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PART I: Some not-so-recent developments

Let s(n) :=
∑

d |n,d<n d be the sum of the proper divisors of n, and let
σ(n) =

∑
d |n d be the sum of all positive divisors of n. So, e.g.,

s(4) = 1 + 2 = 3, σ(4) = 1 + 2 + 4 = 7.

A natural number n is called perfect if s(n) = n (equivalently,
σ(n) = 2n), and amicable if s(n) 6= n and s(s(n)) = n. For example,
s(6) = 6, so 6 is perfect. Also,

s(220) = 284, and s(284) = 220,

and so 220 is amicable (as is 284; we say 220 and 284 form an
amicable pair).
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The number Six .... which is said to be perfect ...
was called Marriage by the Pythagoreans,
because it is produced from the intermixing of
the first meeting of male and female; and for the
same reason this number is called Holy and
represents Beauty, because of the richness of its
proportions. — Iamblichus (ca. 300 AD)

Six is a number perfect in itself, and not because
God created all things in six days; rather, the
converse is true. God created all things in six
days because the number is perfect. Augustine
(ca. 400 AD)
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Pythagoras (6th century BCE), when asked what a
friend was, replied:

One who is the other I, such as 220 and 284.

Persons who have concerned themselves
with talismans affirm that the amicable
numbers 220 and 284 have an influence
to establish a union or close friendship
between two individuals. – Ibn Khaldun
(14th century AD)

Al-Majriti (10th century AD) claims to have

tested the erotic effect of . . . giving any one the smaller number
220 to eat, and himself eating the larger number 284.
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A deep thought

We tend to scoff at the beliefs of
the ancients.

But we can’t scoff at them
personally, to their faces, and this is
what annoys me.

– Jack Handey
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The distribution of amicable numbers

There are over ten million amicable pairs known, but we have no
proof that there are infinitely many.

Theorem (Erdős, 1955)

Almost all numbers are not amicable.

Theorem (Pomerance, 2015)

The number V2(x) of amicable numbers n ≤ x
satisfies

V2(x) ≤ x/ exp((log x)1/2)

for large x .
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Erdős’s 1955 proof

Proposition (Erdős)

Let ε > 0. For almost all n — meaning, all n except for a set of
density 0 — we have

s(s(n))

s(n)
>

s(n)

n
− ε.

In other words, if we define the abundancy of a number n by the ratio
s(n)/n, then almost all of the time, the abundancy of s(n) is ' the
abundancy of n.
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Proposition (Erdős)

Let ε > 0. For almost all n — meaning, all n except for a set of
density 0 — we have

s(s(n))

s(n)
>

s(n)

n
− ε.

Sketch of proof.

First, one argues that f (n) := s(n)/n is “essentially determined” by
small divisors. To make sense of this claim, observe that

f (n) =
∑

d |n, d>1

1

d
.

This representation suggests a natural truncated version, namely

fy (n) =
∑
d |n

1<d≤y

1

d
.
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Clearly f (n) ≥ fy (n), and∑
n≤x

(f (n)− fy (n)) =
∑
d>y

1

d

∑
n≤x
d |n

1 ≤ x
∑
d>y

1

d2
< x/y .

Thus, on average, f (n) and fy (n) differ by O(1/y).

We think of y as large and fixed (in a way to be specified
momentarily).

The next step is to show, using the sieve, that n and s(n) = σ(n)− n
share the same set of divisors ≤ y , away from a set of density zero.
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The next step is to show, using the sieve, that n and s(n) = σ(n)− n
share the same set of divisors ≤ y , away from a set of density zero.

The sets of divisors ≤ y certainly coincide whenever σ(n) ≡ 0 modulo
d , for every d ≤ y . That is, whenever

σ(n) ≡ 0 (mod M) for M = lcm[1, 2, . . . , y ].

That this congruence holds for almost all n is an easy application of
the sieve. Indeed, there is usually a prime p ≡ −1 (mod M) that
shows up to the first power in the prime factorization of n, ensuring
that

M | p + 1 | σ(n).
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We can now finish up. Since n and s(n) have the same set of divisors
≤ y , for almost all n, we have

fy (s(n)) = fy (n) for almost all n.

Thus, for almost all n,

s(s(n))

s(n)
= f (s(n)) ≥ fy (s(n)) = fy (n).

Since fy (n) and f (n) differ by O(1/y) on average, and so

fy (n) > f (n)− ε =
s(n)

n
− ε

away from a set of upper density O(ε−1/y). Inserting this above and
taking y →∞ finishes the proof.
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Proposition (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic density
Ds(u). Considered as a function of u, Ds is
continuous, with Ds(0) = 0 and Ds(∞) = 1.

Davenport’s motivation was to answer a 1929 question of
Bessel-Hagen about the counting function of the abundant, deficient,
and perfect numbers, defined by the conditions s(n) > n, s(n) < n,
and s(n) = n. Davenport’s theorem implies that all three sets have a
density, and that the perfects have density 0.
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The previous two propositions have the following consequence.

Theorem
All abundant numbers n, apart from a density zero set of exceptions,
are such that s(n) is also abundant.

Proof.
Since n is abundant, s(n)/n > 1.

Let δ > 0 be a small, fixed parameter. We can assume
s(n)/n > 1 + δ, at the cost of excluding a set of density

Ds(1 + δ)− Ds(1).

By Erdős’s Proposition, all of the remaining n apart from a density
zero set of exceptions have s(s(n))/s(n) > 1 + δ/2 > 1, and hence
have s(n) abundant.

Now send δ ↓ 0, using continuity of Ds at 1.
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Amicables have density 0

Now we are home free!

To prove that the set of numbers belonging to an amicable pair has
density zero, note that it is enough to show this for the smaller
members of each pair.

But if n is the smaller member of an amicable pair, then n is
abundant, since s(n) > n, but s(n) is deficient, since
s(s(n)) = n < s(n). So n is one of the members of the density-zero
exceptional set in the theorem we just proved.
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We showed:

Proposition (Erdős)

Let ε > 0 for almost all n — meaning, all n
except for a set of density 0 — we have

s(s(n))

s(n)
>

s(n)

n
− ε.

What about Erdős in reverse?

Proposition

Let ε > 0 for almost all n — meaning, all n except for a set of density
0 — we have

s(s(n))

s(n)
<

s(n)

n
+ ε.

Is this true?
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It is tempting to try the same proof! After all, we showed

fy (n) = fy (s(n))

for almost all n, and this equation is symmetric in n and s(n).

But there is a subtle asymmetry.

Our proof relied on knowing that f (n) and fy (n) are usually nearby,
for y large. For this variant, one would want the same for f (s(n)) and
fy (s(n)).
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Our proof relied on knowing that f (n) and fy (n) are usually nearby,
for y large. For this variant, one would want the same for f (s(n)) and
fy (s(n)).

We know that if s(n) and fy (s(n)) differ significantly, then s(n) is
placed in a small set. But does this mean n is placed in a small set?

Conjecturally, yes.

Conjecture (Erdős, Granville, Pomerance, Spiro, 1990)

If A is any subset of the positive integers with density 0, then s−1(A)
also has density 0.
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Theorem (EGPS, conditional on the conjecture)

Fix ε > 0 and fix a nonnegative integer K . Then for almost all n,

sk+1(n)

sk(n)
>

s(n)

n
− ε for k = 1, 2, . . . ,K

and
sk+1(n)

sk(n)
<

s(n)

n
+ ε for k = 1, 2, . . . ,K .

“Abundancy generally persists” for any finite number of iterations.

The lower bound was proved unconditionally earlier by Erdős (1976),
following his work on the K = 1 case discussed earlier.

EGPS proved the upper bound unconditionally for K = 1.
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For density zero sets A with arithmetic structure, it is often tractable
to show that s−1(A) has density 0.

Theorem (P., 2014)

The count of n ≤ x for which s(n) is prime is O(x/ log x).

Theorem (Troupe, 2015)

The normal number of prime factors of s(n) is
log log n. In other words, s−1(Aε) has density
zero for each of the sets

Aε = {m : |ω(m)− log logm| > ε log logm}.

(Same holds for Ω replacing ω.)
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Since we certainly have

A ⊂ s−1(s(A)),

the EGPS conjecture implies that whenever A does not have density
zero, s(A) can also not have density zero.

If we take A = Z+, we see that s(A) should have positive upper
density. One can prove this directly: by the results towards Goldbach,
most odd numbers are p + q + 1 = s(pq).

What about A = 2Z+? That s(A) has positive upper density (in
fact, positive lower density!) was shown only in 2015, by Luca and
Pomerance.
equivalently: a positive proportion of even numbers are in s(Z+).
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A result towards the EGPS conjecture

Theorem (Thompson, Pomerance, P.)

Let ε(x) be any positive-valued function tending to 0 as x →∞. If A
is any collection of x

1
2

+ε(x) integers, then

#{n ≤ x : s(n) ∈ A} = o(x), as x →∞,

uniformly in the choice of A.

We borrow some ideas from a recent preprint of Andy Booker, who
shows that #s−1(2n)�ε n

1/2+ε.
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The theorem only gets stronger if ε(x) gets larger, so can assume
ε(x) ≥ 1/ log log x .

Now let A be a set of at most x1/2+ε(x) integers.

When counting n ≤ x with s(n) ∈ A, we can immediately discard
inconvenient n, including

• n ≤ x1/2,

• n with no prime factor up to log x ,

• n with a squarefull part > x2ε(x),

• n with gcd(n, σ(n)) > log x ,

• n with a divisor between x1/2−10ε(x) and x1/2+10ε(x).

Indeed, we throw out o(x) integers each time.
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The strategy is to show that for each a ∈ A, the number of remaining
n ≤ x with s(n) = a is

≤ x1/2−2ε(x).

Since #A ≤ x1/2+ε(x), this “pointwise” bound on the number of
preimages is enough to complete the proof that

#{n ≤ x : s(n) ∈ A} = o(x).
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Where does this pointwise bound come from?

Write n = de where d is the largest divisor of n not exceeding
√
x .

Note e > 1.

The overall plan is to bound the number of possibilities for e, given d ,
then to sum on d .

Our assumptions on n imply that

d < x1/2−10ε(x)

but that
dp−(e) > x1/2+10ε(x).

One can deduce from these inequalities and the fact that n has small
squarefull part that

gcd(d , e) = 1.
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Now consider the equation

s(de) = a.

Using the definition of s and the multiplicativity of σ, high school
algebra yields

σ(d)s(e) + s(d)e = a.

We see that it is enough to bound the number of possibilities for s(e),
given d , since d and s(e) determine e, and hence determine n = de.

We also see, looking modulo s(d), that

σ(d)s(e) ≡ a (mod s(d)).

Given d , this puts s(e) in a uniquely determined residue class modulo
s(d)/ gcd(s(d), σ(d)).
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So where are we at?

Given d , we want to count the number of possibilities for s(e). And
we know that s(e) is a determined residue class mod
s(d)/ gcd(s(d), σ(d)).

We would like an upper bound on s(e). A lower bound is easy:
s(e) ≥ e/p−(e).

This isn’t helpful for us. But it is easy to prove that this lower bound
is not too far from the truth:

s(e)� log x · e

p−(e)
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This isn’t helpful for us. But it is easy to prove that this lower bound
is not too far from the truth:

s(e)� log x · e

p−(e)

Since de = n ≤ x , we have e ≤ x/d , and so

s(e)� log x · x

dp−(e)
.

But remember d · p−(e) ≥ x1/2+10ε(x), and so

s(e)� log x · x1/2−10ε(x).
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OK, so s(e) is in a determined residue class modulo
s(d)/ gcd(s(d), σ(d)) and s(e)� log x · x1/2−10ε(x). The number of
possibilities for s(e), given d , is thus

� log x · x1/2−10ε(x) · gcd(s(d), σ(d))

s(d)
+ 1.

We have s(d) ≥ d/p−(d) ≥ d/ log x .

Also, gcd(s(d), σ(d)) = gcd(d , σ(d)), and this divides gcd(n, σ(n)).
Therefore, gcd(s(d), σ(d)) ≤ log x .

So our upper bound is

� (log x)3 · x1/2−10ε(x)/d + 1.

Finally sum over d ≤ x1/2−10ε(x): result is < x1/2−2ε(x).
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A strong variant of the EGPS conjecture

One also finds in [EGPS] the following hypothesis:

Hypothesis

For each fixed K , the number of preimages of n not exceeding Kn is
OK (1).

Note that there are n with arbitrarily many preimages: take an n for
which n − 1 has many representations p + q, and note that
s(pq) = p + q + 1 = n. But only OK (1) of the numbers pq are < Kn.

About this, they write:

We are not sure we believe this hypothesis, and in fact it may
be possible to disprove it. We note though that it implies [the
EGPS conjecture].
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This variant turns out to be too strong.

Disproof.

We will show that there are m which have arbitrarily many preimages
of the form 2pq, with p and q distinct odd primes.

Note that m = s(2pq) ≥ pq, so that each preimage 2pq ≤ 2m, and
so this disproves the conjecture for K = 2.

Simple algebra shows that

s(2pq) = (p + 3)(q + 3)− 6,

so it is enough to show that there are numbers with arbitrarily many
representations in the form (p + 3)(q + 3). For this we used a variant
of a 1936 construction of Erdős (who had this with p + 3 and q + 3
replaced by p − 1 and q − 1).
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By an elaboration on these methods, we show:

Theorem (Thompson, Pomerance, P.)

Fix α > 0 and ε > 0. Then there are infinitely many n for which
s−1(n) intersects ((α− ε)n, (α + ε)n) in more than nc/ log log n

elements.
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In the last section of this talk, I’d like to revisit a theorem of
Davenport that came up earlier.

Proposition (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic
density Ds(u). Considered as a function of u,
the function Ds is continuous, with Ds(0) = 0
and Ds(∞) = 1.
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Putting Davenport in his place

A function F : R→ [0, 1] is called a distribution function if

• F is increasing,

• F is right-continuous,

• F (−∞) = 0 and F (∞) = 1.

Example

If X is a (real-valued) random variable on a probability space, and F
is defined as

F (t) := Pr(X ≤ t),

then F is a distribution function.

In fact, all examples arise this way.
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Putting Davenport in his place, ctd.

If f is a real-valued arithmetic function, we say that f has a limit law
(or possesses a distribution function) if there is a distribution function
F such that

F (t) = density of n with f (n) ≤ t

for every real t at which F is continuous.

Davenport’s theorem says precisely that f (n) = s(n)
n has a continuous

distribution function. Equivalently — and what Davenport actually
proved — σ(n)

n has a distribution function. (Notice s(n)
n = σ(n)

n − 1.)
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Putting Davenport in his place, ctd.

Davenport’s result is a special case of a celebrated theorem of
Erdős–Wintner (1939) for additive functions.

Theorem
Let f be a real-valued additive function. Then f has a distribution
function if and only if the following the three series all converge:∑

|f (p)|>1

1

p
,

∑
|f (p)|≤1

f (p)

p
,

∑
|f (p)|≤1

f (p)2

p
.

The distribution function is continuous unless∑
f (p)6=0

1

p
<∞.

Davenport: take f (n) = log σ(n)
n .
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It seems natural to ask what happens if one combines additive
functions.

For example, suppose f1, . . . , fk are additive functions all of which
possess distribution functions. If P is a polynomial in k variables,
does P(f1, . . . , fk) possess a distribution function?

Yes!

If all the fi have continuous distribution functions, does P(f1, . . . , fk)
also have a continuous distribution function?

No! e.g., take P(x , y) = x + y . Then P(f ,−f ) = 0.

36 of 44



Whenever P is linear and f1, . . . , fk are additive, P(f1, . . . , fk) is again
additive function (up to an additive constant).

Referring back to the necessary and sufficient condition for continuity
in the E–W theorem, it is easy to arrange situations where all
f1, . . . , fk have continuous distribution functions but P(f1, . . . , fk)
does not.

In fact, linear polynomials provide the only essential obstruction.
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Theorem (Lebowitz-Lockard and P., 2017+)

Let f1, . . . , fk be additive functions. Suppose that
every R-linear combination

c1f1 + · · ·+ ck fk

with not all ci = 0 possesses a continuous
distribution function. Then for any nonconstant
polynomial P(x1, . . . , xk) ∈ R[x1, . . . , xk ], the
function P(f1, . . . , fk) also has a continuous
distribution function.
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Products of additive functions

Corollary

Let f1, . . . , fk be additive functions each possessing a continuous
distribution function. Then the product f1 · · · fk also possesses a
continuous distribution function.

Let me sketch a proof k = 3.

First, a piece of terminology. If g1, . . . , g` are additive functions with
limit laws, we say the gi are independent if every nontrivial linear
combination of them has a continuous distribution function.

When f1, f2, f3 are independent, the claim of the corollary is
immediate from the theorem. (Take P(x1, x2, x3) = x1x2x3.)
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Suppose, for illustration, that {f1, f2} are independent but {f1, f2, f3}
is not. (Other cases are similar.)

Then there are constants c1, c2 for which

g := f3 − c1f1 − c2f2

has a discontinuous distribution function. Thus,

f3 = c1f1 + c2f2 + g

where g is an additive function having a discontinuous limit law.
Hence,

f1f2f3 = f1f2(c1f1 + c2f2 + g).
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Hence,
f1f2f3 = f1f2(c1f1 + c2f2 + g).

If g were identically 0, the continuity of the limit law for f1f2f3 would
follow from the Main Theorem applied to P(x , y) = xy(c1x + c2y).
(Here we use that f1 and f2 are independent.)

In fact, if g assumed only finitely many values, say γ1 = 0, . . . , γr , we
could deduce continuity by applying the theorem to the n polynomials

xy(c1x + c2y + γi ),

for i = 1, 2, . . . , n.
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Since g has a discontinuous distribution function, E–W tells us∑
p: g(p) 6=0

1

p
<∞.

This implies that g assumes “essentially” only finitely many values:
for each ε > 0, there is a finite set of values {γi} such that the n with
g(n) not any of the γi has upper density < ε.

This allows the proof to be completed more-or-less as before.
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Two footnotes

• One could also look at a polynomial in multiplicative functions.
These are all linear combinations of mult. functions.

By a variant of the method, Lebowitz–Lockard and I can handle
many of these too; e.g.,

σ(n) · (−1)Ω(n)

n
− 17

φ(n)

σ(n)
+ π exp

∑
p|n

1

log p


has a continuous distribution function.

• One could also look at polynomials in “large” additive functions
like ω(n). (Think Erdős–Wintner vs. Erdős–Kac.) Martin and
Troupe have results in this direction.
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Thank you!
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