
REVISITING THE LIND–REICHARDT COUNTEREXAMPLE TO
HASSE’S LOCAL-GLOBAL PRINCIPLE

Abstract. We discuss what is widely believed to be the first published counterex-
ample to the Hasse principle, presented by Hans Reichardt in 1942: The equation
X4 − 17Y 4 = 2Z2 has no nonzero solution in rational numbers X,Y, Z, but has
a nonzero solution over R and over every Qp. We demonstrate that Reichardt’s
example can be presented in a completely elementary way. Both local solvability
and global unsolvability can be established using tools no deeper than quadratic
reciprocity. For global solvability, this has long been known, but our simple and short
proof of local solvability appears to be new. The above counterexample is usually
attributed to Lind as well as Reichardt. We discuss how this claim, while correct, is
not correct enough due to the presence of a third individual who made contributions
to this problem.

1. Introduction

In number theory, the term local-global principle refers to an expression of mathematical
optimism. It predicts that properties of interest hold in the field of rational numbers
Q (hold globally) precisely when they hold in R and in all fields Qp, where p ranges
over the set of prime numbers (hold everywhere locally).1 Here Qp is the field of p-adic
numbers, which for each prime p is constructed as a completion of Q with respect
to a p-adic metric, analogously to how the real numbers R are constructed as the
completion of Q with respect to the familiar Archimedean metric. For the elementary
theory of Qp (much more than needed here), readers are referred to Gouvêa’s highly
engaging textbook [Gou20].

The fields Qp were originally introduced by Kurt Hensel at the end of the 19th century.
Each element of Qp captures information modulo pn for all n ≥ 1. This encoding
often allows statements about congruences to be translated into statements about
equations in Qp. As one application of this dictionary, if f(x) is a monic polynomial
with integer coefficients, then the equation f(x) = 0 is solvable in every Qp if and only
if the corresponding congruence is solvable modulo m for every positive integer m.

The idea of the local-global principle is due to Hensel (see [Has62]), but its first concrete
instantiations were formulated and proved by Hensel’s student Helmut Hasse, and
it has become customary to use the names local-global principle and Hasse principle
interchangeably.

Applied to polynomial equations, the Hasse principle forecasts that a polynomial with
Q-coefficients (or a system of such) has a nontrivial zero over Q (simultaneous zero,

1The local-global principle can be — and usually is — formulated much more generally, for instance
for all number fields or even all global fields. We stick to Q for simplicity.
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in the case of a system) precisely when there is zero over R and a zero over each
Qp. Taking advantage of modern theory, it is usually straightforward (and always
algorithmically decidable) to determine whether there are zeros everywhere locally. By
contrast, deciding for a given system of polynomials whether there is a zero over Q often
requires extraordinary ingenuity, and the general problem may well be algorithmically
undecidable. Thus, when the Hasse principle holds, we have an easy way of answering
a hard-seeming question.

The Hasse principle gets its name from the groundbreaking work of Hasse in the
early 1920s [Has23], showing that the principle holds for every homogeneous quadratic
polynomial (quadratic form). Nowadays we know many counterexamples to this
polynomial version of the local-global principle. For instance, the Hasse principle is
generally not valid for cubic forms. Yet rather than doom the local-global principle to
the dustbin, these failures of the Hasse principle have proved every bit as valuable as
its successes in terms of generating valuable mathematics (see the survey [SD04]). As a
consequence, the local-global principle remains a central object of study in arithmetic
geometry.

In this paper, we revisit what is widely believed to be the first published counterexample
to the (polynomial) Hasse principle, presented by Hans Reichardt in 1942: The equation

(1) X4 − 17Y 4 = 2Z2

has no nonzero solution in rational numbers X, Y, Z, but has a nonzero solution over
R and over every Qp [Rei42].

Our aim is two-fold:

(a) We demonstrate that Reichardt’s example can be presented in a completely
elementary way. Both the local solvability of (1), and its global unsolvability,
can be established using tools no deeper than quadratic reciprocity. For global
solvability, this has long been known, but our simple and short proof of local
solvability appears to be new.

(b) The counterexample (1) is usually attributed to Lind (1940, [Lin40]), as well
as Reichardt. We discuss how this claim, while correct, is not correct enough.

Since it does not introduce any serious difficulties and will be helpful for our historical
survey, we will focus our discussion of local and global solvability around a generalization
of (1). Let ℓ be a prime, ℓ ≡ 1 (mod 8), for which 2 is not a 4th power modulo ℓ. For
example, ℓ = 17 is such a prime. We show in §2 that

(2) X4 − ℓY 4 = 2Z2

has no global solution and in §3 that it has local solutions everywhere. One can show
using the Chebotarev density theorem that 1/8 of all primes ℓ meet the imposed
conditions; thus the equations (2) constitute an infinite family of counterexamples to
the Hasse principle.
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There are much easier counterexamples to the Hasse principle. For example, let a, b be
nonzero square-free integers, satisfying gcd(a, b) = 1. Assume that at least one of a,
b, and ab is congruent to 1 mod 8, and that a is a square mod |b| and b is a square
mod |a|. Finally, assume that none of a, b, and ab is a square in Z. Then the equation
(x2 − a)(x2 − b)(x2 − ab) = 0 has a solution in Qp for every p and also a solution in R,
but has no solution in Q. The lack of a global solution is clear. There is a solution in R
because at least one of a, b, ab is positive. The existence of everywhere local solutions
is straightforward to verify using Hensel’s Lemma (Lemma 1 below) and the other
ideas in this paper. One suspects such counterexamples to the Hasse principle must
have been noticed early on; however, we are not aware of an example in this family
being explicitly mentioned until a 1942 paper of Skolem (see p. 4 of [Sko42]) where
the case a = 2 and b = −7 appears.

While the simple examples in the last paragraph suffice to refute the polynomial Hasse
principle, they are uninteresting geometrically: Their defining polynomials factor and
the corresponding zero loci are finite. The failures of the form (2) are of greater
significance. Specifically, each counterexample of the form (2) yields a nontrivial
(order two) element in the Tate–Shafarevich group of a certain elliptic curve (given in
Weierstrass form by y2 = x3 − ℓx; this is the Jacobian of the genus one curve over Q
that (2) defines in weighted projective space). More details can be found in [AL11,
Appendix B]. The Tate–Shafarevich group is a central object of study in modern
arithmetic geometry.

We will use the following notations in this paper. For a prime p, Fp denotes Z/pZ, the
field with p elements. Thus equality in Fp is the same as congruence modulo p. We let
F×
p denote the group of nonzero elements of Fp, and we let F2

p and (F×
p )

2 denote the
set of squares and the set of nonzero squares, respectively, in Fp.

2. Equation (2) has no global solution

The argument of this section is not new (compare with [Sch07, Satz 3.5.9, pp. 46–47]
or [Cas66, Appendix A, p. 284]), but is included for completeness. We will need to
use the following consequence of Gauss’ Quadratic Reciprocity Law. If ℓ is a prime
congruent to 1 modulo 4, p is any odd prime, and ℓ is a nonzero square modulo p,
then p is a nonzero square modulo ℓ.

Assume (X, Y, Z) is a nonzero rational solution to (2). Scaling X, Y , and Z by factors
D, D, and D2, respectively, for an appropriately chosen D, we can assume that X, Y ,
and Z are integers.

If there is a prime p that divides X and Y , then p4 | X4 − ℓY 4 = 2Z2, forcing p2

to divide Z. In that case, (X/p, Y/p, Z/p2) is also an integer solution to (2), and
the sum of the absolute values of the components has decreased in size. Successively
removing prime divisors of gcd(X, Y ) in this way, we eventually reach an integer
solution where gcd(X, Y ) = 1. The form of (2) then guarantees that gcd(X,Z) = 1
and gcd(Y, Z) = 1.
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Since 4
√
ℓ /∈ Q and (X, Y, Z) ̸= (0, 0, 0), we cannot have Z = 0. Replacing Z with −Z

if necessary, we can assume that Z > 0.

Let p be any odd prime dividing Z. Then p ∤ XY . Reducing (2) modulo p, we find
that ℓ = (X/Y )4 in Fp. In particular, ℓ is a nonzero square modulo p, so that from
Gauss’s law of quadratic reciprocity, p is a nonzero square modulo ℓ. We assumed that
ℓ ≡ 1 (mod 8), so 2 is also a nonzero square modulo ℓ. (We give a simple proof below
of this in Lemma 3 (ii).) Since Z > 0 and every prime factor of Z is a nonzero square
modulo ℓ, it follows that Z is a nonzero square modulo ℓ.

Choose an integer W , not divisible by ℓ, with Z ≡ W 2 (mod ℓ). Then

X4 ≡ X4 − ℓY 4 = 2Z2 ≡ 2W 4 mod ℓ,

so that (X/W )4 ≡ 2 mod ℓ. But 2 is not a 4th power modulo ℓ. Contradiction!

3. Equation (2) is everywhere locally solvable

For a polynomial f with integer coefficients, Hensel’s Lemma provides a way to extend
certain solutions of the congruence f(x) ≡ 0 mod p to solutions of f(x) = 0 in Qp.
We now give a common form of Hensel’s lemma (appearing, for example, as [Ser73,
Theorem 1, p. 14]).

Lemma 1. Let f ∈ Z[X], let f ′ denote the derivative of f , let p be a prime number,
and let e ∈ Z with e ≥ 0. If there is a c ∈ Z with f(c) ≡ 0 mod p2e+1 and f ′(c) ̸≡
0 mod pe+1, then there is an α ∈ Qp for which f(α) = 0.

For our purposes, the following two consequences of Hensel’s lemma suffice.

Lemma 2.

(i) Suppose that p is an odd prime and a ∈ Z is not divisible by p. If a is a square
modulo p, then a is a square in Qp. The same statement holds if “square” is
replaced by “4th power.”

(ii) Suppose that a ∈ Z. If a ≡ 1 mod 8, then a is a square in Q2. If a ≡ 1 mod 16,
then a is a 4th power in Q2.

Proof. (i) Let f(x) = xn − a where n = 2 or 4 (or any integer not divisible by p).
Since a is an nth power modulo p, there exists c ∈ Z satisfying f(c) ≡ 0 mod p. Since
f ′(c) = ncn−1 ̸≡ 0 mod p, Hensel’s lemma (applied with e = 0) implies that a is an nth

power in Qp.

(ii) Suppose that a ≡ 1 mod 8, and let f(x) = x2 − a and let c = 1. Then f(c) ≡
0 mod 23 and f ′(c) = 2c ̸≡ 0 mod 4. Hensel’s lemma (applied with e = 1) implies that
a is a square in Q2.
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Suppose that a ≡ 1 mod 16, and let f(x) = x4 − a. If a ≡ 1 mod 32, let c = 1, and if
a ≡ 17 mod 32, let c = 3. Then f(c) ≡ 0 mod 25 and f ′(c) = 4c3 ̸≡ 0 mod 23. Hensel’s
lemma (applied with e = 2) implies that a is a 4th power in Q2. □

Lemma 3. Let p be an odd prime.

(i) −1 ∈ F2
p if and only if p ≡ 1 mod 4.

(ii) −1 ∈ F4
p if and only if p ≡ 1 mod 8. For such p, 2 ∈ F2

p.

(iii) The quotient group F×
p /(F×

p )
2 has order 2.

(iv) The quotient group (F×
p )

2/(F×
p )

4 has order 2 if p ≡ 1 mod 4, and has order 1 if
p ≡ 3 mod 4.

Proof. We use repeatedly that F×
p is a cyclic group of order p − 1 (see for instance

[Ser73, p. 4]). Let a be a generator, so that F×
p = ⟨a⟩.

(i) If p ≡ 1 mod 4, let b = a
p−1
4 . Then b4 = 1 and b2 ̸= 1, so b2 = −1, and −1 is a

square. Conversely, if there exists b ∈ Fp with b2 = −1, then b has order 4 in F×
p , which

implies that 4 | p− 1.

(ii) If p ≡ 1 mod 8, let c = a
p−1
8 . Then c has order 8 and c4 = −1 is a fourth power in

F×
p . Conversely, if there exists c ∈ Fp with c4 = −1, then c has order 8 in F×

p , which
implies that 8 | p− 1.

For the second statement, if c4 = −1, then (c+ c−1)2 = 2 + c−2(c4 + 1) = 2.

(iii) We have F×
p = ⟨a⟩, (F×

p )
2 = ⟨a2⟩, and (F×

p )
4 = ⟨a4⟩. Since p− 1 is even, it follows

that |(F×
p )

2| = (p− 1)/2.

(iv) If p ≡ 1 mod 4, then a4 has order (p − 1)/4, so (F×
p )

2/(F×
p )

4 has order 2. If

p ≡ 3 mod 4, then (F×
p )

2 = (F×
p )

4, because

a2 = a2ap−1 =
(
a(p+1)/4

)4 ∈ (F×
p )

4. □

Proof that (2) is everywhere locally solvable. The following five points satisfy the equa-
tion X4 − ℓY 4 = 2Z2:

P1 = (ℓ1/4, 1, 0), P2 = ((ℓ+ 8)1/4, 1, 2), P3 = (
√
2, 0,

√
2),

P4 = ((−ℓ)1/4, 1, ((−ℓ)1/4)2), P5 = (0, 2, 2
√
−2ℓ).

Each of P1, P2, and P3 is an R-solution to (2).

Suppose that p = 2. Since ℓ ≡ 1 (mod 8), either ℓ or ℓ+ 8 is congruent to 1 modulo
16, so one of ℓ1/4 or (ℓ+ 8)1/4 exists in Q2 by Lemma 2 (ii). Then either P1 or P2 is a
Q2-solution to (2).
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Since ℓ ≡ 1 mod 8, Lemma 3 (ii) implies that 2 ∈ F2
ℓ . Lemma 2 (i) then implies that√

2 exists in Qℓ so that P3 is a Qℓ-solution.

It remains to find a Qp-solution for every odd prime p with p ̸= ℓ.

If ℓ ∈ F4
p, then Lemma 2 (i) implies that ℓ1/4 exists in Qp and P1 is a Qp-solution to

(2). Similarly, if −ℓ ∈ F4
p, or 2 ∈ F2

p, or −2ℓ ∈ F2
p, then P4, or P3, or P5 provides a

Qp-solution to (2).

If those cases all fail, then p is an odd prime with p ̸= ℓ and the following holds:

ℓ and − ℓ are not in F4
p, and 2 and − 2ℓ are not in F2

p.

We will show that these conditions lead to a contradiction.

Lemma 3 (iii) implies that −ℓ = 2−1 · (−2ℓ) ∈ F2
p. If p ≡ 3 mod 4, then Lemma 3

(iv) implies that −ℓ ∈ F2
p = F4

p, contrary to hypothesis. Therefore p ≡ 1 mod 4 and

Lemma 3 (i) shows that −1 ∈ F2
p. Then ℓ = (−1)(−ℓ) ∈ F2

p.

Since ℓ and −ℓ are in F2
p, but not in F4

p, and (F×
p )

2/(F×
p )

4 has order 2 by Lemma 3

(iv), it follows that −1 = ℓ−1(−ℓ) ∈ F4
p. But Lemma 3 (ii) then implies that 2 ∈ F2

p,
contrary to hypothesis. □

Remarks. Reichardt proved the local solvability of (1) by appealing to a 1931 theorem
of F.K. Schmidt, Satz 20 of [Sch31]. As long as p ̸= 2 or 17, we can view (1) as
defining a smooth, genus 1 curve over Fp. The existence of a nonzero Fp-solution to (1)
follows from the existence of a degree one prime divisor in the associated function field.
That we always have such a divisor is a straightforward corollary of Schmidt’s result.
From an Fp-solution, Hensel’s Lemma produces a Qp-solution. The primes p = 2 and
p = 17 must be treated separately, but (as seen above) this is easy. This proof can be
adapted to treat a wide class of curves including (2).

In [AL11], Aitken and Lemmermeyer propose a different method to prove the local
solvability of equations aX4 + bX2Y 2 + cY 4 = dZ2. Their idea is to leverage the
classical parametrization of points on the underlying conic aU2 + bUV + cV 2 = dZ2.
This elegant proof, although not as short as the one offered above, has the advantage
of applying to a wider class of curves than (2).

Finally, while our approach to the local solvability of (2) seems to be new, arguments
in the same spirit have appeared before. For example, Coray [Cor20, Exercises 9.1–9.3,
p. 139; solutions on p. 171] and Conrad [Con] both prove the local solvability of
3x3 + 4y3 + 5z3 = 0 (a counterexample to the Hasse principle due to Selmer) by
reducing appropriately chosen points.

4. Lind? Reichardt? Billing? Oh my!

Who gave us the counterexample (1)? There is no mystery as to why Reichardt has
his name attached to (1). This equation appears on the first page of the paper [Rei42],
and is explicitly trumpeted as a counterexample to the local-global principle. The title



THE LIND–REICHARDT COUNTEREXAMPLE TO THE LOCAL-GLOBAL PRINCIPLE 7

of Reichardt’s paper translates to “A Diophantine equation solvable everywhere in the
small but unsolvable in the large”; here “in the small” and “in the large” are quaint
terms for “local” and “global”.

One often reads that Carl-Erik Lind constructed the counterexample (1) around the
same time as Reichardt. Chapter VI of Lind’s 1940 PhD thesis [Lin40] is a detailed
study of when an equation of the form aX4 + bX2Y 2 + cY 4 = dZ2 admits a nonzero
rational (equivalently, integer) solution. The specific equation (1) is never mentioned,
but the unsolvability of the equations (2) — and in particular of the equation (1) — is
a special case of Satz 4 (I,1) on p. 64 of [Lin40]. So Lind should surely be credited with
proving that (1) has no nonzero Q-solution. In fact, the proof of global unsolvability
we presented in §2 is a simplified version of Lind’s. Reichardt’s argument for the
unsolvability of (1) was significantly more involved, based on a determination of the
Q(

√
2)-solutions to X4 + 17Y 4 = Z2.

It is less clear that Lind should be credited with (1) as a counterexample to the Hasse
principle. Lind is not concerned in [Lin40] with the Hasse principle, and one looks in
vain for any mention of p-adic numbers or local solvability. For a modern arithmetic
geometer, local solvability is essentially automatic (as a result of Schmidt’s theorem or
the later, more difficult “Weil bound” [Wei48]), and it is obvious when reading [Lin40]
that Lind is presenting a counterexample to the Hasse principle. What is doubtful is
whether Lind realized that he was doing so! Reichardt was certainly better positioned
to be thinking about matters connected with the local-global principle, being a student
of Hasse at Marburg.

If we accept that both Lind and Reichardt gave us (1), who was first? According to the
cover page of Lind’s thesis, his defense was scheduled for May 22, 1940. Reichardt’s
paper was received by Crelle 2 on September 16, 1940. So it would seem Lind beat
Reichardt to this particular mountaintop, if only by a few months.

However, there is a twist in the story that appears to have gone unreported! As
pointed out to us by Dino Lorenzini, both Lind and Reichardt were anticipated by
Gunnar Billing. Billing, like Lind, was a student of Trygve Nagell in Uppsala, but he
preceded Lind. As indicated on the cover of Billing’s thesis [Bil38], Billing’s results
were reported to the Royal Society of the Sciences in Uppsala already on October 15,
1937.

On p. 109 of [Bil38], it is proved that if ℓ ≡ 1 (mod 8) and 2 is not a 4th power mod ℓ,
then there are no nonzero rational solutions to the system

2Z2 = X2 − ℓY 2

W 2 = XY.(3)

Billing’s result is equivalent to the unsolvability of (2).

2Crelle is a common nickname for the Journal für die reine und angewandte Mathematik. August
Leopold Crelle was the founder and first editor of this journal.
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Proposition 4. For each positive integer ℓ, the following are equivalent.

(i) There are no nonzero rational solutions to the system

2Z2 = X2 − ℓY 2

W 2 = XY.

(ii) X4 − ℓY 4 = 2Z2 has no nonzero rational solution.

Proof. Suppose that there is a nonzero rational solution of the system (i). Then there
is a solution where X, Y, Z,W are integers with X, Y > 0 and gcd(X, Y ) = 1. By
unique factorization, X = x2 and Y = y2 with x, y ∈ Z, and we get x4 − ℓy4 = 2Z2.

Conversely, suppose that X4 − ℓY 4 = 2Z2 has a nonzero rational solution. Then there
exist integers x, y, z ∈ Z, not all zero, such that x4 − ℓy4 = 2z2. Let X = x2, Y =
y2, Z = z, and W = xy. Then X, Y, Z,W satisfy (i). □

Lind references parts of Billing’s thesis multiple times in [Lin40], so he was clearly
acquainted with Billing’s thesis and some results contained in it. What is less certain,
and left open by these references, is whether Lind was aware that his results on (2)
also overlap with Billing’s work.

In the interest of giving Billing what he is owed, it seems appropriate to conclude
this paper with Billing’s forgotten proof that (2) has no nonzero global solution. We
describe his argument for the unsolvability of (2) in such a way as to avoid explicit
mention of the system (3).

Recall that for a prime p and integers m and t, with t ≥ 0, the notation pt ∥ m
indicates that pt | m while pt+1 ∤ m.

Lemma 5. Let U and V be integers, not both 0, and let p be a prime congruent to 5
or 7 modulo 8.

(i) If p | U2 + 2V 2, then p | gcd(U, V ).

(ii) If pt ∥ gcd(U, V ), then p2t ∥ U2 + 2V 2.

The proof of this lemma requires the elementary result that −2 is a nonzero square
modulo a prime p precisely when p ≡ 1 or 3 mod 8 (see, e.g. [Ser73, pp. 6–7]).

Proof of Lemma 5. Let p be a prime congruent to 5 or 7 modulo 8 that divides
U2 + 2V 2, and suppose that p does not divide gcd(U, V ). Since U2 ≡ −2V 2 (mod p),
and p ∤ gcd(U, V ), it must be that p ∤ V . Then (U/V )2 = −2 in Fp. But −2 is not a
square modulo p as p is neither 1 nor 3 modulo 8. This contradiction completes the
proof of (i).

(ii) Let U ′ = U/pt and V ′ = V/pt. Then (i) implies that p ∤ U ′2 + 2V ′2. Hence,
p2t ∥ p2t(U ′2 + 2V ′2) = U2 + 2V 2. □
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The proof of Theorem 6 below requires Fermat’s 2-square theorem, which states that if
ℓ is a prime with ℓ ≡ 1 mod 4, then ℓ can be written ℓ = u2 + v2 for positive integers
u, v where u is even. If ℓ ≡ 1 mod 8, then since v2 ≡ 1 mod 8, it follows that 4 | u.

Theorem 6 (Billing). Let ℓ be a prime, ℓ ≡ 1 mod 8. Write ℓ = u2+v2 where u, v ∈ Z
and 4 | u. If u ≡ 4 mod 8, then there are no nonzero rational solutions to the equation
X4 − ℓY 4 = 2Z2.

Readers might reasonably object that this is not the theorem they were promised:
The expected condition “2 is not a 4th power mod ℓ” has been replaced by “u ≡ 4
(mod 8)”. However, as noted on p. 115 of Billing’s thesis, Gauss proved that the
two requirements on ℓ are equivalent for primes ℓ ≡ 1 (mod 8) [Gau27]. (See also
Dirichlet’s paper [Dir60], and compare with Exercises 26–28 on p. 64 of [IR90].)

Proof. Assume that (X, Y, Z) is a nonzero solution to X4 − ℓY 4 = 2Z2. Just as in
Section 2, there is a solution withX, Y, Z ∈ Z with gcd(X, Y ) = 1. SinceX ≡ Y mod 2,
it follows that X, Y are both odd. We have

2Z2 = X4 − ℓY 4 = X4 − (u2 + v2)Y 4,

v2Y 4 + 2Z2 = X4 − u2Y 4 = (X2 + uY 2)(X2 − uY 2).

Furthermore, X2 + uY 2 ≡ 5 mod 8 because X, Y are both odd.

This last congruence on X2 + uY 2 implies that there is a prime power pt ∥ X2 + uY 2

with pt being 5 or 7 mod 8. Then p is 5 or 7 mod 8 and t is odd.

Claim. p ∤ X2 − uY 2.

Indeed, if p | X2 − uY 2, then p | 2X2 and p | 2uY 2. Since p is odd and gcd(X, Y ) = 1,
it must be that p ∤ Y and p | u. If p | v, then p2 | u2 + v2 = ℓ, which is absurd. So
p ∤ v. Therefore p ∤ vY 2 and so p ∤ gcd(vY 2, Z). Then Lemma 5 (i) implies that

p ∤ (vY 2)2 + 2Z2 = (X2 + uY 2)(X2 − uY 2),

a contradiction because p | X2 + uY 2. This contradiction proves the Claim.

This Claim and the definition of pt imply that pt ∥ (X2+uY 2)(X2−uY 2) = (vY 2)2+2Z2.
As t is odd, this contradicts Lemma 5 (ii). □

Remark. In contrast with our earlier proof, Billing’s argument uses only the quadratic
character of −2, rather than depending on the Quadratic Reciprocity Law.
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