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Abstract. Let K be a field containing Q for which [K : Q] < ∞, and let OK denote the
set of elements of K that are roots of monic polynomials with integer coefficients. We give a
streamlined proof — suitable for presentation to undergraduates — that OK is a Dedekind
domain: Noetherian, integrally closed, and such that all of its nonzero prime ideals are
maximal. Our chief innovation is a short and seemingly novel argument demonstrating that
OK/I is finite for every nonzero ideal I ⊆ OK .

1. Introduction

Let K be a number field, meaning a field containing Q for which the degree [K : Q] is finite.
In supplements to Dirichlet’s Vorlesungen über Zahlentheorie, published in 1871, Dedekind
associates to K a so-called “ring of integers” and proves that the nonzero ideals of this
ring obey a variant of the unique factorization theorem. These results are now part of the
standard mathematical canon; every graduate student interested in number theory is fated
to encounter them.

Let us spell matters out more precisely. In what follows, rings are always commutative with
multiplicative identity 1, and a subring is understood to share the same 1 as the ambient
ring. If R is a subring of S, an element α ∈ S is said to be integral over R if α is the root
of a monic polynomial in R[x]. For each number field K, we let

OK := {α ∈ K : α is integral over Z}.
Dedekind shows OK is a ring: this is what was referred to above as the ring of integers
of K. If I and J are ideals of OK , define their product IJ as the smallest ideal of OK

containing all pairwise products αβ, where α ∈ I and β ∈ J . Dedekind’s factorization
theorem — sometimes called the Fundamental Theorem of Ideal Theory — asserts that
every nonzero, proper ideal of OK admits a unique representation as P1 · · ·Pk, where the Pi

are prime ideals of OK and uniqueness is up to the order of the factors Pi. (We remind the
reader that an ideal P of a ring R is a prime ideal of R if P ̸= R and R/P is an integral
domain.)

In 1927, Noether investigated abstract conditions on a ring that are equivalent to the
conclusion of the Fundamental Theorem [4]. The following definition of a Dedekind domain
is a modern simplification of the axiom scheme Noether proposed.1
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1Noether had five axioms. Her Axiom III asserts that R has a multiplicative identity (not part of her

definition of a ring) while Axiom IV is the nonexistence of zero divisors in R. Conditions (i) and (ii) appear
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Definition 1. An integral domain R is a Dedekind domain if

(i) R is Noetherian: there is no infinite strictly ascending chain of ideals of R

I1 ⊊ I2 ⊊ I3 ⊊ . . . ,

(ii) R is integrally closed meaning that every α belonging to the fraction field of R that
is integral over R in fact belongs to R, and

(iii) every nonzero prime ideal of R is maximal.

These axioms completely characterize domains that obey the Fundamental Theorem. If R is
a Dedekind domain, then every nonzero, proper ideal of R factors uniquely as a product of
prime ideals. Conversely, any domain R in which the latter holds is necessarily a Dedekind
domain (see, e.g., [2, Theorem 10.6]).

Today, the usual path to Dedekind’s Fundamental Theorem is to (a) first prove that OK is a
Dedekind domain, (b) prove that all Dedekind domains enjoy unique factorization of ideals.
(Sometimes (a) and (b) are reversed.) This note provides another exposition of (a).

Theorem 1. Let K be a number field. Then OK is a Dedekind domain.

Why bother? One can read perfectly good proofs of Theorem 1 elsewhere, for instance in
the superb textbooks of Marcus [3] and Samuel [5]. Our motivation is primarily pedagogical;
we would like to make the important Theorem 1 accessible to students (and nonspecialists)
who may only have seen (or may only remember!) basics of field theory, group theory, linear
algebra, etc. Notably, we require from linear algebra only the most basic properties of
dimension, avoiding any use of determinants. We are also able to dispense with any mention
of norm, trace, or discriminant. Perhaps the deepest theorem we use is that a submodule of
a finitely generated Z-module is finitely generated, whose (standard) proof is included below
(Lemma 3) for completeness.

The rest of this note is structured as follows. In §2, we prove that OK is a domain and verify
that OK is integrally closed. Here we eschew the traditional use of determinants following
the elegant treatment of Swinnerton-Dyer in [6]. In §3, we prove that OK is residually
finite: For every nonzero ideal I of OK , the quotient OK/I is finite. The usual proofs of
this fact require one to first establish that OK is a free Z-module of finite rank. Our method
of avoiding this (via Proposition 6 below) is the chief innovation of the note. That OK

is Noetherian with every nonzero prime ideal maximal follows immediately from residual
finiteness, by (entirely standard) arguments which we recount in §4.

2. Why is OK a ring? And why is it integrally closed?

For the remainder of the paper, K denotes a number field. Below, finitely generated always
means finitely generated as a Z-module (abelian group). That is, M is finitely generated if
there are finitely many elements m1, . . . ,mr ∈ M with M = Zm1 + · · ·+ Zmr.

as Axioms I and V. The following Axiom II takes the place of our (iii): For each nonzero ideal I of R, the ring
R/I has no infinite descending chain of ideals. See Cohen’s paper [1] for a discussion of this last condition.
Incidentally, [1] may be the earliest English-language occurrence of the term “Dedekind domain.”
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Proposition 2. Let α be an element of K.

(i) If Z[α] is finitely generated, then α ∈ OK.

(ii) Let R be a subring of K which is finitely generated. If α is integral over R (in particular,
if α ∈ OK), then R[α] is finitely generated.

Proof. We start with (i). If Z[α] is finitely generated, then there are f1(x), . . . , fk(x) ∈ Z[x]
for which Z[α] = Zf1(α) + · · ·+ Zfk(α). Choose an integer n exceeding the degree of every
fi(x), and write

αn = c1f1(α) + · · ·+ ckfk(α),

with c1, . . . , ck ∈ Z. Then α is a root of the monic polynomial

xn − (c1f1(x) + · · ·+ ckfk(x)) ∈ Z[x],
so that α ∈ OK .

Turning to (ii), suppose α is a root of xn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ R[x]. Then

(1) αn = −(rn−1α
n−1 + · · ·+ r1α + r0) ∈

n−1∑
i=0

Rαi, so that Rαn ⊆
n−1∑
i=0

Rαi.

We prove, by induction, that αm ∈
∑n−1

i=0 Rαi for each nonnegative integer m. Indeed, this
containment certainly holds when m = 0. Assuming it holds for m, we have that

αm+1 = αm · α ∈
n∑

i=1

Rαi =
n−1∑
i=1

Rαi +Rαn ⊆
n−1∑
i=0

Rαi,

using (1) in the last step. Since elements of R[α] are finite R-linear combinations of the αm,
we deduce that R[α] =

∑n−1
i=0 Rαi.

To finish off, recall that R itself is finitely generated. Thus, there are β1, . . . , βℓ ∈ R with
R =

∑ℓ
j=1 Zβj. It follows that

R[α] =
n−1∑
i=0

(
ℓ∑

j=1

Zβj

)
αi =

∑
0≤i≤n−1
1≤j≤ℓ

Zβjα
i,

so that R[α] is generated by the βjα
i (for i = 0, . . . , n− 1 and j = 1, . . . , ℓ). □

Lemma 3. If the Z-module M is finitely generated, then every submodule of M is also finitely
generated.

Proof. We show what at first glance seems a very special case:

Every submodule of Zr is finitely generated (for each r ∈ Z>0).

As it turns out, this special case suffices for the whole kit and caboodle. Indeed, suppose
M is a finitely generated Z-module, with generators m1, . . . ,mr. Let ϕ : Zr → M be the
homomorphism sending (n1, . . . , nr) to n1m1 + · · ·+ nrmr. If N ⊆ M is a submodule of M ,
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then ϕ−1(N) is a submodule of Zr. Furthermore, if the finitely many elements v1, . . . , vk
generate ϕ−1(N), then ϕ(v1), . . . , ϕ(vk) generate N .

We proceed by induction on r. A Z-submodule of Z is an ideal of Z and so always admits a
single generator (Z is a Principal Ideal Domain). This handles the case r = 1.

Assume all submodules of Zr are finitely generated, and let N be a submodule of Zr+1. Let
π : Zr+1 → Z be “projection to the first coordinate”, so that π(n1, . . . , nr+1) = n1. Let

N ′ = {n ∈ N : π(n) = 0}.
Identifying {v ∈ Zr+1 : π(v) = 0} with Zr, we may view N ′ as a submodule of Zr. By our
induction hypothesis, N ′ admits finitely many generators, say d2, . . . , ds ∈ N ′. Continuing,
let d ∈ Z be a generator of the ideal {π(n) : n ∈ N} ⊆ Z, and choose d1 ∈ N with π(d1) = d.

We claim that d1, . . . , ds generate N . Indeed, start with any n ∈ N . By the choice of d, we
have π(n) = k1d for some k1 ∈ Z. But then n−k1d1 ∈ N ′, and so n−k1d1 = k2d2+ · · ·+ksds
for some integers k2, . . . , ks. Hence, n = k1d1 + · · ·+ ksds ∈ Zd1 + · · ·+ Zds. □

Theorem 4. OK is a domain. Moreover, OK is integrally closed.

Proof. Clearly, Z ⊆ OK , since a ∈ Z is a root of x− a. In particular, 1 ∈ OK . Now suppose
α, β ∈ OK . By Proposition 2(ii) and the fact that Z itself is finitely generated we have that
Z[α, β] = Z[α][β] is finitely generated. Thus, its submodule Z[α+ β] is also finitely generated
(Lemma 3). That α + β ∈ OK now follows from Proposition 2(i). Similarly, αβ ∈ OK . Thus,
OK is a subring of K. As K is a field, OK is an integral domain.

Now we show that OK is integrally closed. It suffices to show that if α ∈ K is integral over
OK , then α ∈ OK .

2 Suppose α is a root of xn + βn−1x
n−1 + · · · + β1x + β0, where each

βi ∈ OK , and let R = Z[β0, . . . , βn−1]. By Proposition 2(ii), we have first that R is finitely
generated and then, by a second application of the same Proposition, that R[α] is finitely
generated. Hence, Z[α] ⊆ R[α] is also finitely generated, and α ∈ OK . □

3. Interlude: OK has finite quotients

Theorem 5. If I is a nonzero ideal of OK, then #OK/I < ∞.

We can reduce the proof of Theorem 5 to the case when I = nOK for some n ∈ Z>0. Indeed,
let I be any nonzero ideal of OK , and let α be a nonzero element of I. Since α ∈ OK , there
is a relation

αm + am−1α
m−1 + · · ·+ a1α + a0 = 0,

where a0, a1, . . . , am−1 ∈ Z. If we suppose m is chosen as small as possible, then necessarily
a0 ̸= 0 (otherwise we could divide through by α). Then

a0 = α(−a1 − a2α− · · · − am−1α
m−2 − αm−1) ∈ αOK ⊆ I.

We take n = ±a0, with the sign chosen so that n > 0. Then n ∈ Z>0, nOK ⊆ I, and there is
a canonical surjection OK/nOK ↠ OK/I. In particular, if OK/nOK is finite, so is OK/I.

2It is not so hard to prove that K is the fraction field of OK , but we do not use this here.
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Let d denote the degree of K over Q. Then K ∼= Qd as Q-vector spaces, and hence also as
abelian groups. This allows us to identify OK with a subgroup of Qd. So in view of the
previous paragraph, Theorem 5 is an immediate consequence of the following Proposition.

Proposition 6. Let d be a positive integer, and let H be a subgroup of Qd. Then H/nH is
finite for every positive integer n.

Proof. Let us first see why #H/pH < ∞ for a prime p. Since H is a Z-module, H/pH is
a module over Z/pZ = Fp, i.e., an Fp-vector space. We will prove that dimFp H/pH ≤ d,
so that #H/pH ≤ pd. If dimFp H/pH > d, then there are d + 1 Fp-linearly independent
elements of H/pH. Lift them to d+ 1 elements of H, say h1, . . . , hd+1. Since H ⊆ Qd while
dimQ Qd = d, there is a Q-dependence among h1, . . . , hd+1. Write

(2) c1h1 + · · ·+ cd+1hd+1 = 0,

where each ci ∈ Q and not all ci = 0. Clearing denominators, we may assume each ci ∈ Z.
Dividing through by gcd(c1, . . . , cd+1), we may also assume not all of the ci are multiples of p.
But then reducing the relation (2) modulo pH yields an Fp-dependence among our original
d+ 1 elements of H/pH.

Now, suppose n is a positive integer for which we know that H/nH is finite, say #H/nH = r.
Let a1, a2, . . . , ar ∈ H such that

H =
⋃

1≤i≤r

(ai + nH).

From what we’ve already proven, nH/pnH is also finite, say #nH/pnH = s. Let b1, b2, . . . , bs ∈
nH such that

nH =
⋃

1≤k≤s

(bk + pnH).

It follows that

H =
⋃

1≤i≤r
1≤k≤s

(ai + bk + pnH).

So H/pnH is also finite.

The proposition now follows by induction on the number of prime divisors of n. □

4. Completion of the Proof of Theorem

Proposition 7. Let K be a number field. Then OK is Noetherian, and each of its nonzero
prime ideals is maximal.

Proof. The ring OK is integrally closed by Theorem 4. Suppose for a contradiction that
I1 ⊊ I2 ⊊ I3 ⊊ · · · is an infinite, strictly ascending chain of ideals. We can assume I1 ̸= 0:
Otherwise, delete I1 and renumber. Then I1/I1 ⊊ I2/I1 ⊊ I3/I1 ⊊ . . . is an infinite, strictly
ascending chain of ideals in the ring OK/I1. By Theorem 5, OK/I1 is finite. But this is
absurd: a finite ring has finitely many ideals! Thus, OK is Noetherian.
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Next, let P be a nonzero prime ideal of OK . Then OK/P is a finite (again, by Theorem 5)
integral domain, hence a field. Thus, P is maximal. □

Acknowledgments. The authors of this note were among the instructors of a dorm course
on algebraic number theory offered to junior counselors (JCs) at the 2025 Ross Indiana
Mathematics Camp. They thank these students for their enthusiastic participation.

References

[1] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27–42.
[2] N. Jacobson, Basic algebra. II, second ed., W.H. Freeman and Company, New York, 1989.
[3] D.A. Marcus, Number fields, second ed., Universitext, Springer, Cham, 2018.
[4] E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern, Math. Ann.

96 (1927), 26–61.
[5] P. Samuel, Algebraic theory of numbers, Houghton Mifflin Co., Boston, MA, 1970.
[6] H. P. F. Swinnerton-Dyer, A brief guide to algebraic number theory, London Mathematical Society Student

Texts, vol. 50, Cambridge University Press, Cambridge, 2001.

Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803

Email address: timothy.all@rose-hulman.edu

Department of Mathematics, University of California, Santa Barbara, Isla Vista, CA 93117

Email address: connorlane@ucsb.edu

Department of Mathematics, University of Georgia, Athens, GA 30602

Email address: pollack@uga.edu


