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Introduction

Definition

For each odd prime p, let n2(p) denote the least quadratic
nonresidue modulo p. For example, n2(5) = 2 and n2(7) = 3.
For completeness, put n2(2) = 0.

Problem (Normal order)

How large is n2(p) typically?

Problem (Maximal order)

What is the largest n2(p) can be as a function of p?

Problem (Average order)

What is the mean value of n2(p)? In other words, what do the
finite averages 1

π(x)

∑
p≤x n2(p) converge to as x→∞?

2 / 58

Paul Pollack The smallest quadratic nonresidue modulo a prime



The smallest
quadratic
nonresidue
modulo a
prime

Paul Pollack

Introduction

Definition

For each odd prime p, let n2(p) denote the least quadratic
nonresidue modulo p. For example, n2(5) = 2 and n2(7) = 3.
For completeness, put n2(2) = 0.

Problem (Normal order)

How large is n2(p) typically?

Problem (Maximal order)

What is the largest n2(p) can be as a function of p?

Problem (Average order)

What is the mean value of n2(p)? In other words, what do the
finite averages 1

π(x)

∑
p≤x n2(p) converge to as x→∞?

3 / 58

Paul Pollack The smallest quadratic nonresidue modulo a prime



The smallest
quadratic
nonresidue
modulo a
prime

Paul Pollack

The normal order

Since the Legendre symbol is multiplicative,(
n

p

)
= −1 =⇒

(
q

p

)
= −1 for some prime q dividing n.

Hence, n2(p) is always a prime number.

Let pk be the kth prime. Let’s ask how often n2(p) = pk. For
example,

n2(p) = 2⇐⇒
(
2

p

)
= −1

⇐⇒ p ≡ ±3 (mod 8).

By the prime number theorem for arithmetic progressions, it
follows that n2(p) = 2 for asymptotically half of all primes p.
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A random variable perspective

In general, if BLAH is a property primes p might have, let me
write

P(BLAH) = lim
x→∞

1

π(x)
#{p ≤ x : p satisfies BLAH}.

[WARNING: The word “probability” is a bit misplaced, since
natural density is not a probability measure.]

Then for any fixed prime q, quadratic reciprocity and the prime
number theorem for progressions combine to show that

P(
(
q

p

)
= 1) =

1

2
.
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A random variable perspective

For distinct primes q, the events “q is a square mod p” are
independent. This follows (for example) from the Chebotarev
density theorem, using that [Q(

√
q1, . . . ,

√
qk) : Q] = 2k.

Hence,

P(n2(p) = pk) =
1

2k
.

As a corollary, we find that the “random variable” n2(·) is
“bounded in probability”:

Theorem

If ξ is any function that tends to infinity (however slowly), then

P(n2(p) > ξ(p)) = 0.
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The maximal order

Let’s pretend that for each prime p, the number n2(p) is
determined by flipping coins until one gets a ‘heads’; if this
occurs on the kth flip, set n2(p) = pk. And let’s pretend that
for distinct primes p, these experiments are independent.

The Borel-Cantelli theorem suggests the following conjecture:

Conjecture

Let ε > 0. Then for all large primes p,

n2(p) <

(
1

log 2
+ ε

)
· (log p)(log log p).

On the other hand, the reverse inequality holds for infinitely
many primes p if 1 + ε is replaced by 1− ε.
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The maximal order, on GRH

Let p be a prime. Let’s assume that the Riemann Hypothesis
holds for the Dirichlet L-function

L(s,

(
·
p

)
) :=

∞∑
n=1

(
n

p

)
n−s.

In this case, the proof of the prime number theorem for
arithmetic progressions (see, for example, Davenport) shows
that ∣∣∣∣∣∣∣∣

∑
q≤x
q prime

(
q

p

)∣∣∣∣∣∣∣∣ < Cx1/2 log(px),

for all x ≥ 2.
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The maximal order, on GRH

If x < p and all primes q ≤ x are quadratic residues modulo p,
then ∑

q≤x

(
q

p

)
= π(x),

which is asymptotically x/ log x. Once x is at all large (in
terms of p), this exceeds the upper bound on the previous slide.

More precisely, we have:

Theorem

Suppose p is sufficiently large. If the Riemann Hypothesis holds
for L(s,

( ·
p

)
), then

n2(p) < (C ′ log p log log p)2.
11 / 58
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The maximal order, on GRH

Theorem (Bach, improving on Ankeny)

If RH holds for L(s,
( ·
p

)
), then

n2(p) < 2(log p)2.

On GRH, Montgomery has proved that

n2(p) > c(log p)(log log p)

infinitely often, where c > 0 is a small positive constant.
(Without needing to assume GRH, the double-log can be
replaced with a triple log, as shown by Graham and Ringrose.)

For most of the rest of this talk, we will focus attention on
unconditional upper bounds on n2(p).12 / 58
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The main results

Theorem (Folklore)

For all large primes p, we have

n2(p) < p1/2.

Theorem (Pólya–Vinogradov)

For all primes p, we have

n2(p) ≤ 1 +
√
p log p.
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The main results, ctd.

Theorem (Pólya–Vinogradov + Vinogradov’s
trick)

Let ε > 0. Then for all large primes p, we have

n2(p) ≤ p
1

2
√
e
+ε
.

Theorem (Burgess + Vinogradov’s trick)

Let ε > 0. Then for all large primes p, we have

n2(p) ≤ p
1

4
√

e
+ε
.

Remark

We have 1/2
√
e = 0.303265 . . . and 1/4

√
e = 0.151632 . . . .
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Paul Pollack The smallest quadratic nonresidue modulo a prime



The smallest
quadratic
nonresidue
modulo a
prime

Paul Pollack

The main results, ctd.
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A digression: The probability two integers are
relatively prime

Theorem (Dirichlet)

The probability that two integers are relatively
prime is 1/ζ(2) = 6/π2. More precisely:

lim
N→∞

#{(a, b) : 1 ≤ a, b ≤ N, gcd(a, b) = 1}
N2

=
6

π2
.

Proof: Let us say (a, b) is visible from the origin if
gcd(a, b) = 1. The visible lattice points are symmetric about
y = x. Moreover, the only visible lattice point of the form
(a, a) is (1, 1).
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A digression: The probability two integers are
relatively prime

Hence,

∑
1≤a,b≤N
gcd(a,b)=1

1 =

2

N∑
a=1

∑
1≤b≤a

gcd(a,b)=1

1

− 1

= 2

N∑
a=1

φ(a)− 1.

To evaluate the remaining sum, notice that

φ(a) = a
∏
p|a

(1− 1/p)

= a
∑
d|a

µ(d)

d
.
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A digression: The probability two integers are
relatively prime

Therefore,

N∑
a=1

φ(a) =

N∑
a=1

a
∑
d|a

µ(d)

d

=
∑
d≤N

µ(d)

d

∑
1≤a≤N
d|a

a

=
∑
d≤N

µ(d)

d

∑
1≤e≤N/d

(de)

=
∑
d≤N

µ(d)
∑
e≤N/d

e.

The inner sum is 1
2(N/d)

2 +O(N/d).
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A digression: The probability two integers are
relatively prime

We find that ignoring (easily-handled) error terms,

#{1 ≤ a, b ≤ N : gcd(a, b) = 1} ≈ N2
N∑
d=1

µ(d)

d2
.

For large N , we can extend the sum to infinity making only a
small error (of size O(1/N)). Moreover,

∞∑
d=1

µ(d)

d2
=
∏
p

(
1− 1

p2

)

=
∏
p

(
1 +

1

p2
+

1

p4
+ . . .

)−1
= ζ(2)−1.

Since ζ(2) = 6/π2, the theorem of Dirichlet follows.
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An elementary proof that n2(p) < p1/2

Given a fraction a
b with p - b, we identify a

b with ab−1 (mod p).
Notice that

a

b
≡ c

d
(mod p)⇐⇒ p | ad− bc.

Now consider the following set of fractions:

F =
{a
b
: 1 ≤ a, b ≤ √p and gcd(a, b) = 1

}
.

By Dirichlet’s result on visible lattice points,

#F ∼ 6

π2
p; this gives #F >

p

2

for large p. (Since 6/π2 = 0.607927 . . ..)
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An elementary proof that n2(p) < p1/2

Lemma

No two elements of F are congruent modulo p.

Proof.

If a1
b1
, a2b2 ∈ F (and not the same), then 0 < |a1b2− a2b1| < p.

Since #F > p/2 and there are only p−1
2 (nonzero) squares mod

p, some a
b ∈ F reduces to a nonsquare mod p. So either a is a

nonsquare or b is a nonsquare. Hence,

n2(p) ≤
√
p.

(Of course, equality is impossible here.)
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The Pólya-Vinogradov inequality

We now turn to our next upper bound on n2(p). Since there
are the same number of squares as nonsquares modulo p, and
since the Legendre symbol is periodic modulo p, it is trivial that∣∣∣∣∣

N∑
n=1

(
n

p

)∣∣∣∣∣ < p

for all N .

Theorem (Pólya-Vinogradov)

For every natural number N , we have∣∣∣∣∣
N∑
n=1

(
n

p

)∣∣∣∣∣ < √p log p.
29 / 58
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A quick corollary

Corollary

For all primes p ≥ 3, we have

n2(p) < 1 +
√
p log p.

Proof.

Obvious if 1 +
√
p log p ≥ p. So suppose otherwise. If

n2(p) ≥ 1 +
√
p log p, then

√
p log p ≤

∑
n<1+

√
p log p

1 =
∑

n<1+
√
p log p

(
n

p

)
<
√
p log p.

Not cool.
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Quadratic Gauss sums

For each integer a, define

ga =
∑

r mod p

(
r

p

)
exp

(
2πi

ar

p

)
.

Note that ga depends only on the residue class of a mod p.
[For Fourier transform fans, ga is χ̂(−a), where ·̂ is the Fouier
transform on Z/p.]

If a 6≡ 0 (mod p), the change of variables r 7→ a−1r shows that

ga =

(
a−1

p

)
g1 =

(
a

p

)
g1.

This also holds if a ≡ 0 (mod p), since ga and
(
a
p

)
both vanish.
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Evaluation of the Gauss sum

Theorem

Each sum ga with a 6≡ 0 (mod p) has |ga| =
√
p.

In fact, g1 = ±
√
p if p ≡ 1 (mod 4), and

g1 = ±i
√
p if p ≡ 3 (mod 4).

The determination of the sign . . . has vexed me for many years.
This deficiency overshadowed everything that I found over the
last four years. . . . Finally, a few days ago, I succeeded – but
not as a result of my search but rather, I should say, through
the mercy of God. As lightning strikes, the riddle has solved
itself.
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Evaluation of the Gauss sum

Theorem (Gauss)

If p ≡ 1 (mod 4), then

g1 =
√
p,

and if p ≡ 3 (mod 4), then

g1 = i
√
p.

In what follows, we only need the easy result that

|ga| =
√
p for all a 6≡ 0 (mod p).

34 / 58

Paul Pollack The smallest quadratic nonresidue modulo a prime



The smallest
quadratic
nonresidue
modulo a
prime

Paul Pollack

Proof of the Pólya–Vinogradov inequality

If a 6≡ 0 (mod p), then ga =
(
a
p

)
g1. Solving for

(
a
p

)
, we find

that (
a

p

)
=
ga
g1

=
1

g1

∑
r mod p

(
r

p

)
exp

(
2πi

ar

p

)
.

Hence:
N∑
a=1

(
a

p

)
=

1

g1

∑
r mod p

(
r

p

) N∑
a=1

exp

(
2πi

ar

p

)
.

For r 6≡ 0, the inner sum is a geometric series with value

exp(2πi
r(N + 1)

2p
)
exp(πi rNp )− exp(−πi rNp )

exp(πi rp)− exp(−πi rp)
.

This has absolute value | sin(πrN/p)|/| sin(πr/p)|.
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Proof of the Pólya–Vinogradov inequality

Thus, ∣∣∣∣∣
N∑
a=1

(
a

p

)∣∣∣∣∣ ≤ 1

|g1|

p−1∑
r=1

| sin(πrN/p)|
| sin(πr/p)|

=
1
√
p

p−1∑
r=1

1

| sin(πr/p)|
.

Lemma

For any real number θ, we have

| sin(πθ)| ≥ 2‖θ‖,

where ‖θ‖ denotes the distance from θ to the nearest integer.
37 / 58
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Proof of the Pólya–Vinogradov inequality

Lemma

For any real number θ, we have

| sin(πθ)| ≥ 2‖θ‖,

where ‖θ‖ denotes the distance from θ to the nearest integer.

Proof: Using periodicity mod 1 and the even-ness of both
sides, it’s enough to verify this for 0 ≤ θ ≤ 1/2. This amounts
to proving

sin(πθ) ≥ 2θ,

which is an exercise in calculus.
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Proof of the Pólya–Vinogradov inequality

It follows that

p−1∑
r=1

1

| sin(πr/p)|
≤ 1

2

p−1∑
r=1

1

‖r/p‖

=

(p−1)/2∑
r=1

1

r/p
= p

(p−1)/2∑
r=1

1

r
.

Putting this in above,∣∣∣∣∣
N∑
a=1

(
a

p

)∣∣∣∣∣ ≤ 1
√
p

p−1∑
r=1

1

| sin(πr/p)|
≤ √p

(p−1)/2∑
r=1

1

r
.
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Proof of the Pólya–Vinogradov inequality

Putting this in above,∣∣∣∣∣
N∑
a=1

(
a

p

)∣∣∣∣∣ ≤ 1
√
p

p−1∑
r=1

1

| sin(πr/p)|
≤ √p

(p−1)/2∑
r=1

1

r
.

Using our knowledge of the partial sums of the harmonic series,
the final sum is

log

(
eγ+o(1)

p− 1

2

)
< log p,

for large p. (In fact, with some cleverness, one sees that this
holds for all p ≥ 3.)

This completes the proof of Pólya-Vinogradov.
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Vinogradov’s trick

I ask your indulgence for another digression.

Problem

For all integers 2 ≤ n ≤ N , write down the largest prime factor
of n. What is the median element of this list?

Theorem

For any constant A ≥ 1/2, the limiting proportion of n ≤ N
with largest prime factor > NA is

log
1

A
.

As a consequence, if A > 1√
e
, then the limit is strictly less than

1/2, and if A < 1√
e
, the limit is strictly larger than 1/2.
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Proof of the theorem

Proof: Suppose 1
2 ≤ A ≤ 1. If an integer n ≤ N has a prime

factor p ≥ NA, then p is the only prime factor which is that
large. For each prime p ∈ (NA, N ], the number of n ≤ N
which are divisible by p is bN/pc. So with P+(·) the largest
prime factor function,

#{n ≤ N : P+(n) > NA} =
∑

NA<p≤N

bN/pc

≈ N
∑

NA<p≤N

1

p
.

According to Mertens,∑
p≤x

1

p
= log log x+ C +O(1/ log x).
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Proof of the theorem

So for the coefficient of N in the last estimate, we have∑
NA<p≤N

1

p
= log logN − log logNA + o(1)

= log
1

A
+ o(1),

as N →∞.

This gives our claim that

1

N
#{n ≤ N : P+(n) > NA} → log

1

A
.
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More on the median

Remark

Eric Naslund, a UBC undergradute, has proved
the following very nice result: Among the
integers 2 ≤ n ≤ N , the median largest prime
factor is asymptotic to

e(γ−1)/
√
eN1/

√
e, as N →∞.

In particular, the median is strictly less than
N1/

√
e for large N .
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Getting more from Pólya–Vinogradov

Our previous argument was very simple: If N >
√
p log p, then

N∑
n=1

(
n

p

)
<
√
p log p < N,

and so it cannot be that
(
n
p

)
= 1 for all n ≤ N .

Now we note a different consequence of P–V. Whenever
N√
p log p →∞ (for example, if N = p1/2+ε) we have

N∑
n=1

(
n

p

)
= o(N), as p→∞.

That is, our Legendre symbol sums display cancelation.
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Getting more from Pólya–Vinogradov

For concreteness, let ε > 0, and take

N = p1/2+ε.

Since ∑
n≤N

(
n

p

)
= o(N),

and since
(
n
p

)
= ±1 for 1 ≤ n < p, it follows that (as p→∞),

asymptotically 50% of the values n ≤ N are squares mod p
and 50% are non-squares.
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The p1/2
√
e bound

We are now ready to prove the following result:

Theorem

For large p, we have n2(p) ≤ p
1

2
√
e
+ε

.

Proof: Let N = p
1
2
+ε and let M = p

1
2
√
e
+ε

. Notice that
M > N1/

√
e. In fact,

M > N
1√
e
+ 1

100
ε
.

This means that the proportion of n ≤ N which have a prime
factor > M is below 50%; in fact, at most (50− η)% for some
η > 0.
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The p1/2
√
e bound

Suppose for the sake of contradiction that n2(p) > M . Then
every prime q ≤M satisfies

(q
p

)
= 1. So every integer n ≤ N

composed only of primes q ≤M also satisfies
(
n
p

)
= 1. But this

accounts for at least (50 + η)% of the n ≤ N .

But in the limit, only 50% of the n ≤ N should be squares
mod p. So this is a contradiction once p is large.
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When does cancelation “kick in” for character
sums?

By Pólya–Vinogradov, as soon as N grows a bit faster than
p1/2,

N∑
n=1

(
n

p

)
= o(N).

The following is a consequence of some work of D.A. Burgess
in the 1960s:

Theorem (Burgess)

As soon as N grows a bit faster than p1/4,

N∑
n=1

(
n

p

)
= o(N).
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Burgess’s proof is intricate and not “elementary” in the usual
sense of the word: A key innovation is the use of Weil’s
Riemann Hypothesis for curves (for certain hyperelliptic curves)
to bound certain auxiliary sums.

Applying Vinogradov’s trick in
the same manner as before, we halve the exponent:

Corollary

Let ε > 0. For large primes p, we have

n2(p) ≤ p
1

4
√

e
+ε
.

Open problem

Remove the +ε.
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Average order of the least quadratic nonresidue

Theorem (Erdős)

We have

lim
x→∞

 1

π(x)

∑
p≤x

n2(p)

 = A,

where

A :=

∞∑
k=1

pk
2k
,

and pk denotes the kth prime.

This is what one would expect from the random-variables
model.

Proof: Another time!
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Thank you!
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