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Sets of monotonicity for Euler’s totient function

Paul Pollack · Carl Pomerance · Enrique Treviño

Abstract We study subsets of [1, x] on which the Euler ϕ-function is monotone (nondecreasing
or nonincreasing). For example, we show that for any ε > 0, every such subset has size smaller
than εx, once x > x0(ε). This confirms a conjecture of the second author.
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1 Introduction

Let ϕ denote Euler’s totient function, so that ϕ(n) := #(Z/nZ)×. It is easy to prove that
ϕ(n) → ∞ as n → ∞, but it does not tend to infinity monotonically; e.g., ϕ(9) = 6 while
ϕ(10) = 4. Thus, it is natural to wonder how far ϕ is from being monotone. This question was
posed more precisely by the second author at the 2009 West Coast Number Theory Conference
[15]: Let M↑(x) denote the maximum size of a subset of [1, x] on which ϕ is nondecreasing. Define
M↓(x) similarly, with “nonincreasing” replacing “nondecreasing”. Can one understand the rate
of growth of the functions M↑(x) and M↓(x)?

The second author conjectured (ibid.) that both M↑(x)/x→ 0 and M↓(x)/x→ 0. We begin
this paper by proving strong forms of both conjectures. We start with the nonincreasing case:

Theorem 1.1 As x→∞, we have

M↓(x) ≤ x

exp
((

1
2 + o(1)

)√
log x log log x

) .
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It is clear that a result like Theorem 1.1 cannot hold for M↑(x), since ϕ is increasing on the
primes. In fact, we show that the primes give something close to best possible, namely we have
M↑(x) = x/(log x)1+o(1) as x→∞. More precisely, we prove the following result:

Theorem 1.2 Let W (x) := {ϕ(n) : n ≤ x} denote the image of ϕ on [1, x], and let W (x) :=
#W (x). Then

lim sup
x→∞

M↑(x)/W (x) < 1.

Erdős [4] showed that W (x) = x/(log x)1+o(1), as x→∞. Subsequent to this, many authors
worked on fleshing out the “o(1)”-term in his result, culminating in Ford’s determination of the
precise order of magnitude of W (x) ([8], announced in [9]).

We start the proof of Theorem 1.2 by showing that if S ⊂ [1, x] is a set on which ϕ is
nondecreasing, then it is very rare for ϕ to agree on neighboring elements of S . Here a key
role is played by upper estimates for the number of solutions n to an equation of the form
ϕ(n) = ϕ(n + k). This equation has been treated in [6, Theorem 2] and [10], but only for fixed
k. We require results which are uniform in k, which we state and prove in §3.

Our results in §3 already suffice to show that lim supM↑(x)/W (x) ≤ 1. To obtain the small
improvement indicated in Theorem 1.2, we show that a positive proportion of the elements of
W (x) are missing from the set ϕ(S ). As an example of how this goes, suppose we have a pair
of elements d1 < d2 of W (x) for which each preimage of d1 exceeds each preimage of d2. If ϕ is
nondecreasing on S , then ϕ(S ) must be missing at least one of d1 and d2. In §4, we show how
to construct a large number of such pairs {d1, d2}.

The construction alluded to in the last paragraph exploits an observation of Erdős: Call a
number in the image of the Euler function a totient. Suppose that d is a totient with preimages
n1, . . . , nk. We say that the number n is convenient for d if dϕ(n) is a totient with preimages
n1n, . . . , nkn and no others. Erdős [5, pf. of Theorem 4] proved that for each fixed totient d,
almost all primes p are convenient for d. We require a variant of this result, which we prove using
methods of Ford (op. cit.) and which appears as Lemma 4.1 below.

One may also ask about lower bounds on M↑(x) and M↓(x). As noted above, if S consists of
all the primes in [1, x], then ϕ is nondecreasing on S , and so M↑(x) ≥ π(x). The second author
[15] has asked the following:

Question Does M↑(x)− π(x)→∞ as x→∞?

We have not been able to resolve this. Computations suggest (see §9) that this difference does
not tend to infinity, in fact it seems M↑(x) = π(x)+64 for x large enough. Perhaps the following
closely related question is not unattackable:

Question If S is a subset of [1, x] on which ϕ is nondecreasing, must we have
∑
n∈S

1
n ≤

log log x+O(1)?

The behavior of M↓(x) is more mysterious. Let M0(x) denote the maximal size of a subset of
[1, x] on which ϕ is constant. Clearly, M↓(x) ≥M0(x). Erdős [4] showed that there is a constant
α > 0 so that M0(x) ≥ xα for all large x. The current record here is α = 0.7038, due to Baker
and Harman [2], but heuristic arguments (see [17] or [18, §4]) suggest that (as x→∞)

M0(x) = x/L(x)1+o(1), where L(x) = exp(log x log3 x/ log2 x). (1.1)

Perhaps it is true that M↓(x) � M0(x). This would improve Theorem 1.1, since (from either
[17] or [18]) the upper bound on M0(x) implicit in (1.1) is known to hold unconditionally. In the
opposite direction, we prove:
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Theorem 1.3 M↓(x)−M0(x) > x0.18 for large x.

We do not know how to improve the upper bounds of Theorems 1.1 and 1.2, even if we ask
that ϕ be strictly monotone on S . Turning instead to lower bounds, the primes once again
furnish a fairly large subset of [1, x] on which ϕ is strictly increasing. For the strictly decreasing
case, we prove the following:

Theorem 1.4 For all large x, there is a subset S of [1, x] of size at least x0.19 for which the
restriction of ϕ to S is strictly decreasing.

It would be interesting to know the extent to which Theorem 1.4 can be improved. If the
largest prime gap up to x is xo(1) (with x→∞), as is widely expected, then the proof of Theorem
1.4 allows us to replace the exponent 0.19 with 1

3 − ε.
Our final theorem illustrates that very satisfactory estimates can be obtained for the largest

set of consecutive integers in [1, x] on which ϕ is monotone.

Theorem 1.5 The maximum size of a set of consecutive integers contained in [1, x] on which ϕ
is nonincreasing is

log3 x

log6 x
+ (α− γ + o(1))

log3 x

(log6 x)2
(x→∞).

The same estimate holds with “nondecreasing” replacing “nonincreasing”. Here γ = 0.57721566490 . . .
is the Euler–Mascheroni constant, and α is defined by the relation

exp(α) =
∏

p prime

(1− 1/p)−1/p, so that α = 0.58005849381 . . . .

The form of Theorem 1.5, while perhaps surprising, is not entirely unexpected. Erdős [5,
Theorem 1] showed that the same result holds for the maximum size of a set S ⊂ [1, x] of
consecutive integers for which maxm∈S ϕ(m) ∼ minm∈S ϕ(m). Our proof follows Erdős’s, with
some modifications (compare also [16]).

Certain other natural ways of measuring the non-monotonic behavior of ϕ reduce to ones we
have considered here. For example, take the problem of partitioning [1, x] into sets on which ϕ
is strictly increasing. It seems reasonable to ask for an estimate of the smallest number of sets
one needs in such a partition. In fact, the minimum number of required sets is precisely M↓(x),
by a combinatorial theorem of Dilworth. Analogous comments apply with “strictly increasing”
replaced by “strictly decreasing”, “nonincreasing”, or “nondecreasing”.

Notation

Most of our notation is standard. A possible exception is our notation for
∏
p|n p (the algebraic

radical of n), written as either γ(n) or rad(n). We write ω(n) :=
∑
p|n 1 for the number of distinct

prime factors of n. If d | n and gcd(d, n/d) = 1, we say that d is a unitary divisor of n, and we
write d ‖ n. We remind the reader that logk denotes the kth iterate of the natural logarithm.
The Landau–Bachmann o and O-symbols, as well as Vinogradov’s � notation, are employed
with their usual meanings. Implied constants are absolute unless otherwise specified.
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2 Sets on which ϕ is nonincreasing: Proof of Theorem 1.1

Lemma 2.1 Let S be a subset of [1, x] on which ϕ is nonincreasing. For x ≥ 1, the number
of prime powers n ∈ S is at most log x/ log 2. If x ≥ 1 and k > 1, the number of n ∈ S with
ω(n) = k is at most

42(k − 1)!x1−
1
k . (2.1)

Proof For each r, there is at most one prime power of the form n = pr in S , since the function
p 7→ ϕ(pr) is an increasing function of p. Also, it is clear that there are no such n once r >
log x/ log 2. This proves the first claim.

We prove the second assertion of the lemma by induction on k. Take first the case k = 2. Let T
be the set of n ∈ S with ω(n) = 2, and partition T into sets Tpr , according to the smallest prime
power pr for which pr ‖ n. Then ϕ is nonincreasing on the set T ′pr := {n/pr : n ∈ Tpr} ⊂ [1, x/pr],
and every m ∈ T ′pr is a prime power. So by the first part of the lemma,

#T ≤ 1

log 2

∑
pr≤x1/2

log
x

pr
≤ 2 log x

∑
pr≤x1/2

1.

Also, ∑
pr≤x1/2

1 = π(x1/2) +
∑
r≥2

∑
p≤x

1
2r

1 ≤ π(x1/2) + x1/4
log (x1/2)

log 2
≤ π(x1/2) + x1/4 log x.

Recalling the elementary estimate π(X) ≤ 6X/ logX for X > 1 (cf. [1, Theorem 4.6]), we find
that

#T ≤ 24x1/2 + 2x1/4(log x)2 < 42x1/2

for all x ≥ 1. This agrees with the claim of the lemma.
Suppose the case k has been proved (for all S and all x). Take T as the set of n ∈ S with

ω(n) = k+1. Partitioning T into sets Tpr as in the last paragraph, we obtain from the induction
hypothesis that

#T ≤ 42(k − 1)!x1−
1
k

∑
pr≤x

1
k+1

1

(pr)1−1/k
. (2.2)

Estimating crudely,

∑
pr≤x

1
k+1

1

(pr)1−1/k
≤

∑
n≤x1/(k+1)

1

n1−1/k
≤ 1 +

∫ x
1

k+1

1

dt

t1−1/k
< k · x

1
k(k+1) . (2.3)

Substituting (2.3) back into (2.2) establishes the k + 1 case. ut

Proof (Proof of Theorem 1.1) Let S be a subset of [1, x] on which ϕ is nonincreasing. Let
K := b

√
log x/ log log xc, and split the n ∈ S according to whether or not ω(n) ≤ K. Since the

expression (2.1) is increasing as a function of k, Lemma 2.1 gives that the number of n of the
first type is at most

42K!x1−
1
K + (1 + log x/ log 2) .

Using the trivial estimate K! < KK , we find after a short computation that this is at most

x

exp
((

1
2 + o(1)

)√
log x log log x

) , (2.4)
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as x→∞. The number of n of the second type does not exceed the total number of n ≤ x with
ω(n) > K. By a classical inequality of Hardy and Ramanujan [12, Lemma B], this is

�
∑
k>K

x

log x

(log log x+O(1))k−1

(k − 1)!
.

The sum appearing here is dominated by its first term, corresponding to k − 1 = K; using the
estimate K! ≥ (K/e)K , another short computation shows that this sum is also bounded by (2.4).

ut

3 Towards Theorem 1.2: Counting solutions to ϕ(n) = ϕ(n+ k)

Let P (x; k) denote the number of n ≤ x for which ϕ(n) = ϕ(n + k). To prove Theorem 1.2 we
require a reasonable estimate for P (x; k) valid uniformly for k ≤ log x. We begin by quoting
three results from [10].

Theorem A (see [10, Theorem 1]) Suppose that j and j + k have the same prime factors
(so that k is even), and let g = gcd(j, j + k). Suppose that for the positive integer r, both

j

g
r + 1 and

j + k

g
r + 1 (3.1)

are primes not dividing j. Then with

n = j

(
j + k

g
r + 1

)
,

we have ϕ(n) = ϕ(n+ k).

Let P0(x; k) be the number of solutions n ≤ x to ϕ(n) = ϕ(n+k) which are of the form given
in Theorem A, and let P1(x; k) be the number of remaining solutions.

Theorem B (cf. [10, Corollary 1]) Assume the prime k-tuples conjecture in the quantitative
form of Bateman–Horn. Suppose k is even, and put

c(k) =
∑

j : γ(j)=γ(j+k)

gcd(j, j + k)

j(j + k)

∏
p|jk(j+k)/ gcd(j,j+k)3

p>2

p− 1

p− 2
. (3.2)

Then 0 < c(k) <∞, and as x→∞,

P0(x; k) ∼ 2C2c(k)
x

(log x)2
,

where C2 := 2
∏
p>2(1− (p− 1)−2) is the twin prime constant.

Theorem C (see [10, Theorem 2]) Fix a natural number k. For x > x0(k), we have P1(x; k) <
x/ exp((log x)1/3).

We require a uniform version of Theorem C and an unconditional upper-bound analogue of
Theorem B.

Theorem 3.1 For x > x0, we have P1(x; k) < x/ exp((log x)1/3), uniformly for natural numbers
k ≤ exp((log x)1/3).
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Proof (Proof (sketch)) We imitate the proof of [10, Theorem 2]. Let n ≤ x be a solution to
ϕ(n) = ϕ(n+k) not accounted for by Theorem A. Write n = mp and n+k = m′p′, where p is the
largest prime factor of n and p′ the largest prime factor of n+k. As in [10], if ϕ(m)/m = ϕ(m′)/m′,
then n has the shape indicated in Theorem A. So we can assume that ϕ(m)/m 6= ϕ(m′)/m′. For
fixed k, Theorem C then follows from the argument described in [6] for the case k = 1. Suppose
now that k is not fixed but satisfies the bound indicated in our theorem. The argument of [6] goes
through with obvious minor changes until [6, eq. (4.4)]. At that point, it is important to know
that given m and a certain prime q′, the congruence mp + k ≡ 0 (mod q′) forces p to lie in a
uniquely determined residue class modulo q′. This holds as long as q′ - m. If q′ | m and q′ | mp+k,
then q′ | k. But we also have that q′ ≡ 1 (mod r), where r ≥ l4 and l = exp((log x)1/3). Hence
q′ > l4 > k, and so q′ - k. ut

Obtaining a uniform upper bound on P0(x; k) requires more preparation.

Lemma 3.2 Let k be a natural number. The number of natural numbers j for which j and j+k
have the same set of prime factors is at most

3 · 73+2ω(k).

Consequently, for each ε > 0, there are fewer than kε such numbers j once k > k0(ε).

Proof If j and j + k have the same set of prime divisors, then this common set is a subset of
the primes dividing k. Hence, the equation (j + k)/k + (−j/k) = 1 is an instance of the S-unit
equation x + y = 1 over Q, where S consists of the infinite place together with the primes
dividing k. By a theorem of Evertse [7, Theorem 1], the number of solutions here is at most
3 · 71+2#S = 3 · 73+2ω(k). The final claim in the lemma follows from the well-known upper bound
ω(k)� log k

log log 3k (cf. [13, p. 471]). ut

The following result is our analogue of Theorem B.

Theorem 3.3 Let ε(x) be a positive-valued function of x for which ε(x)→ 0 while xε(x) →∞.
Let k be an even natural number satisfying 2 ≤ k ≤ xε(x). Then as x→∞,

P0(x; k) ≤ (16C2 + o(1))c(k)
x

(log x)2
,

uniformly in k. Moreover, (2k)−1 ≤ c(k) ≤
(

3 · 73+2ω(k)
∏

p|k
p>2

p−1
p−2

)
· k−1.

Remark Since
∏
p|k,p>2

p−1
p−2 � k/ϕ(k) � log log k and ω(k) � log k/ log log (3k), it follows

that c(k) � k−1 exp(O(log k/ log log(3k))). All that will be used in the proof of Theorem 1.2 is
that c(k) is absolutely bounded.

Proof Fix a j for which γ(j) = γ(j + k). Put g = gcd(j, j + k). Assume first that j(j + k)/g ≤
x
√
ε(x). If n ≤ x has the form given in Theorem A corresponding to this value of j, then

j(j + k)

g
r ≤ x, (3.3)

and both expressions in (3.1) are prime. By Selberg’s upper bound sieve (see [11, Theorem 5.7]),
the number of such n is at most

(16C2 + o(1))

 g

j(j + k)

∏
p|jk(j+k)/g3

p>2

p− 1

p− 2

 x

(log x)2
,



7

as x → ∞. Summing, we find that the contribution from these “small” j satisfies the bound
asserted in the theorem.

Thus, it is enough to show that the j with j(j+k)/g > x
√
ε(x) make a negligible contribution

and to prove the estimate for c(k). We start with the latter. The term j = k makes a contribution
of (2k)−1 to (3.2), and so the lower bound claimed for c(k) is trivial. The upper bound is
immediate from Lemma 3.2, since each term in (3.2) is bounded by k−1

∏
p|k,p>2

p−1
p−2 .

For j with j(j + k)/g > x
√
ε(x), inequality (3.3) itself (without any sieving) gives that the

number of n ≤ x corresponding to j is at most x1−
√
ε(x). By Lemma 3.2 (with ε = 1), the total

number of j is at most xε(x), and so the contribution from all such j is at most x1−
√
ε(x)+ε(x) ≤

x1−
1
2

√
ε(x) for large enough x. This contribution can be absorbed into the o(1)-term in the

theorem. Indeed, for large x,

x1−
1
2

√
ε(x)

c(k)x(log x)−2
≤ (2k)(log x)2x−

1
2

√
ε(x) ≤ (log x)2x−

1
3

√
ε(x) <

1

log x
,

uniformly for k ≤ xε(x). To see the final inequality in this chain, observe that ε(x) > 1/ log x for

large x, so that x−
1
3

√
ε(x) < e−

1
3

√
log x < (log x)−3 for large x. ut

Remark Assuming a plausible uniform version of the prime k-tuples conjecture (such as implied
by [14, Hypothesis UH]), a slight modification of the proof of Theorem 3.3 shows that the
asymptotic formula asserted in Theorem B holds uniformly for even integers k ≤ xε(x).

4 Towards Theorem 1.2, II: New totients from old

Before continuing, we state precisely Ford’s result [8, §§4, 5]1 on the order of magnitude of W (x).
Let V = {ϕ(n) : n ∈ N} be the set of all totients, and let V (x) := #V ∩ [1, x]. Ford showed that
for large x,

V (x) �W (x) � Z(x),

where

Z(x) :=
x

log x
exp(C(log3 x− log4 x)2 + C ′ log3 x− (C ′ + 1/2− 2C) log4 x).

Here C = 0.817814 . . . and C ′ = 2.17696874 . . . are constants defined as follows. Let

F (x) :=

∞∑
n=1

anx
n, where an = (n+ 1) log (n+ 1)− n log n− 1. (4.1)

Since each an > 0 and an ∼ log n (as n→∞), it follows that F is defined and strictly increasing
on [0, 1), with F (0) = 0 and F (x)→∞ as x ↑ 1. Thus, there is a unique number ρ = 0.542598 . . .
with F (ρ) = 1. We have

C :=
1

2| log ρ|
and C ′ := 2C(1 + logF ′(ρ)− log(2C))− 3/2. (4.2)

The proof of Ford’s theorem is quite technically involved but the general strategy is not hard
to understand. The upper-bound aspect is proved by showing that the preimages of a typical
totient have a very tightly constrained multiplicative structure. To establish the lower bound, one

1 All references to [8] are to the corrected arXiv version of that paper.



8

first constructs a set of candidate preimages with a similarly restricted multiplicative structure.
The candidate set has size � Z(x), and one shows that ϕ is close to injective on these candidates.
The following lemma is closely related to these lower-bound arguments.

Lemma 4.1 Fix natural numbers d1, d2 ∈ V , and fix D ≥ max{d1, d2}. For large x, there are
�D Z(x) numbers n which satisfy all of the following:

(i) ϕ(n) ≤ x/D,
(ii) n is convenient for both d1 and d2,

(iii) n/ϕ(n) ≤ K, where K is an absolute constant.

Proof This follows from a simple adaptation of the lower-bound argument of Ford [8, §5], which
we briefly review here. Put M = M2 + b(logD)1/9c, where M2 is a sufficently large absolute
constant. With C as defined in (4.2), put

L0 := b2C(log3 x− log4 x)c and L := L0(x)−M.

Put

ξi := 1− ωi, where ωi :=
1

10(L0 − i)3
(0 ≤ i ≤ L− 1).

Our “candidate set” in this proof is the set B of integers n = p0p1 · · · pL > x9/10 with p0 > p1 >
· · · > pL and

ϕ(n) ≤ x/D,
log2 pi ≥ (1 + ωi) log2 pi+1 (0 ≤ i ≤ L− 1),

pL ≥ max{D + 2, 17},

and for which the numbers xi := log2 pi
log2 (x/D) (for 1 ≤ i ≤ L) satisfy the system of inequalities

a1x1 + a2x2 + · · ·+ aLxL ≤ ξ0,
a1x2 + a2x3 + · · ·+ aL−1xL ≤ ξ1x1,

... (4.3)

a1xL−1 + a2xL ≤ ξL−2xL−2,
0 ≤ xL ≤ ξL−1xL−1,

with the ai defined in (4.1). The argument for [8, eq. (5.17)] gives that #B �D Z(x). The proof
on [8, pp. 25–29] (changing some occurrences of d to D) shows that if M2 is sufficiently large,
then at most 1

4#B values of n ∈ B fail to be convenient for d1. The same holds for d2. Hence,
there are � #B � Z(x) values of n ∈ B which satisfy conditions (i) and (ii) of the lemma.

To complete the proof, it is enough to show that n/ϕ(n) is bounded for n ∈ B. In the notation
of [8, §3], the conditions on n imply that (x1, . . . , xL) ∈ SL(ξ) ⊂ SL(1). So with x0 = 1, [8,
Lemma 3.8] gives that

xj ≤ 4.771ρj−ixi (0 ≤ i < j ≤ L), (4.4)

where ρ = 0.542598 . . . is defined as in the introduction. Since pL > 17, we have

xL =
log2 pL

log2 (x/D)
>

1

log2 (x/D)
.

Now taking j = L in (4.4) gives that for 1 ≤ i ≤ L,

log2 pi = xi log2(x/D) ≥ 1

5
(ρ−1)L−i ≥ 0.2(1.8)L−i,

so that
∑L
i=0

1
pi

is absolutely bounded. Since n
ϕ(n) � exp

(∑
p|n

1
p

)
, we have (iii). ut
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5 Proof of Theorem 1.2

Lemma 5.1 let S be a subset of [1, x] on which ϕ is nondecreasing. For large x, the set ϕ(S )
is missing �W (x) elements of W (x), uniformly in the choice of S .

Proof Fix totients d1 and d2 with d1 < d2 but where the smallest preimage n1 of d1 is greater
than the largest preimage n2 of d2. For example, we can take

d1 = 218 · 257, with smallest preimage n1 = 135268352,

and

d2 = d1 + 28, with largest preimage n2 = 134742074.

We apply Lemma 4.1 with our values of d1 and d2 and with D = Kn1n2; we obtain a set A of
�D V (x) integers n with properties (i)-(iii) of Lemma 4.1. Let

V1 = {d1ϕ(n) : n ∈ A } and V2 = {d2ϕ(n) : n ∈ A }.

As n ranges over A , the numbers d1ϕ(n) are all distinct, since d1ϕ(n) has smallest preimage
n1n. Moreover, for n ∈ A ,

n1n = n1
n

ϕ(n)
ϕ(n) ≤ Kn1ϕ(n) ≤ Kn1

x

Kn1n2
≤ x,

so that V1 is a subset of W (x). Similarly, #V2 = #A and V2 is a subset of W (x).
Let A1 be the set of n ∈ A for which d1ϕ(n) 6∈ ϕ(S ), and let A2 be the set of n ∈ A for which

d2ϕ(n) 6∈ ϕ(S ). Suppose n ∈ A but that both d1ϕ(n), d2ϕ(n) ∈ ϕ(S ). Since d1ϕ(n) < d2ϕ(n)
and ϕ|S is nondecreasing, it follows that S contains two integers m1 and m2 with m1 < m2

and ϕ(m1) = d1ϕ(n), ϕ(m2) = d2ϕ(n). This contradicts that m1 ≥ n1n > n2n ≥ m2. So every
n ∈ A belongs to either A1 or A2, and so ϕ(S ) is missing at least 1

2#A �D Z(x) � W (x)
elements of W (x). ut

Proof (Completion of the proof of Theorem 1.2) Let S be a subset of [1, x] on which ϕ is
nondecreasing, and list the elements of S as n1 < n2 < · · · < nm, in increasing order. The
number of values of i for which ni+1−ni > log x is clearly at most x/ log x = o(W (x)). Partition
the indices 1 ≤ i < m for which ni+1 − ni ≤ log x into two classes, according to whether
ϕ(ni) = ϕ(ni+1) or not. If i belongs to the first class, then ϕ(ni) = ϕ(ni + k) for some k ≤ log x.
By Theorems 3.1 and 3.3, the number of n ≤ x with ϕ(n) = ϕ(n+ k) is � x/(log x)2, uniformly
for k ≤ log x. So summing over k ≤ log x, we find that the number of i in the first class is
� x/ log x = o(W (x)). Since ϕ is nondecreasing on S , distinct values of i in the second class
correspond to distinct integers ϕ(ni). So by Lemma 5.1, the number of such i is bounded by
(1− c)W (x), for some c > 0 and all large x. Thus, lim supM↑(x)/W (x) ≤ 1− c < 1. ut

6 Strictly decreasing sequences: Proof of Theorem 1.4

The proof of Theorem 1.4 makes use of the following theorem of Baker, Harman, and Pintz [3,
Theorem 1] concerning small gaps between primes:

Theorem D If x is sufficiently large, then there is a prime in the interval [x− x0.525, x].
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Proof (Proof of Theorem 1.4) Using Bertrand’s postulate, let p0 be a prime number with x1/10 <
p0 ≤ 2x1/10. Let q0 be the largest prime for which p0q0 ≤ x. By Theorem D, we have

x

p0
− x1/2 ≤ q0 ≤

x

p0
(6.1)

for large x. We now carry out k := bx0.19c steps of the following algorithm: Assume that p0, . . . , pi,
q0, . . . , qi have already been chosen. Let pi+1 be the first prime exceeding pi, and let qi+1 be a
prime chosen so that

pi+1qi+1 < piqi while ϕ(pi+1qi+1) > ϕ(piqi). (6.2)

To see that this makes sense, we must show that there is a prime qi+1 obeying (6.2), i.e., that
there is a prime qi+1 satisfying

qi+1 <
pi
pi+1

qi and qi+1 − 1 >
pi − 1

pi+1 − 1
(qi − 1). (6.3)

Now (6.3) places qi+1 in an interval with right-endpoint pi
pi+1

qi with length(
pi
pi+1

− pi − 1

pi+1 − 1

)
qi +

pi − 1

pi+1 − 1
− 1 >

qi
p2i+1

− 1.

By Theorem D, a suitable choice of qi+1 exists if qi/p
2
i+1 > q0.53i (say), so if pi+1 < q0.235i . From

the choice of k and the prime number theorem, we have p0, p1 . . . , pi+1 ≤ x0.1901 (say); also, since
ϕ(piqi) ≥ ϕ(p0q0)� x,

qi − 1 ≥ ϕ(p0q0)

pi − 1
� x/pi � x0.8099.

Hence,

q0.235i > x0.1903 > pi+1.

This shows that the construction goes through for k steps. We take ni := piqi for i = 0, 1, . . . , k.
Then {nk < nk−1 < · · · < n0} is a subset of [1, x] on which ϕ is strictly decreasing with size
k + 1 > x0.19. ut

7 A nontrivial lower bound on M↓(x): Proof of Theorem 1.3

Lemma 7.1 Given x ≥ 1, let d be the largest integer for which the equation ϕ(n) = d has M0(x)
solutions n ≤ x. For each fixed ε > 0, we have d > x1−ε once x > x0(ε).

Proof Suppose for the sake of contradiction that d ≤ x1−ε. If x is large, we can choose a prime
p ≤ xε/2 for which p − 1 does not divide d. Indeed, the number of divisors of d is xo(1), by
the maximal order of the divisor function (see, e.g., [13, Theorem 317]), while the number of
p ≤ xε/2 is �ε x

ε/2/ log x. Since p − 1 - d, each solution n to ϕ(n) = d is coprime to p. Thus,
ϕ(np) = (p − 1)d. So the number d′ := (p − 1)d has at least M0(x) preimages under ϕ. Since
d′ < pd ≤ x1−ε/2, each preimage of d′ is < 2x1−ε/2 log log x < x, assuming x is large. (We use
here the minimal order of the Euler function; see [13, Theorem 328].) Hence, d′ has at least
M0(x) preimages in [1, x], contradicting the maximality of d.
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Proof (Proof of Theorem 1.3) Given x, choose d as in Lemma 7.1. Then d > x0.95 once x is large.
Let P be the set of primes p for which p−1 divides d. Every solution n to ϕ(n) = d is supported
on the primes in P. Also, #P = xo(1), by the maximal order of the divisor function. It follows
that there are only xo(1) solutions n to ϕ(n) = d with fewer than 100 prime factors (counted
with multiplicity).

Let N be the least solution to ϕ(N) = d with at least 100 prime factors. Clearly, N > d >
x0.95. The proof of Theorem 1.4 (with x = N) gives us a sequence

pkqk < · · · < p1q1 < p0q0 ≤ N

along which ϕ is strictly decreasing, with k > N0.19. Moreover, by (6.1), we have

p0q0 ≥ N − 2N0.6;

since q0 ≤ N/p0 ≤ N0.9, this yields

ϕ(p0q0) = p0q0 − p0 − q0 + 1

> p0q0 − 2q0 ≥ N − 2N0.6 − 2N0.9.

Now N has at least one prime factor r ≤ N1/100, and so

ϕ(N) ≤ N(1− 1/r) ≤ N −N0.99 < ϕ(p0q0),

assuming that x is large. It follows that ϕ is nonincreasing on the set S := {pkqk < · · · <
p0q0} ∪ {n : N ≤ n ≤ x, ϕ(n) = d}, and that

#S > N0.19 + (M0(x)− xo(1)) ≥ (x0.95)0.19 + (M0(x)− xo(1)) > x0.18 +M0(x)

for large values of x. ut

8 Consecutive integers: Proof of Theorem 1.5

Proof (Proof of the lower bound) Let δ > 0. For large x, we describe how to construct a set
{n+ 1, . . . , n+ k} of consecutive integers contained in [1, x] with

k :=

⌊
log3 x

log6 x
+ (α− γ − δ) log3 x

(log6 x)2

⌋
on which ϕ is nonincreasing. The nondecreasing case is similar (but slightly simpler) and we omit
it. Rather than insist that ϕ be nonincreasing, it suffices to require that

ϕ(n+ 1)

n+ 1
>
ϕ(n+ 2)

n+ 2
> · · · > ϕ(n+ k)

n+ k
. (8.1)

Indeed, if m ∈ {n+ 1, . . . , n+ (k − 1)}, and ϕ(m)/m > ϕ(m+ 1)/(m+ 1), then

ϕ(m+ 1) < ϕ(m) + ϕ(m)/m ≤ ϕ(m) + 1,

so that ϕ(m+ 1) ≤ ϕ(m).
To understand the ratios appearing in (8.1), it is convenient to introduce a partition of the

primes into three classes: the small primes in [2, k], the medium-sized primes in (k, 12 log x], and
the large primes > 1

2 log x. We make two observations. First, a medium-sized or large prime
divides at most one of any k consecutive integers. Second, for each m ≤ x, the contribution to
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the ratio ϕ(m)/m =
∏
p|m(1− 1/p) from large primes is quite close to 1. In fact, since m has at

most log x
log( 1

2 log x)
prime factors, we have

∏
p|m

p> 1
2 log x

(
1− 1

p

)−1
≤ exp

 ∑
p|m

p> 1
2 log x

1

p− 1

 < 1 +
3

log2 x
(8.2)

for large x. Now set A to be the largest initial product of primes 2 · 3 · 5 · 7 · · · (primorial) for
which A ≤ k, and observe that for each 1 ≤ i ≤ k, we have

ϕ(i)

i
=
∏
p|i

(1− 1/p) ≥ ϕ(A)

A
.

We claim that we can choose disjoint sets of primes P1, . . . ,Pk, with each Pi ⊂ ((log2 x)2, 12 log x]
(so that in particular, Pi consists of medium-sized primes), and so that

ϕ(A)

A

(
1− 6i

log2 x

)(
1− 1

(log2 x)2

)
≤ ϕ(i)

i

∏
p∈Pi

(
1− 1

p

)
≤ ϕ(A)

A

(
1− 6i

log2 x

)
(8.3)

for all 1 ≤ i ≤ k.
Assuming for the moment that the claim is proved, let us see how to construct our set

satisfying (8.1). Let P ′ be the set of all medium-sized primes not appearing in any of P1, . . . ,Pk,
and let n ∈ (x/2, x− k] be a solution to the simultaneous congruences

n ≡ 0 (mod
∏
p≤k

p),

n+ i ≡ 0 (mod
∏
p∈Pi

p) for 1 ≤ i < k,

n+ k ≡ 0 (mod
∏

p∈Pk∪P′

p).

The product of the moduli is bounded by x1/2+o(1), by the prime number theorem, and so a
solution n in the desired interval exists by the Chinese remainder theorem. For each 1 ≤ i ≤ k,
write n + i = aibici, where ai, bi, and ci are supported on the small, medium-sized, and large
primes respectively. Since n is divisible by every small prime, the small prime divisors of ai
coincide with the small prime divisors of i, so that

ϕ(ai)/ai = ϕ(i)/i. (8.4)

The medium-sized prime divisors of n + i always include the primes appearing in Pi and are
exactly these primes except in the case when i = k; hence,

ϕ(bi)

bi
≤
∏
p∈Pi

(1− 1/p), (8.5)

with equality unless i = k. (We have used here the first observation of the preceding paragraph.)
Piecing together (8.4), (8.5), (8.2), and recalling the definition (8.3) of the sets Pi, we find that
for large x,

ϕ(A)

A
(1− (6i+ 4)/ log2 x) ≤ ϕ(n+ i)

n+ i
≤ ϕ(A)

A
(1− 6i/ log2 x) (8.6)
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for all 1 ≤ i < k. Moreover, the right-hand inequality holds even when i = k. This gives (8.1), as
desired.

It remains to prove that we can choose sets Pi satisfying (8.3). We use the greedy algorithm:
Start with i = 1, and successively throw primes from ((log2 x)2, 12 log x] into P1 stopping once
(8.3) is satisfied with i = 1. Continue the process for all of i = 2, . . . , k. Our only concern is that
we never run out of primes; this will be true if∏

(log2 x)
2<p≤ 1

2 log x

(
1− 1

p

)
≤

∏
1≤i≤k

(
ϕ(A)

A

i

ϕ(i)

(
1− 6i

log2 x

)(
1− 1

(log2 x)2

))
. (8.7)

The left-hand product is � log3 x
log2 x

by Mertens’s theorem; we will show that the right-hand side

has a larger order of magnitude. We have

ϕ(A)

A
=

e−γ

log2 k

(
1 +O

(
1

log2 k

))
, so that

(
ϕ(A)

A

)k
=

e−γk

(log2 k)k
exp

(
O

(
k

log2 k

))
.

Also, ∏
1≤i≤k

i

ϕ(i)
=
∏
p≤k

(1− 1/p)−bk/pc

� 1

log k

∏
p≤k

(1− 1/p)−1/p

k

=
1

log k
(eα(1 +O(1/k)))k � eαk

log k
. (8.8)

The remaining contribution to the right-hand side of (8.7) is

� (1−O(k2/ log2 x))(1−O(k/(log2 x)2))� 1.

Piecing everything together, we see that the right-hand side of (8.7) has size at least

exp((α− γ)k − k log3 k +O(k/ log2 k)).

Recalling the definition of k, a short computation shows that this is at least

exp(− log3 x+
δ

2
log3 x/ log6 x),

for large x, which is of greater order of magnitude than log3 x/ log2 x. ut

Proof (Proof of the upper bound) Fix δ > 0. It will suffice to show that with

k :=

⌊
log3 x

log6 x
+ (α− γ + δ)

log3 x

(log6 x)2

⌋
,

there are no sets {n+ 1, n+ 2, . . . , n+ k} ⊂ [1, x] on which ϕ is monotone, once x is sufficiently
large.

Suppose for the sake of contradiction that we have such a set. Let B be the largest primorial
bounded by log3 x/ log5 x. Chopping off O(B) terms from the beginning and end of our segment



14

(and so replacing δ by δ/2, say), we can assume that both n + 1 and n + k are multiples of B.
Hence,

max

{
ϕ(n+ 1)

n+ 1
,
ϕ(n+ k)

n+ k

}
≤ ϕ(B)

B
.

If ϕ is nonincreasing, this implies immediately that

ϕ(B)

B
≥ ϕ(n+ 1)

n+ 1
>
ϕ(n+ 2)

n+ 2
> · · · > ϕ(n+ k)

n+ k
.

Suppose instead that ϕ is nondecreasing. Then k ≤ M↑(n + k), and so n > k(log k)1/2 by
Theorem 1.2 (once x is large). It follows that uniformly for 1 ≤ i ≤ k,

ϕ(n+ i)

n+ i
≤ ϕ(n+ k)

n+ k

n+ k

n+ i
≤ ϕ(B)

B
(1 +O(1/

√
log4 x)).

By Mertens’s theorem,
ϕ(B)

B
=

e−γ

log5 x
(1 +O(1/ log5 x)).

We conclude that regardless of whether ϕ is nonincreasing or nondecreasing,

ϕ(n+ i)

n+ i
≤ e−γ

log5 x
(1 +O(1/ log5 x)) (for all 1 ≤ i ≤ k).

Hence,
k∏
i=1

ϕ(n+ i)

n+ i
≤ e−kγ

(log5 x)k
exp

(
O

(
log3 x

log5 x log6 x

))
. (8.9)

We now obtain a contradictory estimate for the left-hand side of (8.9). Write n+ i = aibici,
with the right-hand factors having the same meaning as in the lower-bound portion of the
argument. From (8.2), ∏

1≤i≤k

ϕ(ci)

ci
� 1. (8.10)

We have
∏

1≤i≤k
ϕ(ai)
ai

=
∏
p≤k(1− 1/p)np , where np = k/p+O(1) counts the number of terms

of the sequence n+ 1, . . . , n+ k divisible by p. Hence (cf. (8.8)),∏
1≤i≤k

ϕ(ai)

ai
= (log k)O(1)e−αk. (8.11)

Finally, since a medium-sized prime can divide at most one of n+ 1, . . . , n+ k,∏
1≤i≤k

ϕ(bi)

bi
≥

∏
k<p≤ 1

2 log x

(1− 1/p)� log k

log2 x
. (8.12)

Collecting and rearranging (8.9)-(8.12), we arrive at the bound

e(γ−α)k(log5 x)k ≤ (log2 x) exp

(
O

(
log3 x

log5 x log6 x

))
. (8.13)

But the definition of k and a short computation shows that

e(γ−α)k(log5 x)k > (log2 x) exp

(
δ

3
log3 x/ log6 x

)
for large x, which contradicts (8.13). ut
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Remark The construction for the lower bound half of Theorem 1.5 works with “nonincreasing”
and “nondecreasing” replaced by “strictly increasing” and “strictly decreasing”. For example,
in the decreasing case, since the n constructed in the proof satisfy n > x/2 and (8.6), a short
computation shows that (for large x)

ϕ(n+ i)

ϕ(n+ i+ 1)
> (1− 2/x)

ϕ(n+ i)/(n+ i)

ϕ(n+ i+ 1)/(n+ i+ 1)
> 1 +

1

log2 x

for all 1 ≤ i < k.

9 Numerics

Let S(x) be the set of numbers on which ϕ is nondecreasing such that |S(x)| = M↑(x) and
such that S(x) is minimal lexicographically. When computing S(x) for small values of x, one is
tempted to conjecture that M↑(x)−π(x) goes to infinity. This happens because when x is small,
S(x) consists mostly of composite numbers. For example, S(70) is

{1, 2, 3, 4, 5, 8, 10, 12, 14, 15, 16, 20, 21, 26, 28, 32, 33, 35, 39, 45, 52, 56, 58, 62, 63, 65, 67}.

However, S(106) consists of mostly prime numbers. Indeed if s ∈ S(106) and s ≥ 31957, then
s is prime. So out of the 78562 numbers in S(106), the last 75501 are prime. Combining this with
our calculation M↑(107) = 664643 = π(107) + 64 leads us to conjecture that M↑(x) = π(x) + 64
for all x ≥ 31957.

Before the dominance of the primes above 31957, the primes had also taken command of the
list when 11777 ≤ x ≤ 27678. Indeed, if x is in that range, then the tail of primes of S(x) consists
of all the primes greater than or equal to 11777. However, S(27679) has no tail of primes. This
led us to question whether a shadow sequence was hiding behind the primes waiting to pounce at
the right time (a huge prime gap, for example). With this in mind, we computed the maximum
size M2(x) of a subset of {n ≤ x | n is not prime} on which ϕ is nondecreasing.

If we had M↑(x) > π(x) + 64 for x large enough, then either the shadow sequence takes over
or for some p ≥ 31957, we have that the largest subset of {p < n ≤ x |ϕ(n) ≥ p−1} on which ϕ is
monotone has the same cardinality as the largest subset of {p < n ≤ x|ϕ(n) ≥ p−1, n not prime}
on which ϕ is monotone. The latter seems highly unlikely since, e.g., the first composite n
satisfying ϕ(n) ≥ p − 1 is greater than p +

√
p − 1, while the first prime n satisfying that

inequality is expected to be much smaller. The former is analyzed in the following paragraph.

It is not hard to see that M2(x) ≤ M↑(x) − 2 for x ≥ 6. For a shadow sequence to pounce
we would need to have M2(x) = M↑(x)− 2 for some x ≥ 31957. We conjecture that this will not
happen. Our main evidence is Table 9.1, on which we consider the difference between M↑(x) and
M2(x) for different values of x. Though the size of the difference varies, it seems to be getting
bigger as x gets bigger (even if it does so in an oscillatory manner).

With respect to M↓(x), the size of it is so small with respect to x that computing values of it
for small x doesn’t reveal much. Indeed, M↓(106) = 995, a tiny number compared to 106. Other
information we can mention about M↓(106) is that the largest subset contains 791 preimages of
241920. The element in {ϕ(n) | n ≤ 106} which has the most preimages is 241920. It has 937
preimages, i.e., M0(106) = 937.

One might wonder whether the numbers in the largest subset of [1, x] where ϕ is nonincreasing
follow the pattern in the proofs of Theorems 1.3 and 1.4. Indeed, most of the preimages have
only two prime factors coinciding with the pattern of the proofs of those theorems.
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Table 9.1 Difference between M↑(x) and M2(x). The reason 31957 is the threshold is that it is the first prime
after a big prime gap. The primes 11777 and 44351 also come after big prime gaps, which is why the difference
M↑(x) −M2(x) decreased at the integers coming before it.

x M↑(x) M2(x) M↑(x) −M2(x)
10000 1276 1261 15
11776 1459 1457 2
20000 2312 2297 15
30000 3298 3294 4
31956 3491 3489 2
40000 4267 4244 23
44350 4676 4657 19
50000 5197 5168 29
100000 9656 9595 61
1000000 78562 77681 881
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