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Abstract. Schinzel and Wójcik have shown that if α, β ∈ Q× \ {±1},
then there are infinitely many primes p where vp(α) = vp(β) = 0 and
where α, β share the same multiplicative order modulo p. We present
two variants of their result. First, we give a short and simple proof of
the analogous statement where Q is replaced by any global function
field K. Second, we show that a similar conclusion holds in the number
field case provided one can find a suitable ‘auxiliary prime’. Given K,
α, and β, it appears simple in practice to find such a prime. As an
application, we prove there are infinitely many primes p with the same
rank of appearance in the sequences of Pell and Fibonacci numbers.

1. Introduction

In [SW92], Schinzel and Wójcik showed that whenever α, β ∈ Q×\{±1},
there are infinitely many primes p where the p-adic valuations vp(α) =

vp(β) = 0 and where α and β share the same multiplicative order when
reduced modulo p. They aptly titled their paper On a problem in elementary
number theory. It is natural to wonder whether analogous theorems hold if
the problem is transferred from elementary to algebraic number theory.

Number field generalizations were taken up by Wójcik in [W9́6]. There
Wójcik works under the assumption of Schinzel’s unproved ‘Hypothesis
H’ (introduced in [SS58]) concerning simultaneous prime values of integer-
coefficient polynomials. Variants of the Schinzel–Wójcik theorem obtained
without extra hypotheses are almost entirely absent from the literature. The
exception that proves the rule: In [JP21] a version of the Schinzel–Wójcik
theorem is demonstrated for imaginary quadratic fields K. Unfortunately
the statement there requires α and β to belong to the ring of integers of K;
handling general α, β ∈ K× (satisfying the natural condition that neither
be a root of unity) would seem to require a new idea.

In this note we present two unconditional variants of the Schinzel–Wójcik
theorem. The first is a version for an arbitrary global function field.
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Theorem 1.1. Let K be an algebraic function field over the finite field F .
Assume F is the full field of constants of K. For every α, β ∈ K \ F , there
are infinitely many places P of K for which vP (α) = vP (β) = 0 and where
α, β share the same multiplicative order in the residue field OP/P .

(When discussing function fields we set up our definitions following Stichenoth’s
monograph [Sti09]; in particular, P is equal to, not merely identifiable with,
the maximal ideal of OP .) Our proof of Theorem 1.1 is similar in spirit to
the argument of [SW92]. However, it is both shorter and simpler; that all
the residue fields of K have the same positive characteristic is a great help.

One should be able to derive results significantly stronger than The-
orem 1.1 by applying methods used to investigate Artin’s primitive root
conjecture. Over Q Järviniemi [J2̈1] has characterized, conditional on the
Generalized Riemann Hypothesis (GRH), those tuples of nonzero ratio-
nal numbers a1, . . . , at for which there are infinitely many primes p with
a1, . . . , at sharing the same multiplicative order modulo p. (See [PS09] for
earlier GRH-conditional investigations.) For example, Järviniemi shows this
conclusion holds whenever a1, . . . , at > 1. (This last statement also fol-
lows from Hypothesis H as earlier demonstrated by Wójcik [W9́6].) Related
GRH-conditional results for general number fields are contained in recent
work of Järviniemi and Perucca [JP23]. When such problems are studied
in the function field setting, usually GRH can be substituted with the Rie-
mann Hypothesis for curves (see for instance [PS95] and [Ros02, Chapter
10]). As the Riemann Hypothesis for curves is a theorem of Weil (see [Sti09,
Chapter 5] for a relatively elementary proof), one expects that results of
this same kind could be established unconditionally. Needless to say, such
arguments when fully unwound would be substantially more intricate than
what we offer for Theorem 1.1.

Our second theorem concerns the number field case. Here we show that
the conclusion of the Schinzel–Wójcik theorem holds for a given K,α, and
β provided one can locate an auxiliary prime satisfying appropriate condi-
tions. This auxiliary prime strategy (but with a different requirement on
the prime) is already present in the original proof of Schinzel and Wój-
cik; happily, in the setting of [SW92], those authors could show that the
sought-after prime always exists! So far we have not been so lucky.

If K is a number field and α, β ∈ K×, we call a nonzero prime ideal P
of OK generous with respect to K,α, β if

(i) vP (α) = vP (β) = 0,
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(ii) α and β generate topologically the same subgroup of K×
P , where KP

is the P -adic completion of K. Equivalently but more concretely:
For each nonnegative integer k, there are integers n and m with

αn ≡ β (mod P k) and βm ≡ α (mod P k).

Here and below, where congruences appear relating elements not as-
sumed to lie in OK , the congruences are to be understood as holding
in the localization OP .

Theorem 1.2. Let K be a number field and let α, β ∈ K×. Suppose there
is a nonzero prime ideal P0 of OK that is generous with respect to K,α, β.
Then there are infinitely many nonzero prime ideals P of OK for which
vP (α) = vP (β) = 0 and where α, β have the same multiplicative order in
OP/POP .

Our proof of Theorem 1.2 borrows essential ideas from [SW92] but the
argument is complicated by the need in several places to work with ideals
rather than elements. It may be that generous primes always exist if α, β ∈
K× and neither is a root of unity. We do not know how to prove this
speculation or any reasonable approximation to such a statement. However,
in practice it seems easy to find a generous prime given K,α and β. We
illustrate this with an example at the end of §3 which has a consequence
of independent interest: There are infinitely many primes whose rank of
appearance (see §3 for the definition) is the same in the sequence of Pell
numbers and the sequence of Fibonacci numbers.

2. Schinzel–Wójcik for function fields: Proof of Theorem 1.1

In what follows we let p denote the characteristic of K. We write PK for
the set of places of K/F . Writing multordP for the multiplicative order in
OP/P , let

S = SK(α, β)

= {P ∈ PK : vP (α) = vP (β) = 0 and multordP (α) = multordP (β)}.

The proof of Theorem 1.1 is based on the following simple but fundamental
observation: Suppose vP (α) = vP (β) = 0 while vP (αβ

pm − 1) > 0 for a
certain nonnegative integer m. Then βpm = α−1 in OP/P . Since the pth
power map is an automorphism of OP/P , we conclude that

multordP (β) = multordP (β
p) = . . . = multordP (β

pm)

= multordP (α
−1) = multordP (α).
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Thus, P ∈ S. (Compare with the ‘Proposition’ on p. 225 of [SW92].)
We now suppose for a contradiction that #S < ∞. For each P ∈ S,

write #OP/P = pfP , and put f = lcmP∈S [fP ].
Since β /∈ F , we have that β is transcendental over F , and so there is at

most one positive integer m with αβpm − 1 = 0. So for all sufficiently large
positive integers n, say all n ≥ n0,

(2.1) xn :=
αβp(n+1)f − 1

αβpnf − 1
∈ K×.

Let P be a place of K for which vP (α) = vP (β) = 0. If P appears in the
support of (xn) for at least one n ≥ n0, then P ∈ S. Let us argue that each
fixed P ∈ S appears in the support of xn for only finitely many n. We start
by observing that

βp(n+1)f − βpnf

= βpnf

(βpnf (pf−1) − 1).

For each fixed positive integer m and all n ≥ m,

#(OP/P
m)× = pfP (m−1)(pfP − 1) divides pnf (pf − 1),

so that vP (βp(n+1)f −βpnf
) ≥ m. It follows now from the ultrametric inequal-

ity that {βpnf} is a Cauchy sequence in the P -adic topology. Thus, writ-
ing KP for the P -adic completion of K, we have that βpnf → β̂ for some
β̂ ∈ KP . The numerator and denominator in (2.1) both tend to αβ̂ − 1,
which is nonzero (otherwise α = 1/β̂ satisfies αpf = 1/β̂pf = 1/β̂ = α,
forcing α ∈ F ). Hence, xn → 1 in KP , implying vP (xn) = 0 for all large
enough n.

We are supposing S is finite. Thus, the argument of the last paragraph
implies that for all large n, every place in the support of xn is one of the
finitely many places belonging to the union of the supports of α and β. Fix a
place P in the support of α or β. If vP (β) < 0, the strong triangle inequality
implies that vP (xn) = (p(n+1)f −pnf )vP (β) < 0 for all large values of n while
if vP (β) ≥ 0 then vP (xn) = 0 for all large n. (To see this it is helpful to take
cases according to whether vP (α) < 0, vP (α) = 0, or vP (α) > 0.)

Hence, once n is large enough there are no places P with vP (xn) > 0.
That is, xn has no zeros. As principal divisors have degree 0 (see [Sti09,
Theorem 1.4.11, p. 19]), an element of K with no zeros also has no poles
and must be constant (see [Sti09, Corollary 1.1.20, p. 8]). So for large n, we
may write xn = cn for some cn ∈ F . Then

cn − 1 = cnαβ
pnf − αβp(n+1)f

.

As β /∈ F , we may choose a place Q with vQ(β) > 0 (again by [Sti09,
Corollary 1.1.20, p. 8]). The Q-adic valuation of the displayed right side
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tends to infinity with n, while the Q-adic valuation of the left is 0 unless
cn = 1. So it must be that cn = 1 for all large n. Putting this back into the
last equation forces β to be a root of unity, contradicting that β /∈ F .

3. A sufficient criterion for Schinzel–Wójcik in number
fields: Proof of Theorem 1.2

We begin with a simple reduction. Let K̃ be the Galois closure of K/Q.
If P0 is a prime of OK generous for K,α, β, and P̃0 is a prime of OK̃ lying
above P0, then P̃0 is generous with respect to K̃, α, β. Moreover, if P̃ is
a nonzero prime ideal of OK̃ with vP̃ (α) = vP̃ (β) = 0 and for which α, β

have the same order in OP̃/P̃OP̃ , then P = P̃ ∩ OK is a nonzero prime of
OK where vP (α) = vP (β) = 0 and for which α, β have the same order in
OP/POP . The upshot is that, by replacing K with K̃, we can (and will)
assume that K/Q is Galois.

If αq = β for infinitely many primes q, then α and β are roots of unity
in K, and they share the same multiplicative order modulo P for every
nonzero prime ideal P . To see this last claim, note that the qth power map
is an automorphism of (OP/POP )

× as long as q does not divide N(P )− 1.
So we can assume that αq − β ∈ K× for all sufficiently large primes q.

Let S denote the set of nonzero prime ideals P of OK for which vP (α) =

vP (β) = 0 and α, β share the same order in (OP/POP )
×. We assume for

a contradiction that S is finite. Let T be the (finite) set of prime ideals of
OK belonging to the support of α or β.

For each prime q, we fix — once and for all — a nonzero prime ideal Q
of OK lying above q. For all large primes q, we factor

(3.1) (αq − β)OK =
∏
P∈S

P eP,q

∏
P∈T

P eP,q

∏
P : vP (α)=vP (β)=0

P /∈S

P eP,q ,

where each eP,q = vP (α
q − β). We now take norms in (3.1) and analyze the

resulting equation modulo Q.
To get started, suppose P appears to the nonzero exponent eP,q in the

third right-hand product in (3.1). Since α and β are P -integral, we have
eP,q = vP (α

q − β) ≥ min{qvP (α), vP (β)} ≥ 0. Hence, eP,q ̸= 0 implies that
eP,q > 0, leading to the equation αq = β in OP/POP . Since P /∈ S, it
must be that q | N(P )− 1, and therefore N(P ) ≡ 1 (mod Q). So the third
product in (3.1) makes a trivial contribution mod Q. If on the other hand
P ∈ T , then straightforward reasoning with the strong triangle inequality
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shows that for all large q,

eP,q =


vP (β) if vP (α) > 0,

qvP (α) if vP (α) < 0,

vP (β) if vP (α) = 0 and vP (β) < 0,

0 if vP (α) = 0 and vP (β) > 0.

Therefore, modulo Q,

N

( ∏
P∈T

P eP,q

)
≡

∏
P : vP (α)>0

N(P )vP (β)
∏

P : vP (α)<0

N(P )qvP (α)
∏

P : vP (α)=0,vP (β)<0

N(P )vP (β)

≡
∏

P : vP (α)>0

N(P )vP (β)
∏

P : vP (α)<0

N(P )vP (α)
∏

P : vP (α)=0,vP (β)<0

N(P )vP (β).

(3.2)

(We are assuming q is large. Hence q is coprime to the norm of any prime
in the support of α or β, and the asserted congruence makes sense in
OQ/QOQ.) The right-hand side of (3.2) is independent of q; calling this
γ1, we have that γ1 ∈ Q>0 and that N(

∏
P∈T P eP,q) ≡ γ1 (mod Q).

We turn now to the left-hand side of (3.1). For each τ ∈ Gal(K/Q),
define ϵ(τ) ∈ K by ϵ(τ) =

∏
σ∈Gal(K/Q)((τ ◦ σ)(α)− σ(β)), and let

E = {±ϵ(τ) : τ ∈ Gal(K/Q)}.

(The ± means we include both choices of sign.) If q is sufficiently large, then
vQ(σ(α)) = vQ(σ(β)) = 0 for all σ ∈ Gal(K/Q), and

NK/Q(α
q − β) =

∏
σ∈Gal(K/Q)

(σ(α)q − σ(β))

≡
∏

σ∈Gal(K/Q)

((FrobQ/q ◦ σ)(α)− σ(β)) (mod Q).

Since N((αq − β)OK) = |NK/Q(α
q − β)|, we see that N((αq − β)OK) ≡ ϵq

(mod Q) for some ϵq ∈ E .
It remains to analyze the product over P ∈ S appearing in (3.1). Our

plan is to restrict q to an arithmetic progression in such a way that the
contribution from P ∈ S is independent of q and highly divisible by the
rational prime p0 lying below P0.

Fix a nonnegative integer v with the property that

(3.3) v > vp0(ϵ)− vp0(γ1)

for all ϵ ∈ E ∩Q>0. Our hypotheses imply that α and β generate the same
subgroup of (OP0/P

v
0OP0)

×. Let ℓ be the order of that subgroup. If we choose
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n ∈ Z with αn ≡ β (mod P v
0 ), then gcd(n, ℓ) = 1. Using Dirichlet’s theorem

on primes in progressions, we fix a prime number q0 ≡ n (mod ℓ). We can
choose q0 large enough that αq0 − β ̸= 0 and so that q0 is larger than the
norm of any prime ideal in S.

Henceforth we restrict attention to primes q satisfying

(3.4) q ≡ q0 (mod
∏
P∈S

N(P )eP,q0 (N(P )− 1)).

(Recall that eP,q0 = vP (α
q0 − β); note that eP,q0 is a nonnegative integer for

each P ∈ S, since α and β are P -integral for all such P .) Our choice of q0
is coprime to the modulus, and so the congruence (3.4) holds for infinitely
many primes q. Furthermore, for any such prime q and any P ∈ S,

N(P )eP,q0 (N(P )− 1) | q − q0, so that αq−q0 ≡ 1 (mod P 1+eP,q0 ),

and thus (by the strict triangle inequality)

vP (α
q − β) = vP (α

q0(αq−q0 − 1) + αq0 − β) = eP,q0 .

Therefore, N(
∏

P∈S P
eP,q) = γ2 where

γ2 :=
∏
P∈S

N(P )eP,q0 ∈ Z>0.

Putting everything together, we see that for all large q satisfying the
congruence (3.4),

ϵq ≡ γ2γ1 (mod Q).

Since the ϵq belong to the fixed finite set E , the same ϵq must appear for
infinitely many q. This gives ϵ = γ2γ1 for some ϵ ∈ E ∩Q>0. We now obtain
a contradiction by considering p0-adic valuations.

Since P0 ∈ S, the positive integer γ2 satisfies that

p
eP0,q0
0 | N(P0)

eP0,q0 | γ2.

Recall q0 was chosen so that the multiplicative order ℓ of α in (OP0/P
v
0OP0)

×

divides q0 − n, where vP0(α
n − β) ≥ v. It follows that αq0 ≡ αn ≡ β

(mod P v
0 ), and eP0,q0 = vP0(α

q0 − β) ≥ v. Hence, vp0(γ2) ≥ v and

vp0(ϵ) = vp0(γ2) + vp0(γ1) ≥ v + vp0(γ1).

But this contradicts our choice of v; see (3.3). This completes the proof of
Theorem 1.2.

The following proposition is helpful for producing generous primes.

Proposition 3.1. Let K be a number field and let α, β ∈ K×. Let P be a
degree 1 prime ideal of OK, unramified over Q, with vP (α) = vP (β) = 0.
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Let p = N(P ). Suppose there exist integers n and m with

(3.5) vP (α
n − β) ≥ vP (α

p−1 − 1) and vP (β
m − α) ≥ vP (β

p−1 − 1).

Then P is generous with respect to K,α, β.

For use in the proof we quote Lemma 2.1 from [KP23].

Lemma 3.2. Let p be an odd prime. Let A ∈ Zp with vp(A − 1) = t ≥ 1.
For each integer T ≥ t and each B ∈ Zp with B ≡ 1 (mod pt), there is an
integer k with Ak ≡ B (mod pT ).

Proof of Proposition 3.1. By the symmetry of the hypotheses, it is enough
to show α is a power of β modulo P v for each nonnegative integer v. This is
clear for all v ≤ v0 := vP (α

n − β). In particular, if v0 = ∞ (i.e., if αn = β),
there is nothing more to show. Suppose now that v > v0. We will argue that
there is an integer k with αn+(p−1)k ≡ β (mod P v).

Rearranging, we want α(p−1)k ≡ βα−n (mod P v). Identifying the P -adic
completion of OK with Zp, solvability follows from Lemma 3.2 with A :=

αp−1, B := βα−n, t := vP (α
p−1 − 1) and T := v. We use here that v ≥ v0

and that v0 = vP (B − 1) ≥ t. □

Example 3.3. For many choices of K, α, and β, the hypotheses of Propo-
sition 3.1 are satisfied with n = m = 1 and a degree 1 prime P appearing
to a positive power in the factorization of (α− β)OK . Here is a an example
where we have to work harder. Let K = Q(

√
2,
√
5). Let

α =
1 +

√
2

1−
√
2
, β =

1 +
√
5

1−
√
5
.

(In this case (α − β)OK is a prime ideal of degree 2.) Using gp/PARI for
the computations, one finds that (α7 − β)OK = P3P53P479P

′
479, where the

subscripts on the prime ideal factors indicate the rational primes lying be-
low. Writing K = Q(θ) for θ =

√
2 +

√
5, one can choose the labeling so

that P := P479 = (479, θ − 270), which has degree 1 and is unramified
over Q. Hensel lifting, one finds that θ ≡ 270+ 37 · 479 (mod P 2). Starting
from

√
2 = 1

6
(θ3 − 11θ) and

√
5 = −1

6
(θ3 − 17θ), one finds that α ≡ 57851

(mod P 2) and β ≡ 91259 (mod P 2). This is enough information to verify
(3.5) with n = 7 and m = 205. (Here m was chosen as the inverse of n

modulo N(P ) − 1 = 478.) In fact all the P -adic valuations occurring in
(3.5) are equal to 1.

Remark 3.4. Let {un} and {vn} be the sequences defined by the initial
conditions u0 = v0 = 0, u1 = v1 = 1, and the recurrence relations un =
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2un−1 + un−2 and vn = vn−1 + vn−2 for integers n ≥ 2. These are the Pell
and Fibonacci numbers, respectively. For a prime p, its rank of appearance
in either sequence is the smallest positive integer n for which p divides the
nth term, when such an integer exists. For example, the rank of appearance
of 113 in the sequence {vn} is 19, since 113 | 4181 = v19 and 113 does not
divide vn for any positive integer n < 19. On the other hand, the rank of
appearance of 113 in {un} is 28.

It is well-known that un and vn admit the Binet formulas un = 1
2
√
2
((1 +

√
2)n− (1−

√
2)n) and vn = 1√

5
((1+

√
5

2
)n− (1−

√
5

2
)n). (For the general theory

of which this is a special case, see [Rib00, Chapter 1].) From these formulas,
one sees that if K is any number field containing

√
2 and

√
5, and P is a

prime ideal of K lying above a rational prime p not dividing 10, then the
rank of appearance of p in {un} is the order of 1+

√
2

1−
√
2

modulo P while the

rank of appearance of p in {vn} is the mod P order of 1+
√
5

1−
√
5
. So our last

example has the following corollary.

Corollary 3.5. There are infinitely many primes whose rank of appearance
in the Pell numbers coincides with its rank of appearance in the Fibonacci
numbers.
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