gupta–Murty [GM84], Murty–Srinivasan
[MS87], and Heath-Brown [HB86] to study Artin’s primitive root conjecture. The arguments
are similar in spirit, and in many details, to the proof of the main theorem of Cohen in [Coh06]
(which however cannot be directly applied).

Notation and terminology. We reserve the letters p and q for primes, whether or not this is
explicitly noted. We let P−(n) denote the smallest prime factor of the positive integer n, with
P−(1) = ∞. If p is a rational prime unramified in a Galois extension K/Q, we let FrobK/Q(p)
denote the corresponding Frobenius conjugacy class inside Gal(K/Q). When K/Q is abelian, we
sometimes abuse notation and identify FrobK/Q(p) with the corresponding element of Gal(K/Q).

If L1 and L2 are field extensions of K, we say that L1 and L2 are linearly disjoint over K if every
finite set of elements of L1 that is linearly independent over K remains linearly independent over
L2. If L1, L2, . . . , Ln is a finite sequence of extensions of K, we say L1, . . . , Ln are linearly disjoint
over K if the composite field L1 · · ·Li is linearly disjoint from Li+1 for all i = 1, 2, . . . , n− 1. In
our applications, each Li will have finite degree over K; in this case, linear disjointness holds
precisely when [L1L2 · · ·Ln : K] = [L1 : K][L2 : K] · · · [Ln : K]. See [FJ23, §3.1] for the theory of
linearly disjoint extensions of fields.

2. Half-factorial orders in Q(
√
2): Proof of the GRH-conditional Theorem 1

Let K = Q(
√
d) be a real quadratic field (with d squarefree). Let p be an odd prime inert in K, so

that FrobK/Q(p) is conjugation on K. If η is a norm 1 unit of OK , then ηp+1 = η · ηp ≡ 1 (mod p)

in OK . Thus, viewing OK/pOK as Fp(
√
d), we see that η has order p+ 1 in the group Fp(

√
d)×.

In [Che02], Chen describes how to compute, given a norm 1 unit η of OK , the proportion of inert

primes p for which the order of η in Fp(
√
d)× is precisely p+ 1. (The corresponding problem for

split primes p is also treated, but we do not need those results here.)

Let us connect this back to the condition (ii) appearing in the introduction. Let K be a viable real
quadratic field with fundamental unit ε, and let p be an odd prime inert in K. Then condition
(ii) from the introduction says no more and no less than that ε has order p+ 1 in Fp(

√
d)×/F×

p .

To relate our problem to Chen’s, we compare the order j of ε in Fp(
√
d)×/F×

p to the order J of
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η := ε2 in Fp(
√
d)×. Working in Fp(

√
d), we have ε2J = ηJ = 1. Thus, εJ = ±1 ∈ F×

p , which

implies that j | J . On the other hand, since εj ∈ F×
p , we have ηj(p−1)/2 = εj(p−1) = 1. Hence,

J | j p−1
2
. Since J also divides p + 1, we conclude that J divides gcd(j p−1

2
, p + 1), which in

turn divides j gcd(p−1
2
, p + 1). We now restrict to primes p ≡ −1 (mod 4). For these primes,

gcd(p−1
2
, p+ 1) = 1, and so J | j. It follows that J = j whenever p is inert and p ≡ −1 (mod 4).

In view of conditions (i)–(iv) from the introduction, counting odd primes p for which Z[pω] is
an HFD is completely equivalent to counting primes p ≡ −1 (mod 4) that are inert in K and

have η = ε2 of order p+ 1 in Fp(
√
d)×. Were it not for the requirement that p ≡ −1 (mod 4), an

asymptotic formula for this count could be read off from Chen’s results in [Che02]. As matters
stand, we have to modify her arguments slightly.

Since the details follow [Che02] closely we restrict ourselves to a sketch. We treat only K = Q(
√
2),

the case relevant to Theorem 3. Here ε = 1 +
√
2 and η = ε2 = 3 + 2

√
2.

Let p be a prime inert in K. Since η(p+1)/2 = ε · εp = −1 in Fp(
√
2), we see that the 2-power part

of the order of η in Fp(
√
2)× is the same as the 2-power part of p+ 1. For each odd prime q, let

us say that p fails the q-test if

(2) q | p+ 1 and η(p+1)/q = 1 in Fp(
√
2).

Otherwise, we say p passes the q-test. Then the q-power part of the order of η in Fp(
√
2)× agrees

with the q-power part of p+ 1 precisely when p passes the q-test. Hence, η has order p+ 1 in
Fp(

√
2)× exactly when p passes the q-test for every odd prime q.

Let σ0 denote conjugation on K, and let τ denote complex conjugation. For each odd positive
integer Q, let ζQ = exp(2πi/Q), and let

EQ = K(ζQ,
Q

√
1 +

√
2).

Then EQ/Q is Galois. We let

CQ = {σ ∈ Gal(EQ/Q) : σ2 = id., σ|K = σ0, σ|Q(ζQ) = τ |Q(ζQ)}.
Then p is inert and fails the q-test, for a given odd prime q, precisely when FrobEq/Q(p) ⊆ Cq (see
[Che02, Lemma 1.4]). Following Hooley’s GRH-conditional proof of Artin’s conjecture [Hoo67]
(see also [Mur83]), one deduces that the count of inert primes p ≤ x passing all the q-tests is
(δ + o(1))x/ log x (as x → ∞), for the constant

(3) δ :=
∑
Q odd

µ(Q)
|CQ|

[EQ : Q]

(cf. [Che02, Theorem 2.1]). From Lemmas 1.6 and 1.7 of [Che02], |CQ| = 1 and [EQ : Q] = 2Qϕ(Q),
for all odd squarefree Q. Hence,

δ =
1

2

∑
Q odd

µ(Q)

Qϕ(Q)
=

1

2

∏
q>2

(
1− 1

q(q − 1)

)
= A.

So far we have shown that there are ∼ Ax/ log x primes p ≤ x (as x → ∞) that are inert in K
and pass all the q-tests. However this is an overcount for our purposes; we wish to count only p
that satisfy p ≡ −1 mod 4. Provided that Q(i) is linearly disjoint from each EQ, this congruence
condition — which is a prescription of FrobQ(i)/Q(p) — can be folded into Chen’s arguments;
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it has the effect of multiplying each term on the right of (3) by 1
[Q(i):Q]

= 1
2
, thus yielding the

asymptotic formula (1).

It remains only to check the needed linear disjointness. If disjointness fails, then i ∈ EQ for some

odd Q. Let LQ = K(ζQ), so that EQ = LQ(
Q
√

1 +
√
2). Since ζQ ∈ LQ and Q is odd, EQ/LQ is an

odd degree extension (e.g., by Kummer theory [Lan02, §6.8, pp. 293–296]). Therefore, if i ∈ EQ,

it must be that i ∈ LQ and LQ = LQ(i). But [LQ : Q] = [Q(
√
2, ζQ)] ≤ [Q(

√
2) : Q] · [Q(ζQ) :

Q] = 2ϕ(Q) whereas

[LQ(i) : Q] = [Q(
√
2, i, ζQ) : Q] = [Q(ζ8, ζQ) : Q] = [Q(ζ8Q) : Q] = ϕ(8Q) = 4ϕ(Q).

This completes our sketch of the proof of Theorem 1.

3. Unconditional results: Proof of Theorem 3

Both Theorem 2 and Theorem 3 follow quickly from the next proposition.

Proposition 4. Among any 46 viable, linearly disjoint real quadratic fields, at least one contains
infinitely many HFD orders.

Proof of Theorems 2 and 3, assuming Proposition 4. Consider the following list of 46 prime num-
bers, each of which is congruent to 1 modulo 4:

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181,

193, 197, 233, 241, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397,

409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569.

For each prime ℓ on this list, one can check that the field Q(
√
ℓ) has class number 1. All of the

corresponding fundamental units have norm −1 as well: In fact, the fundamental unit of Q(
√
ℓ)

has norm −1 for every prime ℓ ≡ 1 (mod 4) (see [Coh80, Theorem 3, p. 185]). Furthermore, the

46 fields Q(
√
ℓ) here are linearly disjoint (by Kummer theory or by considering ramification).

Theorem 2 is now immediate from Proposition 4.

We turn to Theorem 3. Here is the key observation: Among any 245 distinct real quadratic
fields, one can select 46 that are linearly disjoint. To see this, write each of these fields in the
form Q(

√
d), where d is squarefree. We view the integers d as elements of Q×/(Q×)2, which is

naturally thought of as an F2-vector space. Then the d in question clearly span a subspace of size
at least 245 + 1 (the +1 coming from 1 also belonging to the span). So if we choose a basis for
our subspace from among the d, this basis will have size at least 46. Our observation now follows
from Kummer theory. Combining the observation with Proposition 4, we see that the number of
viable K not containing infinitely many HFD orders is smaller than 245. □

The remainder of this section is devoted to the proof of Proposition 4. Let Ki, for i = 1, 2, . . . , 46,
be linearly disjoint, viable real quadratic fields. Write each Ki = Q(

√
di), where the di are

squarefree, and let ∆i denote the discriminant of Ki. We let εi be the fundamental unit of Ki. We
view the Ki as subfields of R ⊆ C, and we let K ⊆ R be the compositum of all the Ki. For each
rational prime p, we fix a prime ideal P of OK lying above p, and we let FP = OK/P . (Which
prime P above p we choose is unimportant here.) Recalling (i) and (ii) from the introduction,
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Proposition 4 will follow if we show that for some i = 1, 2, . . . , 46, there are infinitely many primes
p which are inert in Ki and for which εi has order p+ 1 in the group F×

P/F×
p .

By the pigeonhole principle, it suffices to show that for all large x, there are ≫ x/(log x)2 primes
p ≤ x which are inert in all of K1, . . . , K46 and have the property that εi has order p+1 in F×

P/F×
p

for some i = 1, 2, . . . 46.

The primes we produce will come from a carefully tailored arithmetic progression. To begin
its construction, observe that K, Q(i), and Q(

√
−3) are linearly disjoint. Otherwise, there are

exponents a, a′, and a1, . . . , a46, each in {0, 1} and not all 0, such that

(−3)a(−1)a
′

46∏
i=1

daii ∈ (Q×)2.

Since theKi are assumed linearly disjoint, either a or a′ must be nonzero. Noting that (Q×)2 ⊆ R>0,
we are now forced to have a = a′ = 1, so that 3

∏46
i=1 d

ai
i is a square. Thus, 3 divides some di.

But then it is impossible for εi to have norm −1, as −1 is not a square mod 3.

By the Chebotarev density theorem, there are infinitely many primes p such that

(I) p is inert in every Ki,

(II) p splits completely in Q(
√
−3) (i.e., p ≡ 1 (mod 3)),

(III) p is inert in Q(i) (i.e., p ≡ −1 (mod 4)).

We fix a prime p0 satisfying (I)–(III). For each odd prime q dividing
∏46

i=1∆i, we let uq = p0 or
4p0, selected in such a way that q ∤ 1 + uq. Such a choice of uq is clearly possible when q ≥ 5,
and condition (II) above guarantees there is no problem when q = 3. We choose M so that
2M ∥ p0 + 1. (Note that M ≥ 2.) Let U be a solution to the system

U ≡ uq (mod q), for all odd primes q |
∏46

i=1
∆i,

U ≡ p0 (mod 2M+1),

and let

V = 2M+1
∏

q|∆1···∆46
q>2

ℓ.

Then U mod V is a coprime residue class. Furthermore, gcd(U + 1, V ) = 2M , and each integer
u ≡ U (mod V ) is such that 2M ∥ u+ 1.

We claim that every prime p ≡ U (mod V ) satisfies conditions (I) and (III) above. For the
proof, we must show that if ∆ ∈ {−4,∆1, . . . ,∆46}, and p is a prime with p ≡ U (mod V ),
then

(
∆
p

)
=

(
∆
p0

)
. We may factor ∆ as a product of prime discriminants ∆′, meaning −4,±8,

and (−1)(q−1)/2q for an odd prime q. It thus suffices to prove that
(
∆′

p

)
=

(
∆′

p0

)
for each of these

prime discriminants ∆′. If ∆′ = −4 or ±8, then
(
∆′

p

)
=

(
∆′

U

)
=

(
∆′

p0

)
, since p ≡ U ≡ p0 (mod 8).

Otherwise, ∆′ = (−1)(q−1)/2q for an odd prime q dividing V . In this case the character
(
∆′

·

)
coincides with the Legendre symbol

( ·
q

)
. Since p ≡ uq (mod q), we have that

(
p
q

)
=

(uq

q

)
, and(uq

q

)
=

(
p0
q

)
regardless of whether uq = p0 or 4p0.
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We now sieve the primes p ≡ U (mod V ). The linear sieve, in conjunction with the Bombieri–
Vinogradov theorem, produces ≫ x/(log x)2 primes p ≤ x with p ≡ U (mod V ) and

(4) P−
(
p+ 1

2M

)
> x0.24.

(See [DH08, Theorem 7.1, p. 81] for a statement of the linear sieve, and see Chapter 8 of this
same reference for details of an application similar to this one. The exponent 0.24 here may
be replaced by any number smaller than 1

4
.) The proof of Proposition 4 will be completed by

showing all but o(x/(log x)2) of these primes p are such that some εi has order p+ 1 in F×
P/F×

p .

Let p ≤ x be one of these primes produced by the sieve. Then p ≡ −1 (mod 4) and so −1 /∈ (F×
p )

2.

As (ε
(p+1)/2
i )2 = εp+1

i = −1 in FP , it follows that ε
p+1
i ∈ F×

p while ε
(p+1)/2
i /∈ F×

p . So if write wi for

the order of εi in the group F×
P/F×

p , then wi has the same 2-power-part 2M as p+ 1, and

wi = 2Mdi where di |
p+ 1

2M
.

From (4), the integer p+1
2M

has at most 4 prime factors (counted with multiplicity) and therefore
at most 15 proper divisors. Thus if all of the wi are proper divisors of p + 1, then among the
numbers w1, . . . , w46 we can choose 4 that coincide, say wi1 = wi2 = wi3 = wi4 =: w where
1 ≤ i1 < i2 < i3 < i4 ≤ 46. As F×

P is cyclic, it follows that εi1 , . . . , εi4 generate the same order
w subgroup of F×

P/F×
p . Since

p+1
w

is an integer larger than 1 and composed of primes exceeding

x0.24, we have w < p+1
x0.24 < x0.77 (for large x).

In summary, if a prime p ≤ x given to us by the linear sieve has none of the εi of desired order
p+ 1 in F×

P/F×
p , then some four of the εi generate a subgroup of F×

P/F×
p having order less than

x0.77. We now argue, following Matthews [Mat82], that the number of p with this last property is
quite a bit smaller than x/(log x)2.

Consider all products εe1i1 · · · ε
e4
i4
, where the exponents are nonnegative integers not exceeding

x0.195. Since there are > x0.78 exponent tuples, while #⟨εi1 , . . . , εi4⟩ < x0.77, two of our products
must coincide when viewed within F×

P/F×
p . It follows that for some integers E1, E2, E3, E4, not

exceeding x0.195 in absolute value and not all zero, εE1
i1

· · · εE4
i4

∈ F×
p (inside FP ). Viewed in FP , all

of εi1 , . . . , εi4 lie within the subfield Fp2 , and

(εE1
i1

· · · εE4
i4
)2 = NFp2/Fp(ε

E1
i1

· · · εE4
i4
) = (−1)E1+···+E4 = ±1.

Thus, in OK ,

ε4E1
i1

· · · ε4E4
i4

≡ 1 (mod P ).

But then

p | NK/Q(ε
4E1
i1

· · · ε4E4
i4

− 1).

We now bound the number of p for which this divisibility relation holds. We start by noticing that
the norm on the right-hand side is nonvanishing. Otherwise, with j the largest index for which

Ej ̸= 0, we have ε
4Ej

ij
= ε−4E1

i1
· · · ε−4Ej−1

ij−1
. But ε

4Ej

ij
belongs to Kij \ Q while ε−4E1

i1
· · · ε−4Ej−1

ij−1

belongs to the compositum of Ki1 , . . . , Kij−1
, contradicting the linear disjointness of {Ki}46i=1.
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Continuing, choose B = max1≤i≤46 |εi|. Recalling that each |Ei| ≤ x0.195 and noting that the
conjugate of a quadratic unit has the same absolute value as its inverse,∣∣NK/Q(ε

4E1
i1

· · · ε4E4
i4

− 1)
∣∣ ≤ (B16x0.195

+ 1)[K:Q] ≤ exp(B′x0.195),

for some constant B′ depending on the Ki. It follows that only O(x0.195) primes can divide
NK/Q(ε

4E1
i1

· · · ε4E4
i4

− 1), given E1, . . . , E4. There are ≪ (x0.195)4 = x0.78 choices of E1, . . . , E4 and
so in total there are ≪ x0.78 · x0.195 = x0.975 possibilities for p, for any given i1, . . . , i4. Finally,
there are only O(1) cases for i1, . . . , i4. We conclude that from the set of ≫ x/(log x)2 primes
p ≤ x given to us by the linear sieve, all but O(x0.975) of these have some εi of order p + 1 in
F×
P/F×

p . This completes the proof of Proposition 4.

Remark. The constants 46 and 245 above could be reduced by employing stronger analytic tools
(cf. [HB86, §§2–4], [Coh06, §4]).
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