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Abstract. Let ω(n) denote the number of distinct prime factors of the positive
integer n. In 1917, Hardy and Ramanujan showed that for all real numbers x ≥ 2 and
all positive integers k, ∑

n≤x
ω(n)=k

1 ≤ C
x

log x

(log log x + D)k−1

(k − 1)!
,

where C and D are absolute constants. We derive an analogous result when the
summand 1 is replaced by f(n), for many nonnegative multiplicative functions f .
Summing on k recovers a frequently-used mean-value theorem of Hall and Tenenbaum.
We use the same idea to establish a variant of a theorem of Shirokov, concerning
multiplicative functions that are o(1) on average at the primes.

1. Introduction

Write ω(n) for the number of distinct prime factors of the positive integer n. The
inequality of Hardy and Ramanujan referred to in the title is the following estimate,
published in 1917 [HR17].

Proposition 1 (Hardy–Ramanujan inequality). For all real x ≥ 2 and integers k ≥ 1,∑
n≤x

ω(n)=k

1� x

log x

(log log x+O(1))k−1

(k − 1)!
.

The implied constants are absolute.

Hardy and Ramanujan were led to Proposition 1 by considering the question

‘How composite is a large random number n? ’

The so-called Hardy–Ramanujan theorem provides an answer, taking ω(n) as a
measure of the compositeness of n. That result asserts that for any function Z = Z(x)
tending to infinity as x→∞, we have

|ω(n)− log log x| < Z
√

log log x

for all but o(x) values of n ≤ x.

In 1934, Turán gave an easier proof of the Hardy–Ramanujan theorem, by estimating
the second moment of ω(n)− log log x [Tur34]. While Turán’s argument is undeniably
simpler, the original proof based on Proposition 1 gives substantially sharper estimates
for the (in)frequency of large deviations of ω(n) from log log x. Those stronger bounds
are often important in applications.
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This note was prompted by the observation that the method of Hardy and Ramanujan
can be adapted to study the partial sums of nonnegative multiplicative functions.

In order to state the main theorem in a generality sufficient for all of our applications, we
introduce the notion of a log-like function. We say L is log-like if L(x) is positive and
increasing for x ≥ 2, and if there is a positive constant K such that, for all x ≥ 2,

(1)
L(x)

L(x/w)
≤ 1 +K

logw

log x
whenever 2 ≤ w ≤ min{1

2
x,
√
x}.

Given our choice of terminology, it is reassuring that L(x) = log x is log-like: When
w ≤

√
x,

log x

log (x/w)
=

1

1− logw
log x

= 1 +
logw

log x

(
1 +

(
logw

log x

)
+

(
logw

log x

)2

+ . . .

)
≤ 1 + 2

logw

log x
,

so that (1) holds with K = 2. The reader can check that other examples of log-like
functions include L(x) = (log x)A for any fixed A > 0, and L(x) = log x · log log (2x),
L(x) = log x · log log (2x) · log log log (8x).

Theorem 2. Let f be a nonnegative multiplicative function, and let L be a log-like
function, satisfying (1) for the constant K. For all x ≥ 2, and all positive integers k,

(2)
∑
n≤x

ω(n)=k

f(n) ≤ Ax

L(x)

k−1∑
j=0

(1
2
BK)k−1−j

(k − 1− j)!
∑
m≤x

ω(m)=j

f(m)

m
,

where

A = sup
x1/2

k≤t≤x

1

t/L(t)

∑
pν≤t

f(pν), B = sup
x1/2

k≤t≤x

1

log t

∑
pν≤t

f(pν)
log(pν)

pν
. 1

(Here and below, we reserve the letter p for prime numbers.)

Theorem 2 has several pleasant consequences. If we insert the inequality∑
m≤x

ω(m)=j

f(m)

m
≤ 1

j!

(∑
pν≤x

f(pν)

pν

)j

into (2) and apply the binomial theorem, we obtain an analogue of Proposition 1 with
the summand 1 replaced by f(n).

Corollary 3. Under the assumptions of Theorem 2,∑
n≤x

ω(n)=k

f(n) ≤ Ax

L(x)
· 1

(k − 1)!

(∑
pν≤x

f(pν)

pν
+

1

2
BK

)k−1

.

The original Hardy–Ramanujan inequality can be recovered from Corollary 3 by taking
f to be identically 1, taking L(x) = log x and K = 2, and appealing to elementary
estimates in prime number theory.

1In the definition of A, we understand 1
t/L(t)

∑
pν≤t f(pν) as 0 when t < 2, even if L(t) is undefined.
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Another application of Corollary 3 is a Hardy–Ramanujan inequality for integers
composed entirely of primes from a specified set P . Choose f to be the (multiplicative)
indicator function of these integers, and take L(x) = log x. Elementary prime number
theory shows that the quantities A,B in Theorem 2 are absolutely bounded. We thus
deduce that

(3)
∑
n≤x

p|n⇒p∈P
ω(n)=k

1� x

log x
· 1

(k − 1)!

(∑
p∈P
p≤x

1

p
+O(1)

)k−1

,

where all implied constants are absolute. If we take P in (3) as the complement of a set
of primes Q, we obtain a cross between Proposition 1 and a simple sieve bound:

(4)
∑
n≤x

p|n⇒p/∈Q
ω(n)=k

1� x

log x
· 1

(k − 1)!

(
log log x+O(1)−

∑
q∈Q
q≤x

1

q

)k−1

.

The estimate (3) might be contrasted with Theorem 08 of [HT88], which treats the
orthogonal situation where the n are unrestricted but one only counts prime factors
from P. It would seem surprising if (3) and (4) had not been observed previously, but
in any case they do not seem to be well-known.

Summing the estimate (2) of Theorem 2 over all positive integers k, and rearranging,
gives ∑

1<n≤x

f(n) ≤ A
x

L(x)
exp

(
1

2
BK

)∑
m≤x

f(m)

m
,

where

A = sup
t≤x

1

t/L(t)

∑
pν≤t

f(pν), B = sup
t≤x

1

log t

∑
pν≤t

f(pν)
log(pν)

pν
.

Specializing to L(x) = log x and K = 2, we recover (a slight variant of) a mean-value
theorem of Hall and Tenenbaum; compare with Theorem 01 in [HT88]. It should be
noted that the proof of our Theorem 2 is decidedly more complicated than the original
Hall–Tenenbaum argument; our point with this observation is simply to highlight how
Theorem 2 can be thought of a ‘dissected’ mean-value estimate.

We intend Theorem 2 and Corollary 3 as easy-to-apply, general-purpose upper bounds.
But under certain extra conditions, the estimates they yield are asymptotically sharp.
We illustrate this by using those results to establish an asymptotic mean-value theorem
for certain nonnegative multiplicative functions that are o(1) on average at the primes.
Similar results were obtained by Lucht [Luc74] and Shirokov [Shi81], but their methods
are quite different.

Theorem 4. Let f be a nonnegative multiplicative function. Assume that there are
positive constants c1, c2, with c2 <

1
2
, such that

(5) f(pν) ≤ c1p
c2ν

for all primes p and all positive integers ν. Assume further that there is a positive
constant A, and a log-like function L(x) with L(x)/ log x→∞ as x→∞, such that

(6)
∑
pν≤x

f(pν) ∼ Ax/L(x).
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Then

(7)
∑
n≤x

f(n) ∼ Ax

L(x)

∑
m≤x

f(m)

m
.

Furthermore,

(8)
∑
m≤x

f(m)

m
∼
∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
.

In a concluding remark, we sketch an application of Theorem 4 to a question of Loughran
[Lou].

2. A dissected mean value theorem: Proof of Theorem 2

When k = 1, the claim of Theorem 2 is that
∑

pν≤x f(pν) ≤ Ax/L(x).2 That inequality
is clear from the definition of A. So we may assume that k ≥ 2.

An integer n ≤ x can have at most one exact prime power divisor exceeding
√
x. Thus,

if ω(n) = k, then at least k − 1 of the exact prime power divisors of n are bounded by√
x. Consequently, using the notation P1, P2, P3, . . . for prime powers, we have that for

k ≥ 2, ∑
n≤x

ω(n)=k

f(n) ≤ 1

k − 1

∑
P1≤min{

√
x, 1

2
x}

f(P1)
∑

m≤x/P1

ω(m)=k−1
gcd(m,P1)=1

f(m).

If k ≥ 3, repeating the process on the inner sum yields∑
n≤x

ω(n)=k

f(n) ≤ 1

(k − 1)(k − 2)

∑
P1≤min{

√
x, 1

2
x}

P2≤min{
√
x/P1,

1
2
x/P1}

gcd(P1,P2)=1

f(P1)f(P2)
∑

m≤x/P1P2

ω(m)=k−2
gcd(m,P1P2)=1

f(m).

Continuing in the same way, we eventually find that

(9)
∑
n≤x

ω(n)=k

f(n) ≤ 1

(k − 1)!

∑
P1,...,Pk−1

f(P1) . . . f(Pk−1)
∑

m≤x/P1···Pk−1

ω(m)=1
gcd(m,P1···Pk−1)=1

f(m);

here the conditions on the prime powers P1, . . . , Pk−1 are that

(i) P1, . . . , Pk−1 are pairwise relatively prime,

(ii) each Pi ≤ min{
√
x/P1 · · ·Pi−1, 12x/P1 · · ·Pi−1}.

Before proceeding, notice that x/P1 ≥ x1/2, that x/P1P2 ≥ (x/P1)
1/2 ≥ x1/4, and in

general, x/P1 . . . Pj ≥ x1/2
j
. So from the definition of A, the inner sum on m in the

last display is at most A x/P1···Pk−1

L(x/P1···Pk−1)
. (We have ignored the coprimality condition on m,

2We take f(1) = 1 as included in the definition of f being multiplicative.
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which would only make the sum smaller.) Moreover,

L(x)

L(x/P1 · · ·Pk−1)
=

L(x)

L(x/P1)

L(x/P1)

L(x/P1P2)
· · · L(x/P1 · · ·Pk−2)

L(x/P1 · · ·Pk−1)

≤
(

1 +K
logP1

log x

)(
1 +K

logP2

log (x/P1)

)
· · ·
(

1 +K
logPk−1

log (x/P1 · · ·Pk−2)

)
.

Revisiting (9) with these estimates in mind, we now see that

∑
n≤x

ω(n)=k

f(n) ≤ Ax

(k − 1)! · L(x)

∑
P1,...,Pk−1

f(P1) · · · f(Pk−1)

P1 · · ·Pk−1

×
(

1 +K
logP1

log x

)(
1 +K

logP2

log (x/P1)

)
· · ·
(

1 +K
logPk−1

log (x/P1 · · ·Pk−2)

)
.

After multiplying out, the remaining sum on P1, . . . , Pk−1 becomes a sum of 2k−1 terms,
each having the form

K |I|
∑

P1,...,Pk−1

∏
i/∈I

f(Pi)

Pi

∏
i∈I

f(Pi) logPi
Pi log(x/P1 · · ·Pi−1)

for some subset I ⊆ {1, 2, . . . , k − 1}.

Let us estimate the contribution from a given index set I. If I is nonempty, let i1
be the largest element of I. Fix all Pi with i 6= i1, and consider all choices of Pi1 for

which (Pi)
k−1
i=1 satisfies (i), (ii) above. In each such tuple, Pi1 ≤

√
x/P1 · · ·Pi1−1, and√

x/P1 · · ·Pi1−1 ≥ x1/2
i1 > x1/2

k
. Recalling the definition of B, we deduce that the

expression in the last display is bounded above by(
1

2
B

)
K |I|

∑
Pi, i6=i1

∏
i/∈I

f(Pi)

Pi

∏
i∈I
i 6=i1

f(Pi) logPi
Pi log(x/P1 · · ·Pi−1)

.

Here the first sum is over all tuples (Pi)1≤i≤k−1, i6=i1 for which there exists some choice
of Pi1 making (Pi)

k−1
i=1 satisfy (i) and (ii). If I \ {i1} is nonempty, repeat the procedure,

working with next largest element of I in place of i1. Continuing in this way, we
eventually obtain an upper bound of(

1

2
B

)|I|
K |I|

∑
Pi, i/∈I

∏
i/∈I

f(Pi)

Pi
.

Here the sum is over all tuples (Pi)i/∈I which can be filled out to a tuple (Pi)
k−1
i=1

satisfying (i) and (ii). For those tuples (Pi)i/∈I , the number
∏

i/∈I Pi is a positive integer
not exceeding x with k− 1−|I| distinct prime factors. Furthermore, at most k− 1−|I|
such tuples (Pi)i/∈I give rise to the same product

∏
i/∈I Pi (by unique factorization). So

viewing m =
∏

i/∈I Pi, we obtain an upper bound of(
1

2
B

)|I|
K |I|(k − 1− |I|)!

∑
m≤x

ω(m)=k−1−|I|

f(m)

m
.
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Thus, writing j for |I|,∑
n≤x

ω(n)=k

f(n) ≤ Ax

(k − 1)! · L(x)

∑
I

(
1

2
B

)|I|
K |I|(k − 1− |I|)!

∑
m≤x

ω(m)=k−1−|I|

f(m)

m

=
Ax

(k − 1)! · L(x)

k−1∑
j=0

(
k − 1

j

)(
1

2
BK

)j
(k − 1− j)!

∑
m≤x

ω(m)=k−1−j

f(m)

m

=
Ax

L(x)

k−1∑
j=0

(
1
2
BK

)j
j!

∑
m≤x

ω(m)=k−1−j

f(m)

m
.

Replacing j with k − 1− j gives Theorem 2.

3. Multiplicative functions with average o(1) at the primes:
Proof of Theorem 4

We begin at the end, with a proof of the asymptotic relation (8).

We can view (8) as the claim that, as x→∞,∑
m>x

p|m⇒p≤x

f(m)

m
= o

(∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

))
.

The condition (5) on the size of f(pν) implies that the right-hand product on p is

�f exp(
∑

p≤x
f(p)
p

). So our task is to show that

(10)
∑
m>x

p|m⇒p≤x

f(m)

m
= o

(
exp

(∑
p≤x

f(p)

p

))
.

We apply Rankin’s trick. Fix u > 0. For all large x,∑
m>x

p|m⇒p≤x

f(m)

m
≤

∑
m≥1

p|m⇒p≤x

f(m)

m

( x
m

)−u/ log x

= exp(−u)
∑
m≥1

p|m⇒p≤x

f(m)

m1−u/ log x �f exp(−u) exp

(∑
p≤x

f(p)

p1−u/ log x

)
.

Now pu/ log x = 1 +Ou(log p/ log x) for p ≤ x. Thus,∑
p≤x

f(p)

p1−u/ log x
≤
∑
p≤x

f(p)

p
+Ou

(
1

log x

∑
p≤x

f(p) log p

p

)
.

Keeping in mind that L(x)/ log x→∞ as x→∞, the asymptotic relation (6) implies,
by partial summation, that

(11)
∑
pν≤x

f(pν) log pν

pν
= o(log x),
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as x → ∞. So the expression inside our last Ou-term tends to 0, which implies that

exp(
∑

p≤x
f(p)

p1−u/ log x ) ≤ (1 + o(1)) exp(
∑

p≤x
f(p)
p

), as x→∞. Collecting our estimates,

we see that for all large x,∑
m>x

p|m⇒p≤x

f(m)

m
�f exp(−u) exp

(∑
p≤x

f(p)

p

)
.

Since u can be taken arbitrarily large, (10), and also (8), follows.

Before proceeding with the proof of (7) we make the following observation: For each
fixed ε > 0,

(12)
∑
m≤xε

f(m)

m
∼
∑
m≤x

f(m)

m
,

as x→∞. The proof will use, again, that (6) holds with an L(x) of larger order than
log x; note in particular that f = 1 does not satisfy (10) or (12). In view of what we
showed above, (12) will be proved if∏

xε<p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
= 1 + o(1).

Now the left-hand side is here at least 1, and at most

exp

(∑
j≥1

∑
xε<p≤x

f(pj)

pj

)
.

The bound (5) suffices to show that the terms with j ≥ 2 make a total contribution to
the double sum of o(1), as x→∞. The terms with j = 1 also contribute o(1), as we
see by partial summation applied to (6). The relation (12) follows.

We now commence the proof of (7). We begin with the lower bound.

We consider the contribution to
∑

n≤x f(n) from the values n = pm, where m ≤ x1/3

and x1/2 < p ≤ x/m. Note that p and m are relatively prime, and that distinct
choices of p and m give rise to distinct products pm. For each m ≤ x1/3, the terms pm
contribute

f(m)
∑

x1/2<p≤x/m

f(p).

Now ∑
x1/2<p≤x/m

f(p) =
∑

x1/2<pν≤x/m

f(pν)−
∑

x1/2<pν≤x/m
ν≥2

f(pν).

Each term in the subtracted sum has size at most c1(x/m)c2 , and there are O((x/m)1/2)

terms; thus, this sum has size O((x/m)
1
2
+c2). Hence,

(13)
∑

x1/2<p≤x/m

f(p) = (1 + o(1))
Ax/m

L(x/m)
− (1 + o(1))

Ax1/2

L(x1/2)
−O((x/m)

1
2
+c2).

Here the o(1) notation indicates decay to 0 as x → ∞, uniformly in m ≤ x1/3. Next,
observe that

L(x)

L(x1/2)
≤ 1 +

K

2
for all x ≥ 4,



8 PAUL POLLACK

which implies that L(x) ≤ (log x)O(1) for large x. Keeping in mind that m ≤ x1/3, we

now see that the first term being subtracted in (13) is of smaller order than Ax/m
L(x/m)

. The

same is true for the second subtracted term. We deduce that

f(m)
∑

x1/2<p≤x/m

f(p) ≥ (1 + o(1))
Ax

L(x/m)

f(m)

m

≥ (1 + o(1))
Ax

L(x)

f(m)

m
.

Summing on m ≤ x1/3, we conclude that∑
n≤x

f(n) ≥ (1 + o(1))
Ax

L(x)

∑
m≤x1/3

f(m)

m
.

The lower bound half of (7) now follows from (12).

Turning to the upper bound, we first handle the contribution from n having ω(n) ≤
log log x. Fix ε > 0. When k ≤ log log x,

x1/2
k

= exp(
1

2k
log x) ≥ exp((log x)1−log 2),

which tends to infinity with x. Thus, for all large x, and every k ≤ log log x,

sup
x1/2

k≤t≤x

1

t/L(t)

∑
pν≤t

f(pν) ≤ (1 + ε)A,

and

sup
x1/2

k≤t≤x

1

log t

∑
pν≤t

f(pν)
log(pν)

pν
≤ ε.

(To obtain the second of these estimates, recall (11).) Summing (2) on k (with A
replaced by (1 + ε)A and B by ε), we deduce that for all large enough x,∑

1<n≤x
ω(n)≤log log x

f(n) ≤
∑

k≤log log x

(
A(1 + ε)x

L(x)

k−1∑
j=0

(1
2
εK)k−1−j

(k − 1− j)!
∑
m≤x

ω(m)=j

f(m)

m

)

≤ A(1 + ε) · x

L(x)
exp

(
1

2
εK

)∑
m≤x

f(m)

m
.

Since ε can be taken arbitrarily small, we have an upper bound of the correct shape for
the contribution from these restricted values of n.

It therefore suffices to show that those n with ω(n) > log log x make a contribution of
lower order. For this we use Corollary 3. We can pick constants A′ and B′ such that,
for all t ≥ 2,

1

t/L(t)

∑
pν≤t

f(pν) ≤ A′ and
1

log t

∑
pν≤t

f(pν)
log pν

pν
≤ B′.

By Corollary 3,∑
n≤x

ω(n)>log log x

f(n) ≤ A′x

L(x)

∑
k>log log x

1

(k − 1)!

(∑
pν≤x

f(pν)

pν
+

1

2
B′K

)k−1

.
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By (6) and partial summation, the sum of f(pν)p−ν over pν ≤ x is o(log log x). This
implies that the sum on k is dominated, in magnitude, by its first term. Using Stirling’s
formula to estimate that term, we see that this sum on k is o(1) (in fact, decaying to 0
faster than any negative power of log x), and so is certainly o(

∑
m≤x f(m)/m). This

completes the proof of Theorem 4.

Remark. On MathOverflow, Loughran [Lou] asked whether there exists a c > 0 and a
nonnegative multiplicative function f for which

(14)
∑
n≤x

f(n) ∼ c
x

log x
,

as x→∞. His question was answered in the affirmative by Quas (ibid.), who exhibited
such an f explicitly. Quas’s example is somewhat pathological, being supported on the
very sparse set of integers having the form 2k3` for nonnegative integers k, `. Of course,
in order for (14) to hold for an f of such sparse support, f must take on arbitrarily
large values. We now explain how Theorem 4 gives us an f satisfying (14) with each
f(n) ∈ {0, 1}.

Recall that the sequence of Golomb primes, introduced in [Gol55], is defined as
follows. We let p1 = 3, and we inductively define pk as the smallest prime exceeding
pk−1 that is not congruent to 1 modulo pi for any i < k. We write P for the set of
Golomb primes. With πP(x) the counting function of P , Erdős proved in [Erd62] that

πP(x) ∼ x

log x · log log x

as x→∞ (see the theorem on p. 1 of [Erd62]), and also (eq. (37) of [Erd62]) that∏
p∈P
p≤x

(
1− 1

p− 1

)
∼ 1

log log x
.

Let f be the characteristic function of those integers composed entirely of primes from
P. Inserting Erdős’s estimates into Theorem 4 (applied with L(x) = log x · log log (2x)),
it is straightforward to derive that∑

n≤x

f(n) ∼ cx/ log x, where c =
∏
p∈P

(
1− 1

(p− 1)2

)
.

(In this argument, we could have applied [Luc74, Satz 3] or [Shi81, Theorem 2] in place
of our Theorem 4.)
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