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For a positive integer n, define s(n) as the sum of the proper
divisors of n. If s(n) > 0, define s2(n) = s(s(n)), and so on for higher
iterates. Sociable numbers are those n with sk(n) = n for some k,
the least such k being the order of n. Such numbers have been of
interest since antiquity, when order-1 sociables (perfect numbers)
and order-2 sociables (amicable numbers) were studied. In this
paper we make progress towards the conjecture that the sociable
numbers have asymptotic density 0. We show that the number of
sociable numbers in [1, x], whose cycle contains at most k numbers
greater than x, is o(x) for each fixed k. In particular, the number of
sociable numbers whose cycle is contained entirely in [1, x] is o(x),
as is the number of sociable numbers in [1, x] with order at most k.
We also prove that but for a set of sociable numbers of asymptotic
density 0, all sociable numbers are contained within the set of odd
abundant numbers, which has asymptotic density about 1/500.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

1.1. History

Let s(n) denote the sum of the proper divisors of the positive integer n, so that s(n) = σ(n) − n.
The study of the behavior of this arithmetic function has a long and rich history, going back to the
ancient Greeks, who classified the positive integers as deficient, perfect, or abundant, according as s(n)

is less than, equal to, or greater than n, respectively. For example, 5 is deficient, 6 is perfect, and 12
is abundant.
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Another concept steeped in history (some scholars have traced it to the Old Testament) is that of
an amicable pair. Two distinct numbers m, n are called amicable (and are said to form an amicable
pair) if s(m) = n and s(n) = m. The first example consists of the pair 220 and 284.

It has seemed interesting to iterate the function s starting at an arbitrary natural number n. For
example, if n = 15, the sequence is 15,9,4,3,1,0, and so the sequence terminates, while if n = 6
or n = 220, the sequence is purely periodic. Let s0(n) = n, and inductively define sk(n) = s(sk−1(n))

when k � 1 and sk−1(n) > 0. The aliquot sequence at n is n, s1(n), s2(n), . . . , which either terminates
at 0 or is an infinite sequence. In 1888, Catalan [4] proposed the “empirical theorem” that all infinite
aliquot sequences reach a perfect number. Perrott [27] promptly pointed out that this fails for the
sequence starting at 220, and Dickson [8] later amended Catalan’s conjecture to the claim that all
aliquot sequences are bounded. This latter claim is now known as the Catalan–Dickson conjecture.
Though we know no counterexamples, Guy and Selfridge [19] have made the counter-conjecture that
in fact unbounded sequences are fairly common. The least n for which we do not know whether the
aliquot sequence starting at n is unbounded is 276.

It is common to call a natural number n whose aliquot sequence is purely periodic a sociable
number, with the least k > 0 with sk(n) = n called the order of n. Thus, perfect numbers are the
sociable numbers of order 1 and amicable numbers are those of order 2. If n is sociable of order k,
the set {n, s(n), . . . , sk−1(n)} is called a sociable k-cycle.

There are many results on these topics from a statistical point of view. Building on work of Schoen-
berg dealing with Euler’s function ϕ , Davenport [6] showed that the arithmetic function σ(n)/n has
a continuous distribution. That is, for each real number u, the set

{
n ∈ N: σ(n)/n � u

}

has an asymptotic density, call it D(u), and this function of u is continuous and strictly increasing
for u � 1, with D(1) = 0 and limu→+∞ D(u) = 1. Thus, using this result, we see that the deficient
numbers and the abundant numbers each have a positive asymptotic density, while the continuity
of D(u) implies that the perfect numbers have asymptotic density 0. It is now known after work of
Behrend [2], Wall et al. [35,36], and Deléglise [7] that the density of the abundant numbers is slightly
less than a quarter, between 0.2475 and 0.2480 (see also [18, p. 75]).

In 1954, Kanold [22] gave a “direct” proof that the set of perfect numbers has asymptotic density
zero; that is, a proof that does not invoke the distribution function D(u). After many intermediate
results we now know after Hornfeck and Wirsing [21] and Wirsing [37] that the number of perfect
numbers up to x is O (xc/ log log x) for some constant c > 0. This result is presumably still far from the
truth.

Less is known about the distribution of amicable pairs, and unlike for perfect numbers, there
are contrary opinions about what one should expect to hold. On the basis of numerical evidence up
to 108, Bratley, Lunnon, and McKay [3] conjecture that A(x), the number of amicable numbers up to x,
is o(x1/2). (These computations are extended in [32] and [17].) Interestingly, Erdős held the contrary
belief that for each ε > 0, one should have A(x) > x1−ε for all sufficiently large x. The first proved
result on the distribution of amicable numbers is that of Kanold [22], who showed that the amicable
numbers have upper density < 0.204. Shortly thereafter, Erdős [12] established that the density is
zero. In Pomerance [29] it is shown that

A(x) � x exp
(−(log x)1/3)

for all sufficiently large x. In particular, the sum of the reciprocals of the amicable numbers is finite.
Lower bounds for their distribution appear much more difficult to obtain; though almost twelve mil-
lion amicable pairs are known ([26]; see also [17]), we have no proof that there are infinitely many.

The question of whether there exist sociable numbers of order > 2 was raised by Meissner in 1907
[24]. The first examples, of length 5 and 28, were given by Poulet in 1918 [30]. Today there are 175
known aliquot cycles of length > 2, all but ten of which have length 4. See [25] for a complete list of
known cycles together with the relevant references.
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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The goal of this paper is to study the asymptotic distribution of sociable numbers, and in particular
to make progress towards the following conjecture.

Conjecture 1. The set of sociable numbers has asymptotic density zero. That is, almost all numbers are not
sociable.

1.2. Results

In the same paper [12] where Erdős established that the amicable numbers have density zero,
he remarked that a similar argument would establish the same result for the sociable numbers of
order k, for any fixed k. These ideas were developed in [14]. In that paper Erdős introduces the
following conjecture.

Conjecture A. For each δ > 0 and positive integer J , we have both

s j+1(n)

s j(n)
>

s(n)

n
− δ (1.1)

and

s j+1(n)

s j(n)
<

s(n)

n
+ δ (1.2)

for all 1 � j � J , except for a set of numbers n of density zero.

Erdős [14] contains a proof that (1.1) holds for all j � J except on a set of density zero. (Also see
Lenstra [23].) For (1.2), a proof is claimed, but not given. This claim was later retracted in [16], where
a proof of (1.2) was given for the case J = 1.

To see how Conjecture A relates to the distribution of sociable numbers, we recall the distribution
function D(u) discussed above. Fix k � 1, and suppose ε > 0. Suppose n � x is the smallest member
of a sociable k-cycle. Notice that n is nondeficient, i.e., that s(n)/n � 1. Choosing δ > 0 small enough,
we can assume, at the cost of excluding at most εx values of n � x, that s(n)/n � 1 + δ. (It is enough
to choose δ so that D(2 + δ) − D(2) < ε , which is possible by the continuity of D(u).) But for each of
these values of n, the lower inequality (1.1) fails for j = k − 1. Indeed,

s
(
sk−1(n)

) = sk(n) = n � sk−1(n),

so that sk−1(n) is not abundant, contradicting (1.1) (with the same value of δ). It follows (from the
proved half of Conjecture A) that the upper density of these n is at most ε , and so the upper density
of the sociable numbers of order k is at most kε .

While this argument suffices to show that the sociable numbers of order k have density zero for
each fixed k, it yields only very poor explicit upper bounds, and also fails to give a result which is
uniform in any reasonable range of k. Our first theorem partially addresses these issues. Let log1 x =
max{log x,1} and inductively define logk x = max{log(logk−1 x),1}.

Theorem 1.

(a) The number of sociable cycles all of whose terms are contained in [1, x] is at most x/L(x)1+o(1) , where

L(x) = exp(
√

log3 x log4 x).

(b) The number of sociable n � x of order at most k is bounded by

k(2 log4 x)k x

L(x)1+o(1)
.

Here the o(1)-term tends to zero as x → ∞, uniformly in k � 1.
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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Part (a) of this theorem follows from the method used in [28] to study amicable pairs. Part (b) is
obtained by inserting into that argument an estimate obtained by Erdős in his investigation into the
behavior of the distribution function D(u) for large u.

We can obtain results sharper than those of Theorem 1 if we restrict ourselves to a special class
of sociable numbers. Let {n1, . . . ,nk} be a sociable cycle of order k, and let a be the greatest common
divisor of the ni . Following Cohen [5], we call {n1, . . . ,nk} a regular sociable cycle if a is a unitary
divisor of each of the ni , i.e., if gcd(a,ni/a) = 1 for all 1 � i � k. A sociable number is called regular
if it belongs to a regular cycle. This classification is of interest in light of a theorem of Dickson [8],
which asserts the irregularity of all sociable numbers of odd order k > 1. Since [8] is no longer easily
accessible, we include a variant of Dickson’s proof in Section 3.

Theorem 2.

(a) The number of irregular sociable cycles all of whose terms are contained in [1, x] is

� x√
log2 x log3 x

.

In particular, this estimate holds for the number of sociable cycles of odd order contained in [1, x].
(b) The number of irregular sociable numbers n � x of order at most k is

� k(2 log4 x)k x√
log2 x log3 x

,

where the implied constant is uniform in k � 1.

Theorem 1 provides a nontrivial upper bound on the number of sociable numbers of order at
most k, as long as k does not exceed (1 − ε)

√
log3 x log4 x/ log5 x. The bound of Theorem 2(b) for

irregular sociable numbers is nontrivial for k up to ( 1
2 − ε) log3 x/ log5 x.

We have been able to prove some additional results that lend support for Conjecture 1.

Theorem 3. The set of deficient sociable numbers has density zero. In fact, the number of deficient sociable
numbers up to x is O (x/L(x)1/12), where L(x) is as defined in Theorem 1.

As we will see later, a plausible hypothesis on the behavior of D(u) around u = 2 would permit
one to improve the upper bound in Theorem 3 to O (x(log3 x)3/(log2 x)1/8).

Theorem 4. All but O (x/ log3 x) sociable numbers n � x belong to a cycle with more than K (x) consecutive
terms exceeding x, where K (x) = 1

9 log3 x/ log6 x.

Note that as a consequence of Theorem 4, almost no numbers up to x are sociable of order at
most K (x). As we discuss below, a version of Theorem 4 with a tighter bound on the exceptional set
can be proved for odd sociable numbers, if one assumes that odd perfect numbers do not exist.

Theorem 5. The set of even abundant sociable numbers has density zero. In fact, the number of even abundant
sociable numbers not exceeding x is O (x/ log3 x).

Taken together, Theorems 3 and 5 imply that all sociable numbers, except for a set of asymptotic
density zero, are contained within the set of odd abundants. Call an odd abundant sociable number n
a special sociable if the number preceding n in its cycle exceeds nL(n)1/2 = n exp( 1

2

√
log3 n log4 n). Our

next theorem asserts that these special sociables form the only obstruction to establishing Conjec-
ture 1.
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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Theorem 6.

(a) The set of sociable numbers whose cycle contains no special sociable number has density zero. In fact, there
are O (x/ log3 x) such numbers up to x.

(b) If the set of special sociable numbers has density zero, then Conjecture 1 holds.

In the final section we make some further observations about the set of odd abundant sociable
numbers. In addition we show that the odd abundant numbers have density about 1/500, while an
upper bound for the upper density of the special sociable numbers is about 1/6000.

Notation. In addition to the usual notation of analytic number theory and our notation logk for iter-
ated logarithms (explained above), we find it convenient to give meaning to iterates of s indexed by
negative integers. We let s−1 denote the inverse of the restriction of s to the sociable numbers, and
for j > 1, we let s− j be the jth iterate of s−1. Thus, if n is sociable, s− j(n) is the unique sociable
number m with s j(m) = n. In general, we reserve the letters p,q, r for primes.

2. Preliminaries

2.1. Results from the literature

Lemma 1. Let m be a positive integer. The number of n � x for which m � σ(n) is

� x/(log x)1/ϕ(m),

where the implied constant is absolute.

Proof. From [28, Theorem 2] we have that for all but O (x/(log x)1/ϕ(m)) numbers n � x, there is a
prime p ≡ −1 (mod m) for which p ‖ n. Then m | p + 1 | σ(n). �
Theorem A. The number of positive integers n � x for which n is abundant but s(n) is deficient is at most

x/L(x)1+o(1), as x → ∞, (2.1)

where L(x) is defined in Theorem 1. The same upper bound holds on the number of sociable n � x for which n
is deficient but s(n) is abundant.

Sketch of the proof. The first half of Theorem A is established (implicitly) in the argument of [28] on
amicable pairs. In that paper, the result appears with an unspecified constant in place of (1 + o(1));
however, as remarked there (see p. 221), this result is valid with c + o(1) in the exponent, provided
the number of primitive abundant numbers up to x is

� x/exp
((

c + o(1)
)√

log x log log x
)
. (2.2)

Work of Avidon [1] shows that we may take c = 1 in (2.2). (We say n is primitive abundant—more
technically, primitive nondeficient—if s(n) � n and s(d) < d for all d | n with d < n.)

The second half of Theorem A is proved in a similar manner. Notice that since n is sociable,
m := s(n) determines n, so that it is enough to bound the number of possible values of m. Also,
m < n � x. If n is deficient but m is abundant, then for some primitive abundant number a we have
a | m but a � n; so a � σ(n). As in [28], we may assume that a � (log log x)1−1/ log4 x , since from (2.2) the
number of m � x with a primitive abundant divisor exceeding (log log x)1−1/ log4 x is bounded by (2.1)
(cf. the proof of [28, Theorem 3]). From Lemma 1, we have that the number of n � x for which a � σ(n)
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
doi:10.1016/j.jnt.2008.10.011
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is � x/(log x)1/ϕ(a) , with an absolute implied constant. Replacing ϕ(a) by a and summing over the
possibilities for a, we obtain a (crude) upper estimate of

� x log log x

(log x)1/(log log x)1−1/ log4 x
= x log log x

exp(exp(log3 x/ log4 x))
,

which is negligible compared to our target upper bound (2.1). �
The next few results concern the distribution of σ(n)/n on the positive integers n � x.

Theorem B. For every x > 0, the number of positive integers n � x with σ(n)/n > y is

� x/exp
(
exp

((
e−γ + o(1)

)
y
))

, as y → ∞,

uniformly in x, with γ the Euler–Mascheroni constant.

Theorem B, which appears implicitly in [11], refines the well-known upper estimate

σ(n) �
(
eγ + o(1)

)
n log log n.

If we take the estimate of Theorem B, divide by x, and let x tend to infinity, we obtain that

1 − D(u) � exp
(−exp

((
e−γ + o(1)

)
u
))

(as u → ∞),

and this “tail-estimate” is essentially Erdős’s Theorem 1 in [11]. However, a careful reading of the proof
of that theorem reveals that his argument actually proves the more uniform estimate of Theorem B.

The next result is the main theorem of Erdős’s paper [13]. Its applicability to the study of sociable
numbers was noted already by Erdős and Rieger [15] (see also [31]), who used it to prove that there
are O (x/ log3 x) amicable numbers up to x.

Theorem C. Let ρ be any real number and let t > 1. If x > t, then the number of n � x for which σ(n)/n ∈
[ρ,ρ + 1/t) is O (x/ log t). Here the implied constant is absolute.

If we fix a number ρ in the range of σ(n)/n, then, as discussed in [13], Theorem C is in some
sense best possible. However, if ρ is the right-endpoint of our interval rather than the left, then we
can do better. The following estimate is due to Toulmonde (cf. [33, Théorème 1] and the discussion
in §10 of that paper).

Theorem D. Fix a number ρ in the range of σ(n)/n. Then for t sufficiently large (which may depend on ρ)
and x > 0, the number of n � x for which σ(n)/n ∈ [ρ − 1/t,ρ) is

� x

exp( 1
5

√
log t log log t)

.

Here the implied constant is absolute.

2.2. Conjecture A revisited

As mentioned above, Erdős’s Conjecture A is a theorem in the special case when J = 1. That is, on
a set of n of density 1, we have s2(n)/s(n) = s(n)/n + o(1). For our purposes it is important to have
an explicit version of this result for sociable numbers:
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
doi:10.1016/j.jnt.2008.10.011



ARTICLE IN PRESS YJNTH:3770

JID:YJNTH AID:3770 /FLA [m1G; v 1.76; Prn:7/01/2009; 14:11] P.7 (1-20)

M. Kobayashi et al. / Journal of Number Theory ••• (••••) •••–••• 7
Theorem 7. For all but O (x/(log2 x)1/4) sociable numbers n � x, we have

∣∣∣∣ s(s(n))

s(n)
− s(n)

n

∣∣∣∣ � (log3 x)2

(log2 x)1/4
.

Proof. The argument borrows heavily from the proof of [16, Theorem 5.2]. We may suppose that
σ(n) is divisible by all primes and prime powers up to A := 2

3 log2 x/ log3 x, since by Lemma 1 the
exceptions up to x make up a set of size

�
∑

pa�A
p prime, a�1

x

(log x)1/ϕ(pa)
� x

(log x)1/A

∑
pa�A

p prime, a�1

1, (2.3)

which is

� x

(log2 x)1/2(log3 x)2
,

and so is negligible. We may further assume that the prime factorizations of n and s(n) agree on all
primes up to B := A1/2. (That is, v p(n) = v p(s(n)) for all p � B , where the p-adic valuation v p is
defined so that pv p(m) ‖ m.) Indeed, if n and s(n) fail to agree at the prime p, then we must have
v p(n) � v p(σ (n)). But for the numbers n under consideration, v p(σ (n)) � ep , where ep is an integer
such that

pep � A = 2

3
log2 x/ log3 x < pep+1.

The numbers n which fail to agree with s(n) at some prime p � B thus make up a set of size at most∑
p�B x/pep . We estimate this sum by considering those terms with ep = 2 and ep > 2 separately.

(Notice that ep � 2 for all primes p by our choice of B .) The terms with ep = 2 contribute

�
∑

A1/3<p�B

x

p2
� x

A1/3 log A
,

while those with ep > 2 contribute

� x
∑

p�A1/3

1

pep
� x

A

∑
p�A1/3

p � x

A1/3 log A
.

Once again this is negligible.
Let n � x be a sociable number. By Theorem B, we have σ(n)/n > 2 log B for at most

x/exp
(
exp

((
2e−γ + o(1)

)
log B

))
< x/exp(B) = o(x/ log2 x)

values of n � x. So we can assume σ(n)/n � 2 log B . Write n = m0n0 and s(n) = m1n1, where m0 and
m1 are the B-smooth parts of n and s(n), respectively. (By the ‘B-smooth part’ we mean the largest
divisor supported on the primes up to B .)

We can also assume that

σ(n0)/n0 < exp(1/
√

B).
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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To see this we use an averaging argument: Observe that

σ(n0)

n0
�

∏
p|n, p>B

(1 − 1/p)−1 � exp

( ∑
p|n, p>B

1

p − 1

)
, (2.4)

so that any n for which σ(n0)/n0 � exp(1/
√

B) satisfies

∑
p|n, p>B

1

p − 1
� 1√

B
.

But

∑
n�x

∑
p|n, p>B

1

p − 1
�

∑
B<p�x

x

p(p − 1)
� x

B log B
,

and so there can be

� x√
B log B

� x

(log2 x)1/4(log3 x)3/4

such values of n � x, which fits within our final bound for the exceptional set.
Now assuming all the above conditions are satisfied, we have

s(n)

n
− s2(n)

s(n)
= σ(m0)

m0

(
σ(n0)

n0
− σ(n1)

n1

)

� (2 log B)
(
exp(1/

√
B) − 1

)
< 3

log B√
B

<
(log3 x)2

(log2 x)1/4

for large x, which proves one of the inequalities implicit in the theorem statement. Notice that in
proving this half of the theorem we have not needed the hypothesis that n is sociable.

We can prove the other half in the same way, beginning with the identity

s2(n)

s(n)
− s(n)

n
= σ(m0)

m0

(
σ(n1)

n1
− σ(n0)

n0

)
,

if we show that σ(n1)/n1 < exp(1/
√

B) for all but O (x/(log2 x)1/4) values of n � x. To prove this, no-
tice that we can assume s(n) � 2x log4 x, since by Theorem B this fails for only O (x/ log2 x) values of
n � x. But if σ(n1)/n1 � exp(1/

√
B), then the same averaging argument employed above shows that

the number of possibilities for s(n) � 2x log4 x is � x log4 x/(
√

B log B), which is again � x/(log2 x)1/4.
Since n is sociable, s(n) determines n, so that this is also an upper bound on the number of possibil-
ities for n. �

We shall frequently use Theorem 7 for a string of consecutive terms of a sociable cycle to show
that usually these terms behave approximately like a geometric progression. In particular, we have
the following result.

Corollary 1. For each positive integer J , all but O ( J x/(log x)1/4) sociable numbers n with {n, s(n), . . . ,

s J−1(n)} ⊂ [1, x] have

∣∣∣∣ s j+1(n)

s j(n)
− s(n)

n

∣∣∣∣ � j
(log3 x)2

(log2 x)1/4

for each integer 1 � j � J .
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
doi:10.1016/j.jnt.2008.10.011



ARTICLE IN PRESS YJNTH:3770

JID:YJNTH AID:3770 /FLA [m1G; v 1.76; Prn:7/01/2009; 14:11] P.9 (1-20)

M. Kobayashi et al. / Journal of Number Theory ••• (••••) •••–••• 9
3. Proofs of Theorems 1 and 2

Proof of Theorem 1. As mentioned in the introduction, there are much stronger estimates known for
the number of perfect numbers up to x, so that we may restrict attention to sociable numbers of
order > 1. Observe that every sociable cycle of order > 1 contains an abundant number n for which
s(n) is deficient (e.g., the element preceding the largest term in the cycle). Theorem 1(a) now follows
immediately from Theorem A, since a cycle is determined by any one of its elements.

For the proof of (b), it is enough to show that the number of cycles of length at most k which
contain a term not exceeding x is

� (2 log4 x)kx/L(x)1+o(1). (3.1)

Suppose we are given such a cycle. Consider first the case when this cycle contains a term n for which
s(n)/n > 2 log4 x. We may suppose n is the first term of the cycle for which this happens, where we
view the cycle as starting with its smallest term. Then n � x(2 log4 x)k , and so by Theorem B, the
number of possibilities for n (and hence the cycle containing n) is at most

x(2 log4 x)k/exp
(
exp

(((
e−γ + o(1)

)
2 log4 x

)))
� (2 log4 x)k x

log2 x
,

which satisfies the bound (3.1). (Notice that 2e−γ > 1.) If, on the other hand, s(n)/n � 2 log4 x for
all terms n of the cycle, then the cycle is entirely contained in [1, x(2 log4 x)k] and the result follows
from (a). �
Proof of Theorem 2. It is enough to prove part (a), as then the proof of (b) follows exactly the same
pattern as the proof of Theorem 1(b).

Let {n1, . . . ,nk} be an irregular cycle of length k entirely contained in [1, x], and put a :=
gcd(n1, . . . ,nk). Note that necessarily k > 1. As established in the proof of Theorem 7, we have that
σ(n) is divisible by all primes and prime powers p j � 2

3 log2 x/ log3 x for all but
O (x/((log2 x)1/2(log3 x)2)) values of n � x. So we can assume each σ(ni) is divisible by all these
small prime powers.

We take two cases. First suppose a = 1. Then no ni can have a prime factor up to 2
3 log2 x/ log3 x,

since otherwise a simple induction shows that p divides n j for every j and so also divides a. Clearly
ni is abundant for some i, and so for this i we have (by (2.4))

∑
p|ni , p> 2

3
log2 x
log3 x

1

p − 1
> log 2.

But

∑
n�x

∑
p|n, p> 2

3
log2 x
log3 x

1

p − 1
� x

∑
p> 2

3
log2 x
log3 x

1

p(p − 1)
� x

log2 x
,

so that the number of possibilities for ni (and so for its cycle) is � x/ log2 x.
Now suppose a > 1. Write ni = ami for 1 � i � k. We can suppose that none of the ni have a prime

power divisor p j , j � 2, with p j � 2
3 log2 x/ log3 x, as otherwise ni belongs to a set of size

� x

log3 x
√

log2 x/ log3 x
= x√

log2 x log3 x
.

Cycling the ni around if necessary, we can assume that a is not a unitary divisor of n1. So there is a
prime p dividing both a and m1. Let pe be the exact power of p dividing a; then pe+1 divides n1, so
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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that pe+1 � 2
3 log2 x/ log3 x. This implies that pe+1 divides each σ(ni), which in turn shows that pe+1

divides each ni . Thus pe+1 divides a, contrary to the choice of e. �
As promised, we present the proof of Dickson’s result from the introduction:

Theorem E. Let {n1, . . . ,nk} be a sociable cycle of odd length k > 1. Suppose a := gcd(n1, . . . ,nk) > 1. Then
a cannot be a unitary divisor of all of n1, . . . ,nk.

Proof. We assume the ni are numbered so that ni+1 = s(ni), where the indices are taken modulo k.
Write σ(a)/a = b/c in lowest terms, and write ni = ami for 1 � i � k. Suppose that a is a unitary
divisor of each ni . Then σ(ni) = (ab/c)σ (mi) for each i, and since ni+1 = σ(ni) − ni , we find that

c(mi + mi+1) = c

a
(ni + ni+1) = c

a
σ(ni) = bσ(mi).

Since b and c are relatively prime, it follows that b divides mi +mi+1, i.e., mi ≡ −mi+1 (mod b). Since
k is odd, iterating this observation shows that modulo b,

mi ≡ −mi+1 ≡ mi+2 ≡ · · · ≡ −mi+k = −mi,

and so b divides 2mi . Since this holds for each i and gcd(m1, . . . ,mk) = 1, we must have either b = 1
or b = 2. If b = 1, then σ(a)/a = 1, and this contradicts a > 1. So b = 2, and since c < b, we have c = 1.
Hence σ(a)/a = 2 and a is perfect. Since a is a common divisor of the ni , each ni is nondeficient. But
any sociable chain composed entirely of nondeficient numbers consists of a single perfect number,
and this contradicts that k > 1. �
4. Proofs of Theorems 3–6

Proof of Theorem 3. Put δ := (log3 x)3/(log2 x)1/8. We can assume s(n)/n � 1− δ, since by Theorem D,
the number of n � x for which s(n)/n ∈ (1 − δ,1) is

� x exp

(
−

(
1

5
√

8
+ o(1)

)√
log3 x log4 x

)
.

Let J := �(log2 x)1/8�. By Corollary 1, for all but

� J x/(log2 x)1/4 � x/(log2 x)1/8

values of n � x, we have

s j(n)/s j−1(n) � 1 − δ + ( j − 1)(log3 x)2/(log2 x)1/4

for all 1 � j � J . So we can assume these J conditions all hold. The right-hand side of this inequality
is always at most 1 − δ/2, which implies that s J (n) � x(1 − δ/2) J . But s J is injective on the set of
sociable numbers, so that the number of sociable n remaining is at most

x(1 − δ/2) J � x exp(− Jδ/2) � x exp

(
−1

2
(log3 x)3

)
,

which is negligible.
This proves the slight weakening of Theorem 3 where 12 is replaced by 5

√
8 + o(1). To see that

the theorem is correct as stated, we note that according to Toulmonde [33, Théorème 1, Remarque 1],
the constant 1/5 in Theorem D can be replaced by any constant smaller than 1/4. Then the above
analysis shows that we may replace 5

√
8 by 4

√
8 < 12. �
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Remarks. If ρ belongs to the range of σ(n)/n, then it is not hard to prove that the right-hand deriva-
tive of D at ρ is infinite. By contrast, very little is known about the left-hand derivative (see [13,
pp. 59–60]). Toulmonde has conjectured (see [34, Eq. (4)]) that the left-hand derivative always van-
ishes for these ρ . This would fit well with Erdős’s result [10] that D(u) is singular, i.e., that D ′ = 0
almost everywhere.

Suppose that the difference quotient of D(u) remains bounded as one approaches the particular
value ρ = 2 from the left. (This is quite a bit weaker than Toulmonde’s conjecture.) By a theorem of
Elliott [9, Theorem 5.6],

1

x

∑
n�x

σ(n)/n�u

1 = D(u) + O

(
log2 x

log x log3 x

)

for all u. Applying this estimate with u = 2 and u = 2 − δ, with δ as in the proof of Theorem 3, shows
that the number of n � x for which s(n)/n ∈ (1 − δ,1) is

� x(log3 x)3/(log2 x)1/8. (4.1)

The rest of the proof of Theorem 3 goes through unchanged and shows that (4.1) serves as an upper
bound for the number of deficient sociable numbers n � x. Moreover, since every sociable cycle of
order > 1 contains a deficient term, we deduce that this is also an upper bound for the number of
sociable cycles contained entirely in [1, x]; i.e., we have a conditional improvement of Theorem 1(a).

Proof of Theorem 4. Define δ and J as in the proof of Theorem 3. By Theorem 3 and Theorems B
and C, at the cost of excluding O (x/ log3 x) values of n, we may restrict our attention to those n � x
for which

1 + δ � s(n)/n � 2 log5 x − 1.

Put y := x(2 log5 x)K where K = K (x) = 1
9 log3 x/ log6 x, so that

y = x(log2 x)1/9+o(1). (4.2)

We may assume that for all 1 � j < J for which s j−1(n) � y, we have

∣∣∣∣ s(s j(n))

s j(n)
− s j(n)

s j−1(n)

∣∣∣∣ <
(log3 y)2

(log2 y)1/4
<

(log3 x)2

(log2 x)1/4
, (4.3)

since by Theorem 7, the number of sociable n for which this fails is

� J
y

(log2 y)1/4
� y

(log2 x)1/8
= x

(log2 x)1/72+o(1)
,

which is negligible.
We can further assume that {n, s(n), . . . , s J (n)} is not entirely contained in the interval [1, y].

Indeed, if it is, then by (4.3), we have

s j(n)/s j−1(n) � 1 + δ − ( j − 1)(log3 x)2/(log2 x)1/4 � 1 + δ/2

for all 1 � j � J , so that

n � s J (n)(1 + δ/2)− J � y exp

((
−1

2
+ o(1)

)
(log3 x)3

)
.

This upper bound is o(x/ log3 x) by (4.2), and so these n may be ignored.
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Say 1 � j � J is such that s j(n) > y = x(2 log5 x)K . Since the cycle containing n has at most K
consecutive terms exceeding x, there is some 1 � k � j with sk(n)/sk−1(n) > 2 log5 x. Moreover, if k is
the smallest such index, we must have {n, s(n), s2(n), . . . , sk−1(n)} ⊂ [1, y]. But this is impossible, as
(4.3) implies that

sk(n)/sk−1(n) � s(n)/n + (k − 1)(log3 x)2/(log2 x)1/4

� 2 log5 x − 1 + o(1) < 2 log5 x.

This completes the proof. �
Remark. The proof of Theorem C (cf. [33, Lemme 7]) shows that for t sufficiently large, if n � x
satisfies σ(n)/n ∈ [2,2 + 1/t), then either n belongs to an exceptional set of size

� x/exp

(
1

5

√
log t log log t

)

or n has a small perfect number divisor. If, as is conjectured, there do not exist odd perfect numbers,
then every odd n automatically has no perfect divisors. This gives a conditional improvement of Theo-
rem C for ρ = 2 and odd n, which in turn allows one to establish the following variant of Theorem 4:

If no odd perfect numbers exist, then all but O (x/L(x)1/5
√

8+o(1)) odd sociable numbers n � x belong to a cycle
with more than 1

9 log3 x/ log5 x consecutive terms exceeding x. For the same reasons as in the proof of
Theorem 3, one can replace the exponent on L(x) by 1/12. We leave the details to the reader.

Proof of Theorem 5. The idea of the proof is the same as that of Theorem 3, but now we trace
backwards through our cycle instead of forwards. Choose δ and J as in the proof of Theorem 3. We
can restrict attention to even abundant sociable n which satisfy s(n)/n � 1 + δ, since by Theorem C
the exceptional n make up a set of size � x/ log3 x.

In analogy with the proof of Theorem 3, we would like to prove that for all but O (x/ log3 x) of
the remaining n, we have s−( j−1)(n)/s− j(n) � 1 + δ/2 for all 1 � j � J . We prove something a little
stronger: all but O (x/ log3 x) of the even abundant sociable n � x satisfying s(n)/n � 1 + δ also satisfy

s− j(n) is even, and
s(s− j(n))

s− j(n)
� s(s−( j−1)(n))

s−( j−1)(n)
− (log3 x)2

(log2 x)1/4
(4.4)

for every 1 � j � J . To see this, suppose we have an n for which (4.4) fails for some 1 � j � J , and
let j(n) be the least integer where either of the conditions of (4.4) is violated. Set m = s− j(n)(n). Since
both conditions hold up to j(n) − 1, we have

s−(i−1)(n)

s−i(n)
� 1 + δ − i

(log3 x)2

(log2 x)1/4
� 1 + δ

2

for all 1 � i � j − 1. So

s(m) = s−( j−1)(n) = n
j−1∏
i=1

s−i(n)

s−(i−1)(n)
� x(1 + δ/2)−( j−1),

and in particular s(m) � x. Suppose that at step j, it is the first condition of (4.4) that is violated, so
that m is odd. Since s(m) = s−( j−1)(n) is even, it must be that σ(m) is odd, forcing m = l2 for some
odd l. But the number of values of l for which s(l2) � x is � x/ log x. (Indeed, s(l2) � l3/2 unless l is
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
doi:10.1016/j.jnt.2008.10.011



ARTICLE IN PRESS YJNTH:3770

JID:YJNTH AID:3770 /FLA [m1G; v 1.76; Prn:7/01/2009; 14:11] P.13 (1-20)

M. Kobayashi et al. / Journal of Number Theory ••• (••••) •••–••• 13
prime, in which case s(l2) = l +1.) So m can assume at most O (x/ log x) possible values, and the same
is therefore true for n = s j(m). If the first condition of (4.4) holds but the second is violated, then

m

2
� s(m) � x,

so that m � 2x and

s(m)

m
<

s(s(m))

s(m)
− (log3 x)2

(log2 x)1/4
<

s(s(m))

s(m)
− (log3 (2x))2

(log2 (2x))1/4
.

By Theorem 7, there are only O (x/(log2 x)1/4) possibilities for m and so also for n = s j(m). Summing
over j � J , we see that the number of possibilities for n violating one of the conditions (4.4) is

� J
x

log x
+ J

x

(log2 x)1/4
� x

(log2 x)1/8
,

which is o(x/ log3 x).
So we can assume n is such that (4.4) holds for all j � J . But then

s− J (n) � n(1 + δ/2)− J � x exp

(
−

(
1

2
+ o(1)

)
(log3 x)3

)
,

which is o(x/ log3 x). Since s− J is injective on the set of sociable numbers, the number of these n is
also o(x/ log3 x). �
Proof of Theorem 6(a). By Theorem 3 we may restrict attention to abundant n. Choose δ and J as in
the proof of Theorem 5. Then all but O (x/ log3 x) of the abundant n � x satisfy s(n)/n � 1 + δ, so that
we can restrict attention to these n. We claim that all but o(x/ log3 x) of the n � x under consideration
in this theorem satisfy the second condition of (4.4), i.e.,

s(s− j(n))

s− j(n)
� s(s−( j−1)(n))

s−( j−1)(n)
− (log3 x)2

(log2 x)1/4
(4.5)

for all 1 � j � J . Once this is established, the proof is completed just as for Theorem 5.
We partition the n which do not satisfy the entire sequence of inequalities (4.5) into sets S j

according to the first index j � J for which (4.5) is violated, and we estimate the size of each S j .
Let n be an element of S j and put m := s− j(n). As in the proof of Theorem 3, we have that s(m) is
abundant and bounded by x.

Let us show that for all but x/L(x)1/2+o(1) elements n ∈ S j , the integer m is abundant. Since the cy-
cle corresponding to n does not contain any special sociable numbers, the integer s(m) is not special,
and so (using s(m) � x)

m = s−1
(
s(m)

)
� s(m)L

(
s(m)

)1/2 � xL(x)1/2 =: y,

say. But by Theorem A, the number of sociable m � y for which m is deficient but s(m) is abundant
is

� y/L(y)1+o(1) = x/L(x)1/2+o(1).

Thus m, and hence also n = s j(m), can assume at most x/L(x)1/2+o(1) values.
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Suppose now that n ∈ S j is such that m is abundant. Then m < s(m) � x. Since (4.5) fails to hold,
we have

s(m)

m
� s(s(m))

s(m)
− (log3 x)2

(log2 x)1/4
.

But then the number of possibilities for m, and hence also for n = s j(m), is O (x/(log2 x)1/4) by Theo-
rem 7.

Summing over 1 � j � J , we find that the total number of possibilities for n for which (4.5) fails
to hold for some j � J is

� J x/L(x)1/2+o(1) + J x/(log2 x)1/4 � x/(log2 x)1/8,

which is o(x/ log3 x). �
Proof of Theorem 6(b). We are to show that if the set of special sociables has density zero, then
the set of sociable numbers also has density zero. By Theorem 3 we can restrict our attention to
abundant n.

Let ε > 0. By the continuity of the distribution function D(u), we may fix δ > 0 so that
D(2 + δ) − D(2) < ε . Then for large x, we have s(n)/n � 1 + δ for all but εx abundant n � x. Now
let J be a large, fixed positive integer, to be specified more precisely momentarily. We claim that for
all but o(x) of the abundant sociable n � x satisfying s(n)/n � 1 + δ, we have

s(s− j(n))

s− j(n)
� s(s−( j−1)(n))

s−( j−1)(n)
− δ

2 J
(4.6)

for all 1 � j � J . Notice that for such n, we have s−( j−1)(n)/s− j(n) � 1 + δ/2 for all 1 � j � J , which
implies that

s− J (n) � x(1 + δ/2)− J .

Since s− J is injective on sociables, it will follow that the upper density of the sociable numbers is at
most

ε + (1 + δ/2)− J ,

which is less than 2ε if J was fixed sufficiently large. So it is enough to prove the claim.
As in the proof of (a), we partition those n which fail to satisfy (4.6) for all 1 � j � J into sets S j

according to the first index for which (4.6) fails to hold. Since J is fixed, to prove our claim above
it is enough to show that each S j has size o(x). For each j, let S ′

j be that subset of S j consisting
of those n for which s(s− j(n)) is not special; essentially the same argument as given in (a) shows
that S ′

j contains only o(x) elements. But if n ∈ S j \ S ′
j , then s−( j−1)(n) is a special sociable number

l (say), not exceeding x. But, by assumption, there are only o(x) possibilities for l, and so also for
n = s j−1(l). �
5. Remarks on odd abundant numbers

5.1. Nonsociable odd abundants

Though we cannot prove that a positive proportion of odd abundant numbers are not sociable, we
can prove that infinitely many of them are not sociable. In fact, we can prove that the sum of the
reciprocals of the nonsociable odd abundants is infinite.
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Theorem 8. The number of nonsociable odd abundant numbers in [1, x] is at least x/(log x)1/2+o(1) as x → ∞.

Proof. Let m be an arbitrary but fixed odd abundant number with the property that
gcd(σ (m),m) = 1. (Note that if m0 is any squarefree odd abundant number and p > m0 is any prime,
then m = mp−1

0 is odd abundant and gcd(σ (m),m) = 1.) Let A denote the set of integers a such that
gcd(a,2mσ(m)) = 1 and gcd(σ (a),am) = 1. Let

ρ(m) =
∏
q|m

q prime

(
1 − 1

q − 1

)
.

We first show that

∑
a�x
a∈A

1

a
� (log x)ρ(m)

(log2 x)5/2
. (5.1)

Since we are looking for a lower bound for
∑

1/a it suffices to consider just the squarefree mem-
bers of A. Such numbers a have the properties that for each prime r | a we have r � 2mσ(m) and
gcd(r + 1,m) = 1. Let R be the set of these primes r, so that the density of R within the set of
primes is ρ(m). Let

u = ⌊
ρ(m) log2 x − 2 log3 x

⌋
.

Then, for x sufficiently large, we have

R1 :=
∑
r∈R

(log2 x)2<r�x1/u

1

r
> u. (5.2)

If we choose u distinct primes from R that are in ((log2 x)2, x1/u], then their product a will be at
most x, and a ∈ A provided gcd(σ (a),a) = 1. To ensure this last condition, we insist that when we
choose the primes to form a, we never choose a pair r1, r2 with r1 | r2 + 1. Let

R2 =
∑
r∈R

(log2 x)2<r�x1/u

1

r2
, R3 =

∑
r1,r2∈R

(log2 x)2<r1,r2�x1/u

r1|r2+1

1

r1r2
.

Thus,

∑
a∈A
a�x

1

a
� 1

u! Ru
1 − 1

(u − 2)! (R2 + R3)Ru−2
1 . (5.3)

We have

R2 � (log2 x)−2

and from the Brun–Titchmarsh inequality, we have

R3 � (log2 x)−1.
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Thus, (5.2) and (5.3) imply that

∑
a∈A
a�x

1

a
� 1

u! Ru
1

(
1 − u2(R2 + R3)R−2

1

) = 1

u! Ru
1

(
1 + O

(
(log2 x)−1)).

Using the inequality u! � uu+1/2/eu , we thus have

∑
a∈A
a�x

1

a
�

(
eR1

u

)u 1

u1/2
>

eu

u1/2
� (log x)ρ(m)

(log2 x)5/2
,

which establishes the estimate (5.1).
Next, consider integers map � x where a ∈ A and p � ma is prime. We suppose that a � x1/3.

We have gcd(s(ma),σ (ma)) = 1, and so by the lower bound estimate in the sieve (see, e.g.,
[20, Theorem 2.5′]), the number of primes p ∈ (ma, x/ma] for which s(map) = s(ma)p +σ(ma) has no
prime factors below (log x)2 + 1 is

� x/(ma log x log2 x).

The numbers n = map constructed this way are easily seen to be distinct and bounded by x, and,
by (5.1), their number is

� x

m log x log2 x

∑
a∈A

a�x1/3

1

a
� x

(log x)1−ρ(m)(log2 x)7/2
, (5.4)

since m is assumed fixed.
But note that for a number n so constructed we have that n is odd abundant and

s
(
s(n)

) = s(n)

(
σ(s(n))

s(n)
− 1

)
< s(n)

( ∏
q|s(n)

q prime

(
1 + 1

q − 1

)
− 1

)

� s(n)

((
1 + 1

(log x)2

)ω(s(n))

− 1

)
,

where we write ω(k) for the number of prime divisors of k. Now for n � x we have s(n) � x log2 x
and ω(s(n)) � log x/ log2 x. Thus,

s2(n) � x

log x
.

Since the function s2 is injective on the sociable numbers, it follows that the number of n counted
above that are sociable is at most O (x/ log x). Thus, using (5.4) we have that

∑
n�x,m|n

n odd abundant
n not sociable

1 � x

(log x)1−ρ(m)(log2 x)7/2
. (5.5)

We now make a judicious choice for m. Let B be a large number, let m0 be the smallest squarefree
abundant number composed of primes all greater than B , and let m = mp−1

0 , where p > m0 is prime.
It is easy to see that as B → ∞, this construction gives an odd abundant number m with ρ(m) → 1/2.
But for each such m we have (5.5). This completes the proof of the theorem. �
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5.2. The distribution function for odd numbers

Let B(u) denote the set of odd numbers n with σ(n)/n � u and let B(u) denote the asymptotic
density of B(u). It follows from the Erdős–Wintner theorem that B(u) exists, is continuous, and is
strictly decreasing for u � 1.

The number B(2), as the density of the odd abundant numbers, is of interest to us since it stands
as our upper bound for the upper density of the sociable numbers. We can also prove an upper bound
for the upper density of the special sociable numbers which is considerably smaller than B(2). In fact,
we will show in Theorem 10 that its value is about 1/6000, while B(2) ≈ 1/500.

Theorem 9. The set of special sociable numbers has upper density at most α, where

α =
∞∫

1

B(1 + u)

u2
du.

Here α is the asymptotic proportion of odd abundant numbers n � x with s(n) > x.

Proof. Let D0(x) denote the set of odd abundant numbers n � x, and let D1(x) denote the set of
n ∈ D0(x) with s(n) � x. Let Ti(x) = S ∩ Di(x) for i = 0,1, where S is the set of sociable numbers.
Let T2(x) denote the set of integers s(n) with n ∈ T1(x). Since s is injective on S it follows that
#T2(x) = #T1(x). Also, let T3(x) denote the set of odd abundant sociable numbers in [1, x] that are
not special. Clearly, each member of T2(x) is not special, so we have T ′

2 (x) ⊂ T3(x), where T ′
2 (x) is

the set of odd abundant members of T2(x). As we have seen, the set of odd abundant numbers n for
which s(n) is not odd abundant has density 0, so that #T2(x) = #T ′

2 (x) + o(x). Thus, if T4(x) denotes
the set of special sociable numbers in [1, x], then

T4(x) = T0(x) \ T3(x) ⊂ T0(x) \ T ′
2 (x),

so that

#T4(x) � #T0(x) − #T ′
2 (x) = #T0(x) − #T1(x) + o(x)

= #
(

T0(x) \ T1(x)
) + o(x) � #

(
D0(x) \ D1(x)

) + o(x)

= #D0(x) − #D1(x) + o(x).

Now,

#D0(x)

x
= B(2) + o(1)

as x → ∞, and by the continuity of B(u), we have

#D1(x)

x
= B(2) −

∞∫
1

B(1 + u)

u2
du + o(1)

as x → ∞. We complete the proof by subtracting the second asymptotic relation from the first. �
We remark that if we have strict inequality in Theorem 9, i.e., if the upper density of the special

sociable numbers is < α, then there is a positive proportion of odd abundant numbers that are not
sociable. This follows from the argument given for Theorem 6(a): Say a sociable number n is a climber
Please cite this article in press as: M. Kobayashi et al., On the distribution of sociable numbers, J. Number Theory (2009),
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if there is some integer j � 0 such that s− j(n) is a special sociable number, and each of s−i(n) for i =
0,1, . . . , j is odd abundant. From the proof of Theorem 6(a) we have that the set of sociable numbers
that are not climbers has density 0. But the number of odd abundant numbers n � x with s(n) > x
is (α + o(1))x. Clearly, no two of these numbers can be climbers corresponding to the same special
sociable. Thus, if the upper density of the special sociables is β < α, then at least (α −β + o(1))x odd
abundant numbers up to x are not climbers, and so at least (α − β + o(1))x odd abundant numbers
up to x are not sociable.

5.3. Numerical estimates

Using methods found in Deléglise [7], we compute bounds for B(u), for various values of u. We
prove the following.

Theorem 10. The density B(2) of the set of odd abundant numbers satisfies

0.002042 < B(2) < 0.002071,

and the constant α in Theorem 9 satisfies

0.0001600 < α < 0.0001772.

To prove this theorem, we introduce certain subsets of B(u), namely

By(u) = {
n: σ(n)/n � u, gcd

(
n,Π(y)

) = 1
}
,

where Π(y) denotes the product of the primes p � y and y � 2. Denote the density of By(u) by
B y(u). (This density is denoted Aπ(y)(u) in [7].) Let P (n) be the largest prime factor of a number n
if n > 1 and P (1) = 1, and define Ny to be the set of odd numbers n such that P (n) � y. As with
Proposition 1.1 in [7], we have the following result.

Proposition 1. For each u � 1, we have

B(u) =
∑

n∈Ny

1

n
B y

(
u

σ(n)/n

)
.

The summation here has infinitely many terms, so to get numerical estimates it is convenient to
truncate and estimate the error. Let

Ny(z) = Ny ∩ [1, z].

We have, imitating the argument in [7], the following result.

Proposition 2. Let y � 2. Then the density B(u) has bounds

F y

∑
n∈Ny(z)
σ (n)/n�u

1

n
� B(u) �

∑
n∈Ny(z)

1

n
B y

(
u

σ(n)/n

)
+ 1

2
− F y

∑
n∈Ny(z)

1

n
,

where F y = ∏
p�y(1 − 1/p), the product taken over primes p � y.
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In order to estimate B y(u) from above, let hy(n) be the multiplicative function with hy(pa) = 1
for p � y and hy(pa) = σ(pa)/pa for p > y. The idea is to compute estimates for high moments of
hy . Towards this goal, let

H y, j(n) =
∑
d|n

μ

(
n

d

)
hy(d) j,

so that H y, j(n) � 0 for all n. Then,

∑
n�x

hy(n) j =
∑
d�x

H y, j(d)

⌊
x

d

⌋
� x

∞∑
d=1

H y, j(d)

d
= xM y, j,

say. Since hy(n) � 1 for all n, we have

B y(u) = F y · lim
x→∞

1

x

∑
n�x

hy(n)�u

1

� F y · lim
x→∞

1

x

∑
n�x

hy(n)�u

hy(n) j − 1

u j − 1
� F y

M y, j − 1

u j − 1
.

In [7], the mean value M y, j is denoted by π(y)( j); upper bounds are computed there for y = 500
and j = 2i for i = 0,1, . . . ,12. We have recalculated these values, using the program PARI/GP, and
present them in the table below. Note that our values are slightly smaller than those in [7] when
j = 2i , 0 � i � 10, but are larger for j = 211 and 212.

j M500, j − 1 � j M500, j − 1 �
1 0.0002732982 128 0.03814735
2 0.0005469571 256 0.08377620
4 0.001095360 512 0.20651323
8 0.002196521 1024 0.7076500

16 0.004416412 2048 12.96156
32 0.008927653 4096 1.661395×1017

64 0.01824571

With these bounds, we calculated upper and lower bounds for B(2) using y = 500 and z = 1016, as
well as bounds for B(u) using y = 500 and z = 1014, where u = 2.0000, . . . ,2.0500 in increments of
0.0005, u = 2.051, . . . ,2.400 in increments of 0.001, and u = 2.405, . . . ,2.700 in increments of 0.005.
These estimates for B(u) were used to calculate our upper and lower bounds for α. We warmly thank
Professor Deléglise for kindly providing us with his program for calculating upper and lower bounds
for these values of B(u).
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[14] P. Erdős, On asymptotic properties of aliquot sequences, Math. Comp. 30 (1976) 641–645.
[15] P. Erdős, G.J. Rieger, Ein Nachtrag über befreundete Zahlen, J. Reine Angew. Math. 273 (1975) 220.
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