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Unique factorization?

2/38

Let D be an integral domain. A nonzero, nonunit element π ∈ D is
irreducible if π cannot be written as a product of two nonunits.

A domain D is a unique factorization domain (UFD) if every
nonzero nonunit is a product of irreducibles and this expression is
unique up to order and up to unit factors.

More precisely, we require that if π1 · · ·πk = ρ1 . . . ρℓ, with all the

πi and ρj irreducible, then

(a) k = ℓ,

(b) after rearranging, πi is a D-unit multiple of ρi for all
i = 1, 2, . . . , k .
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Unique factorization’s greatest hits
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In a first algebra course, one meets several instances where unique
factorization holds. Some of the most prominent are . . .

Z : the ring of rational integers,

F [x ] : polynomials over a field F ,

Z[i ] : the Gaussian integers a+ bi with a, b ∈ Z.

It’s interesting to trace the history of the proofs. Arguably Euclid
could have proved Z possessed unique factorization, except that he
never quite tried to do so. The first complete proof for Z seems
due to Gauss in his Disquisitiones.

The proofs for F [x ] and Z[i ] are also due to Gauss. Gauss looked
at the arithmetic of F [x ] in an unpublished Section VIII of the
Disquisitiones and he investigated the number theory of Z[i ] while
looking at 4th power reciprocity.
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. . . andmisses

4/38

These examples can lull one into a false sense of security!

The following near-canonical example of non-unique factorization
is helpful to keep students on their toes: In the ring Z[

√
−5],

2 · 3 = (1 +
√
−5)(1−

√
−5).

This is a genuine example of non-unique factorization: all of 2, 3,
1 +

√
−5 and 1−

√
−5 are irreducible in Z[

√
−5]. Furthermore,

the only units in Z[
√
−5] are ±1, so there is no chance that the

irreducibles on the left are unit multiples of those on the right.

Thus, Z[
√
−5] is not a UFD! But as we will see later in this talk,

it’s close.

What could that possibly mean?
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Wherewill we look?

5/38

We will be primarily interested in rings coming from number fields.

A number field is a finite extension K/Q. For each number field
K , we let OK (the ring of integers of K ) denote the integral
closure of Z in K . Concretely,

OK := {α ∈ K : f (α) = 0 for some monic f (x) ∈ Z[x ]}.

Examples

OQ(i) = Z[i ]
OQ(

√
−5) = Z[

√
−5]

OQ( 3√2) = Z[ 3
√
2]

OQ(
√
5) = Z[(1 +

√
5)/2].
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Paradise lost and paradise regained
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The example of Z[
√
−5] shows that OK is not always a UFD. But

this is not the end of the story!

Dedekind proved that while elementwise
factorization in OK need not be unique, one
always has unique factorization of ideals. That
is, every nonzero ideal of OK factors uniquely
as a product of nonzero prime ideals.
(Old-fashioned books, and old-fashioned
people, call this the “Fundamental theorem of
ideal theory”.)
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Howmuch goeswrong?

7/38

How we might quantify the failure of elementwise unique
factorization?

First of all, let’s get units out of the picture.

Let IntPrin(K ) denote the collection of nonzero principal ideals of
OK . We can view IntPrin(K ) as a monoid under ideal
multiplication. This has the same multiplicative structure as
OK \ {0}, but without the influence of the pesky units.

Let IntId(K ) denote the collection of nonzero ideals of OK .
Dedekind says: IntId(K ) is a monoid that possesses unique
factorization!

So one way to quantify non-unique factorization would be to
answer: How far away is IntPrin(K ) from IntId(K )?
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Howmuch goeswrong? ctd.
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Let Id(K ) be the group of nonzero fractional ideals of K , and let
Prin(K ) denote the group of nonzero principal fractional ideals.
(These are the groups generated by IntId(K ) and IntPrin(K ).)
The class group of OK is defined as the quotient

Cl(OK ) = Id(K )/Prin(K ).

One can show: OK is a UFD precisely when Cl(OK ) is trivial.

Cl(OK ) need not be trivial, but a basic fact from algebraic number
theory is that Cl(OK ) is always finite.

Very common to hear: “the class group
measures the failure of unique factorization.”
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. . . though it have no tongue, will speak, with most miraculous organ . . .

9/38

The class group knows everything about the failure of unique
factorization. The hard part is getting it to speak!

To elaborate, let’s revisit Z[
√
−5]. We saw already that uniqueness

of factorization fails here, since 2 · 3 = (1 +
√
−5)(1−

√
−5).

It’s

less well-known that uniqueness fails only halfway! Recall

uniqueness means: If π1 · · ·πk = ρ1 . . . ρℓ, with all πi and ρj
irreducible, then

(a) k = ℓ,

(b) after rearranging, πi is a unit multiple of ρi for all
i = 1, 2, . . . , k .

Condition (a) turns out to be just fine!
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Aclassy explanation

10/38

We say a domain D is a half-factorial domain (HFD) if every
nonzero nonunit element of D factors as a product of irreducibles,
and any two factorizations of the same element share the same
number of irreducible factors.

Theorem (Carlitz, 1960)

Let K be a number field. If #Cl(OK ) = 1 or 2, then OK is an
HFD, and vice-versa.

Since Q(
√
−5) has class number 2, its ring of integers Z[

√
−5] is

an HFD, as claimed.

On the other hand, Q(
√
−23) has class number 3. Here

3 · 3 · 3 = (2 +
√
−23)(2−

√
−23), showing half-uniqueness fails.
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Stretching, the truth
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Let D be a domain where every nonzero nonunit factors into
irreducibles. (This is true for all the OK .) For each nonzero
nonunit α ∈ D, we define the length spectrum of α by

L(α) = {all lengths k of irreducible factorizations α = π1 · · ·πk}.

We define the elasticity of α by

ρ(α) =
supL(α)
inf L(α)

.

Finally, we define the elasticity ρ(D) of D by

ρ(D) = sup
α

ρ(α).

So ρ(D) = 1 if and only if D is an HFD.
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Fun. Theoremof Stretchiness
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Let K be a number field.

Theorem (Valenza, Narkiewicz, Steffan)

Assume OK is not a UFD. Then

ρ(OK ) =
1

2
·Davenport constant of Cl(OK ).

OK, but what is the Davenport constant? For a finite abelian
group G , the Davenport constant D(G ) is the smallest positive
integer D such that any length D sequence

g1, g2, . . . , gD

of elements of G has some nonempty subsequence whose product
is the identity.
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Orientation

13/38

Exercises
If G is a finite abelian group of size n, then

(a) D(G ) ≤ n, with equality when G is cyclic,

(b) D(G )− 1 ≥ log n
log 2

, with equality when n is an elementary
abelian 2-group.

Remarkably, even though D(G ) is known exactly for all p-groups,
we do not have a formula for D(G ) in general.
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Sketch of the lower bound
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We sketch a proof that ρ(OK ) ≥ 1
2D.

We need the following theorem of Landau: Every class in Cl(OK )
is represented by infinitely many nonzero prime ideals of OK .

Let D = D(Cl(OK )). By the definition of D, and the fact above,
we can choose prime ideals P1, . . . ,PD−1 so that P1, . . . ,PD−1 has
no nonempty subsequence multiplying to the identity in Cl(OK ).

We can then choose PD in the inverse class of P1 · · ·PD−1. Then
P1 · · ·PD is principal, say P1 · · ·PD = πOK .

Then π is irreducible: If π = αβ, with α, β nonunits, then the
prime ideal factorization of αOK or βOK would give a nonempty
subsequence of P1, . . . ,PD−1 multiplying to the identity.
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Back to Fun. Stretchiness
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If we choose Q1, . . . ,QD prime ideals in the classes inverse to
P1, . . . ,PD , respectively, then by the same argument,

Q1 · · ·QD = ρOK ,

where ρ is irreducible in OK .

Now consider ρπ. On the one hand, this is a product of two
irreducibles: ρ and π.
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Back to Fun. Stretchiness, ctd.
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On the other hand,

ρπOK = (P1Q1) · · · (PDQD).

Each PiQi = γiOK for some γi . So up to unit factors,

ρπ = γ1 · · · γD .

If we decompose the γi into irreducibles, the right-hand side will
involve at least D irreducibles, while the left will involve 2
irreducibles. Hence,

ρ(OK ) ≥
D

2
.
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Surveying our successes

17/38

It is natural to ask how badly unique factorization fails (or fails to
fail) as one looks across families of number rings. Very little is
known here.

This is not for lack of trying!

Let’s zero in on the most well-studied case: Quadratic fields. The
questions here go back to Gauss (binary quadratic forms).
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Surveying our successes, ctd.
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For imaginary quadratic fields, meaning K = Q(
√
d) with d < 0,

we know that unique factorization holds only finitely often. The
largest in absolute value is d = −163 (Baker–Heegner–Stark).
Moreover, from work of Heilbronn, the size of the class group
(class number) tends to infinity as d → −∞. So factorization gets
“worse and worse”.

For d > 0, the situation is expected to be rather different. We
expect that the class group is trivial infinitely often. In fact,
heuristics of Cohen–Lenstra predict that the class number of
Q(

√
p) should be 1 for about 75.4% of all primes p.
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Surveying our successes, ctd.

19/38

There’s been remarkable progress towards the Cohen–Lenstra
heuristics in recent years. But existing methods do not establish
even that

#Cl(Q(
√
d)) < 1010

10

for infinitely many squarefree d !

So it seems that if we want to find infinitely many UFDs, we’re out
of luck!
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Anewhope?

20/38

Question (Coykendall): What about HFDs?
Can we find infinitely many half-factorial
domains by wandering in the land of quadratic
fields?

It’s tempting to answer no. For OK to be half-factorial, one needs
(Carlitz) that #Cl(OK ) ≤ 2. This inequality holds for only finitely
many imaginary quadratic fields K . And for all we can prove, it
happens for only finitely many real quadratic K too.

But . . .OK is not the only game in town. We can look at subrings
of OK !
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Orders in the court

21/38

Let K be a quadratic field. An order in K is a subring of OK

properly containing Z. The ring OK itself is referred to as the
maximal order.

The orders in K are in one-to-one correspondence with positive
integers f . Each order has the form

Of = {α ∈ OK : α ≡ a (mod fOK ) for some a ∈ Z};

we call f the conductor of the order.

Nonmaximal orders cannot be UFDs (they are not integrally
closed) but can be HFDs!
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Half-truths

22/38

Conjecture (Coykendall, 2001)

(a) There are infinitely many HFDs as you vary over all
quadratic fields and all orders contained in those fields.

(b) There are infinitely many HFDs as you vary among the
orders in the quadratic field Q(

√
2).

Theorem (P., 2023)

(a) is true, and (b) is true assuming GRH.
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I knew youwere trouble. . .
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Determining the elasticity of a nonmaximal order is somewhat
delicate. In a perfect world, one might hope that ρ(O) was a
simple function of the class group of O, the way it is for maximal
orders O.

Troubling example

Z[5i ] has class number 2.

But ρ(Z[5i ]) = ∞ !

Exercises

(a) 5(2 + i)k is irreducible in Z[5i ] for every k , as is 5(2− i)k .

(b) 5(2 + i)k · 5(2− i)k = 5 · 5 · 5 · · · 5︸ ︷︷ ︸
k+2 times

.

Hence, ρ(Z[5i ]) ≥ k+2
2
.

Halter-Koch: order of conductor f has finite elasticity ⇐⇒ f is not
divisible by any prime split in K .
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Half-factorial orders

24/38

Half-factorial orders in quadratic fields were characterized
arithmetically by Halter-Koch and (independently) Coykendall.

Theorem (Coykendall, 2001)

If K is imaginary quadratic, and O is a half-factorial order in K not
the maximal order, then K = Q(

√
−3) and O = Z[

√
−3].

The characterization in the real quadratic case is not as simple.
For simplicity, we state only partial results.
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Real-quadratic half-factorial orders

25/38

Theorem (Halter-Koch, Coykendall)

Let K be a real quadratic field. The following conditions are

necessary for Of to be half-factorial:

OK is half-factorial (hence, #Cl(OK ) = 1 or 2),

f = p or 2p, where p is prime (and p odd when f = 2p),

p is inert in K .

Furthermore, if OK is half-factorial and p is inert in K , then

Op is an HFD ⇐⇒ Cl(Op) = Cl(OK ).

(Recall: There is a canonical surjection Cl(Op) ↠ Cl(OK ).)
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Real-quadraticHFDs, ctd.

26/38

Suppose K is a real quadratic field. Let p be a prime inert in K .
The condition that Cl(Op) = Cl(OK ) can be reformulated in
terms of units.

Let ϵ be the fundamental unit of OK . Then

Cl(Op) = Cl(OK )

⇐⇒ u = p + 1 is the smallest positive integer for
which ϵu ∈ Op.

This follows, e.g., from the class number formula for O.

It’s at least easy to see that ϵp+1 ∈ Op. Remember, Op consists of
the elements of OK congruent to a rational integer mod pOK .
Working modulo p in OK ,

ϵp+1 ≡ ϵ · ϵp ≡ Nϵ (mod p).
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Real-quadraticHFDs, ctd.

27/38

When is u = p+ 1 the smallest positive integer for which ϵu ∈ Op?

We can view Z/pZ as a subfield of OK/pOK (as usual). We want
u = p + 1 to be the smallest positive integer for which ϵu is the
identity in the quotient

Gp := (OK/pOK )
×/(Z/pZ)×.

The group Gp has size p2−1
p−1 = p + 1.

Hence: We are asking for ϵ mod p to generate Gp.
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Real-quadraticHFDs, ctd.

28/38

Upshot. Let K be a fixed real quadratic field of class number 1 or
2. Then Op is an HFD for infinitely many primes p if and only if
there are infinitely many primes p, inert in K , for which (the image
of) ϵ generates

Gp = (OK/pOK )
×/(Z/pZ)×.

Do we expect this?

Alan: Must assume Nϵ = −1. (Otherwise the order of ϵ divides
p+1
2 for all odd inert p.)

OK, then do we expect this?
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Looking back, with a view forward
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What we are asking for is reminscent of a nearly century-old
conjecture of Emil Artin.

Conjecture

Let g be an integer, not −1 and not a square.
Then there are infinitely many primes p for
which (the image of) g generates the
multiplicative group (Z/pZ)×.

Artin’s conjecture is still open. However, in
1967 Hooley proved that Artin’s conjecture
follows from the Generalized Riemann
Hypothesis.
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Following the breadcrumbs. . .

30/38

This is encouraging, but we need a particular quadratic field variant
of Artin’s conjecture, not Artin’s conjecture itself. Luckily, variants
of Artin’s conjecture for quadratic fields have been investigated by
several authors (Chen, Roskam, Yitaoka, and others). Chen’s work
in particular is easily adapted to yield what we want.
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Following the breadcrumbs. . . ctd.
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Call the real quadratic field K viable if K has class number 1 or 2
and fundamental unit of norm −1.

Theorem (P., 2023)

Assume GRH. Let K be a viable real quadratic field. Then there
are infinitely many primes p for which Op is an HFD.

The ‘scope’ of the theorem is best possible: If K is non-viable,
then at most finitely many orders in K are half-factorial. This
follows from results of Halter-Koch, Coykendall, and Alan.

In principle, the density of p satisfying the conclusion of the
theorem can also be computed. When K = Q(

√
2), one gets 1

2A,
where A =

∏
q prime(1−

1
q(q−1)).
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And if you don’t believeGRH?
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I mentioned an unconditional result on quadratic HFDs. Where
does this come from?

Again, the inspiration is from Artin’s primitive root conjecture.

What do we know about Artin’s primitive root conjecture
unconditionally?

Bad news first: We cannot point to a single specific g which we
know generates (Z/pZ)× for infinitely many primes p. The good
news is that Artin’s conjecture is true for many choices of g that
we can’t point to!
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And if you don’t believeGRH? ctd.
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The following is due to Murty–Srinivasan and Heath-Brown
(independently): There is an absolute constant M such that
among any M primes, at least one generates (Z/pZ)× for infinitely
many primes p.

Similar methods can be ported to the quadratic field setting. This
was done by Joseph Cohen in the early 2000s. Using similar
methods, one can show the following.
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Theorem (P., 2023)

In any list of 46 viable linearly disjoint real quadratic fields, at least
one possesses infinitely many HFD orders.

(linearly disjoint: composite field has degree 246.)

Corollary

There is a real quadratic field of the form Q(
√
d), with

1 < d < 1000, which possesses infinitely many HFD orders.
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1 is the loneliest number
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What about elasticities larger than 1?

Proposition

Let K be a quadratic field. Then

2ρ(Of ) = sup
π

Ω(|Nπ|),

where the maximum runs over all irreducibles π of Of .

Here Ω(·) denotes the count of prime factors taken with
multiplicity. For instance, Ω(9) = Ω(35) = 2.

As a consequence, elasticities of quadratic orders are always
half-integers or infinite:

ρ(Of ) ∈ {1, 3/2, 2, 5/2, 3, 7/2, . . . } ∪ {∞}.
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Everything everywhere all at once
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Call K universally elastic if OK is a UFD and every one of
1, 3/2, 2, 5/2, . . . and ∞ occurs as the elasticity of infinitely many
orders in K .

Theorem (P., 2023)

Assume GRH. Then Q(
√
2) is universally elastic.

Probably every viable K of class number 1 is universally elastic.
This follows from GRH and a plausible hypothesis on the scarcity
of “Wieferich-type” primes.
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Everything everywhere ctd.
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For the proof, one studies the interplay between the conductor f
and the class group in determining the elasticity. There is no
simple formula known for ρ(Of ) in terms of these quantities. But
for special f , direct analysis is possible.

For example, Picavet-L’Hermitte has a simple formula for ρ(Of )
(in terms of the factorization of f ) whenever Cl(Of ) is trivial.
Another result of this kind (used in the proof of the theorem) is . . .

Lemma
Let K be a quadratic field of class number 1. Suppose pk is a
power of the prime p inert in K . Let h be the class number of Opk .
Then

ρ(Opk ) = k +
1

2
(h − 1).
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ThankYou!
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