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THE ERROR TERM IN THE COUNT OF
ABUNDANT NUMBERS

MITSUO KOBAYASHI AND PAUL POLLACK

Abstract. A natural number n is called abundant if the sum of the proper
divisors of n exceeds n. For example, 12 is abundant, since 1+ 2+ 3+ 4+ 6= 16.
In 1929, Bessel-Hagen asked whether or not the set of abundant numbers possesses
an asymptotic density. In other words, if A(x) denotes the count of abundant
numbers belonging to the interval [1, x], does A(x)/x tend to a limit? Four years
later, Davenport answered Bessel-Hagen’s question in the affirmative. Calling this
density 1, it is now known that 0.24761<1< 0.24766, so that just under one in
four numbers are abundant. We show that A(x)−1x < x/exp((log x)1/3) for all
large x . We also study the behavior of the corresponding error term for the count of
so-called α-abundant numbers.

§1. Introduction. Let σ(n) :=
∑

d|n d be the usual sum-of-divisors func-
tion. It is traditional to call the natural number n abundant if the sum of its
proper divisors exceeds n, that is, if σ(n) > 2n. The abundant numbers have
been of interest for over two thousand years. However, it was only comparatively
recently, in 1929, that Bessel-Hagen [3, p. 1571] posed the question of whether
or not the abundant numbers possess a natural density.

It did not take long for Bessel-Hagen’s question to be answered. For α > 1,
we call an n satisfying σ(n)/n > α an α-nondeficient number, and we call an
n satisfying σ(n)/n > α an α-abundant number. Inspired by earlier work of
Schoenberg [27], Davenport [6] showed in 1933 that for every α > 1, the set
of α-nondeficient numbers possesses an asymptotic density D(α). Furthermore,
D(α) is a continuous function of α and D(α)→ 0 as α→∞. These results
were independently, and nearly simultaneously, obtained by Behrend (claimed
in [2]) and Chowla [5]. For closely related results, see the papers of Erdős
[9, 11, 12, 13] and Schoenberg [28]. This last paper contains a proof that D(α)
is strictly decreasing for α > 1.

Since D(α) is continuous, the solutions n to σ(n)/n = α comprise a set of
asymptotic density zero for every fixed α. Thus, the α-abundant numbers have
the same density D(α) as the α-nondeficient numbers.

Several authors have worked on the problem of obtaining numerical
approximations of the density D(2) of the abundant numbers. Notable efforts
in this direction include those of Behrend [1], Salié [26], Wall [30], and
Deléglise [7]. The current record is held by the first author [22], who proved
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in his thesis that 0.24761< D(2) < 0.24766. From this (or the earlier work of
Deléglise), one sees that just under one in four numbers are abundant.

Here, we ask: what about the error? In other words, how close is D(α)x to
the actual count of α-abundant numbers up to x?

For technical reasons, rather than discuss α-abundants directly, we will state
our results in terms of α-nondeficient numbers. This is no cause for concern.
Indeed, Wirsing [33] has shown that for all x > 3 and all α > 1, the number of
n 6 x with σ(n)/n = α is at most xW/log log x , where W is an absolute constant.
This bound of xW/log log x will be minuscule in comparison with the error terms
that appear later.

Let
A(α; x) := #{α-nondeficient n 6 x},

and let
E(α; x)= A(α; x)− D(α)x .

For the following estimate, which is a slight sharpening of a theorem of
Fainleib [18], see Elliott [8, Theorem 5.6, p. 203]. We write logk x for the kth
iterate of the function log1 x :=max{1, log x}.

THEOREM A. For all α > 1 and x > 2, we have

E(α; x)�
x

log x
·

log2 x

log3 x
.

Here the implied constant is absolute.

If one insists on uniformity in α, then Theorem A is almost the best possible.
Indeed, it was known to Fainleib (compare with the footnote on [18, p. 860])
that supα>1 |E(α; x)| � x/log x for all large x . A proof can be effected by
considering the specific value α = 1+ 1/x . For this α, every n ∈ (1, x] is
α-nondeficient, so that A(α; x)= x + O(1). On the other hand, a theorem of
Erdős [14, Theorem 3] gives that D(α)= 1− (1+ o(1))e−γ /log x as x→∞.
Thus, |A(α; x)− D(α)x | = (1+ o(1))e−γ x/log x as x→∞.

In the preceding example, α depends on x . One might hope that if one fixes
α in advance, then a better error term is attainable. Our first theorem asserts that
this is indeed the case for almost all α. Recall that α is called a Liouville number
if α is irrational and, for every n, the inequality |a/b − α|< b−n has a solution
in integers a and b with b > 1. It is well known that the set of Liouville numbers
has Lebesgue measure zero (see, for instance, [21, Theorem 198, p. 216]).

THEOREM 1.1. Fix a non-Liouville number α > 1. There are positive
constants x0 = x0(α) and C = C(α) so that the following holds: for all x > x0,
we have

E(α; x)� x exp(−C(log x)1/3(log2 x)2/3).

We do not have nearly so strong a result in the Liouville case. However, we
can establish a modest improvement to the Elliott–Fainleib theorem when α is
fixed.
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THEOREM 1.2. Fix α > 1. Then as x→∞,

E(α; x)= o

(
x

log x
·

log2 x

log3 x

)
.

Our method is easily adapted to give a new proof of the Elliott–Fainleib
theorem itself. While the arguments of Elliott and Fainleib depend heavily on the
machinery of characteristic functions, our approach is entirely elementary and
arithmetic, building on ideas introduced by Erdős to study primitive nondeficient
numbers (defined in §2 below).

In our final theorem, we consider the problem of obtaining upper bounds for
|E(α; x)| on average over α.

THEOREM 1.3. As x→∞, we have∫
∞

1
|E(α; x)|2 dα 6 x2 exp(−

√
(1/2+ o(1)) log x log2 x).

Thus, for a given x , the set of α > 1 where

|E(α; x)|> x exp
(
−

1

3
√

2

√
log x log2 x

)
has measure at most

exp
(
−

(
1

3
√

2
+ o(1)

)√
log x log2 x

)
as x→∞.

Similar results, slightly weaker and for ϕ(n)/n in place of σ(n)/n, were proved
by Fainleib (compare with [17, Theorem 2] and its proof). Our work largely
follows his but with an additional optimization that allows us to introduce the
double-logarithmic factor underneath the square root.

§2. Preliminaries.

2.1. Primitive nondeficient numbers. Call n primitive α-nondeficient if
σ(n)/n > α but σ(d)/d < α for every d dividing n with d < n. Every α-
nondeficient n possesses a primitive α-nondeficient divisor d; for instance, one
can take d as the smallest α-nondeficient divisor of n. On the other hand,
it is simple to show that every multiple of an α-nondeficient number is α-
nondeficient. Thus, the α-nondeficient numbers are exactly those numbers
possessing at least one primitive α-nondeficient divisor.

We will need the following result on the distribution of primitive α-non-
deficient numbers, published by Erdős in 1958 (see [15, equations (4) and (5)]).
The case α = 2 is much older, and was found by Erdős already in 1935 [10].

LEMMA 2.1. Fix a real number α > 1.

(i) The count of primitive α-nondeficient numbers in [1, x] is o(x/log x), as
x→∞.



4 M. KOBAYASHI AND P. POLLACK

(ii) Suppose additionally that α is non-Liouville. Then there are positive
constants K = K (α) and x0 = x0(α) so that for all x > x0, the number
of primitive α-nondeficient numbers not exceeding x is at most

x/exp(K
√

log x log2 x).

Part (ii) of Lemma 2.1 is only asserted in [15], not proved. However, a
detailed proof of this part of the lemma can be found in [22, Ch. 5].

2.2. The fundamental decomposition. In this section, we describe a
convenient partition of the α-nondeficient numbers, due to the first author [23].
We start by introducing a total order � on the set of prime powers.

Definition 2.2. If p and q are primes and e and f are natural numbers, we
say that pe

� q f if either:

(i) σ(pe) < σ(q f ); or
(ii) σ(pe)= σ(q f ) and pe 6 q f .

In [23], the ordering � is called the ordering with respect to decreasing
significance, since (in a sense made precise there) the prime power divisors of n
that are small with respect to this ordering play the largest role in determining the
size of σ(n)/n. The sequence of prime powers, listed in decreasing significance,
begins

2, 3, 5, 22, 7, 11, 32, 13, 23, 17, 19, 23, 29,
24, 52, 31, 37, 33, 41, . . . .

For each integer s > 1, we will write P∗(s) for the prime power dividing s which
is largest with respect to the ordering �.

Now suppose that α > 1 is fixed. Let S be the set of primitive α-nondeficient
numbers, and let A be the set of all α-nondeficient numbers. For each s ∈S ,
let

Ls := lcm
pe�P∗(s)

[pe
]. (2.1)

The maximality of P∗(s) guarantees that s|Ls . The following proposition is
a restatement of the main theoretical result of [23] (compare with that paper’s
Theorem 2 and Corollary 1). We use the symbol ∪· to assert that the sets
appearing in a union are disjoint.

PROPOSITION 2.3. For each s ∈S , let As = {sq : q ∈ N and gcd(q, Ls/s)
= 1}. Then

A =
⋃
·

s∈S

As . (2.2)

Let D(As) denote the asymptotic density of As . Then for the density D(α) of
A , we have

D(α)=
∑
s∈S

D(As)=
∑
s∈S

1
s

∏
p|(Ls/s)

(1− 1/p). (2.3)



THE ERROR TERM IN THE COUNT OF ABUNDANT NUMBERS 5

2.3. Analytic tools. Our arguments utilize certain results from the standard
tool chest of analytic and probabilistic number theory. The first of these (which
appears as [20, Exercise 05, p. 12]) bounds from above the number of n 6 x
with abnormally many prime factors. We write �(n)=

∑
pk‖n k for the number

of primes dividing n, counted with multiplicity.

LEMMA 2.4. Let x > 2, and let k > 1. The count of natural numbers n 6 x
with �(n)> k is

�
k

2k x log x .

For a detailed proof of Lemma 2.4, see [24, Lemmas 12 and 13].
We also need a fairly sharp upper bound on the count of smooth numbers.

For each natural number n, we let P(n) denote the largest prime factor of n,
with the convention that P(1)= 1. We say n is y-smooth if P(n)6 y, and we
let 9(x, y) denote the count of y-smooths in the interval [1, x]. The following
estimate is due to de Bruijn [4].

LEMMA 2.5. Suppose that x > y > 2, and write u := log x/log y. Then as
u→∞, we have

9(x, y)6 x exp(−(1+ o(1))u log u),

uniformly in the range y > (log x)2.

We will appeal to the following special case of the fundamental lemma of the
sieve (see [19, Theorem 2.5, p. 82]).

LEMMA 2.6. Let x > 3, and let P be a set of primes contained in [2, z].
Suppose that z 6 x. Then with u := (log x)/(log z), we have

∑
n6x

p|n⇒p 6∈P

1 =
(

x
∏
p∈P

(1− 1/p)

)(
1+ O

(
exp

(
−

1
2

u log u

))

+ O(exp(−
√

log x))

)
.

Finally, it will be convenient to have at hand a result of Wintner describing the
mean values of certain well-behaved arithmetic functions (see [29, Corollary 2.2,
p. 50]).

LEMMA 2.7. Let f be an arithmetic function, and choose h so that f (n)=∑
d|n h(d) for every natural number n. Suppose that

∑
∞

d=1 |h(d)|/d <∞. Then
as N →∞,

1
N

∑
n6N

f (n)→
∞∑

d=1

h(d)

d
.
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§3. Proof of Theorem 1.1. If α = 1, then Theorem 1.1 is trivial, and so we
suppose that α > 1 is fixed and non-Liouville. We let S be the set of primitive
α-nondeficient numbers, and we let A be the set of all α-nondeficient numbers.
For the rest of this argument, we let

y := exp((log x)2/3(log2 x)1/3).

Intersecting the decomposition (2.2) with [1, x], we can write A ∩ [1, x] =⋃
· s∈S As , where now each As := {sq : q 6 x/s : gcd(q, Ls/s)= 1}. Thus,

A(α; x)=

∣∣∣∣ ⋃·
s∈S
s>y

As

∣∣∣∣+∑
s∈S
s6y

|As |.

Using the upper bound of Lemma 2.1(ii) for the counting function of S , along
with partial summation, we find that∣∣∣∣ ⋃·

s∈S
s>y

As

∣∣∣∣6 x
∑
s∈S
s>y

1
s

6 x exp
(
−

K

2

√
log y log2 y

)

6 x exp
(
−

K

3
(log x)1/3(log2 x)2/3

)
, (3.1)

which may be considered to belong to the error term of the theorem. Moreover,
we may write ∑

s∈S
s6y

|As | =
∑
s∈S
s6y

∑
q6x/s

gcd(q,Ls/s)=1

1. (3.2)

Each of the inner sums is estimated by the fundamental lemma of the sieve.
Suppose that s ∈S with s 6 y. As in §2, let P∗(s) be the largest prime power
dividing s with respect to �. If p is a prime dividing Ls , then p � P∗(s);
consequently,

p < σ(p)6 σ(P∗(s))6 2P∗(s)6 2s 6 2y.

Thus, estimating the inner sum in (3.2) amounts to sieving [1, x/s] by the
set P := {p|Ls/s}, which is a set of primes contained in [2, 2y]. With u :=
log(x/s)/log(2y), Lemma 2.6 gives∑

q6x/s
gcd(q,Ls/s)=1

1 =
x

s

∏
p|(Ls/s)

(1− 1/p)

(
1+ O

(
exp

(
−

1
2

u log u

))

+ O(exp(−
√

log (x/s)))
)

=
x

s

∏
p|(Ls/s)

(1− 1/p)

×

(
1+ O

(
exp

(
−

1
10
(log x)1/3(log2 x)2/3

)))
.
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Inserting this estimate into (3.2), we find that∣∣∣∣ ⋃·
s∈S
s6y

As

∣∣∣∣ = x
∑
s∈S
s6y

1
s

∏
p|(Ls/s)

(1− 1/p)

+ O

(
x exp

(
−

1
10
(log x)1/3(log2 x)2/3

))
.

Moreover, from (2.3),

x
∑
s∈S
s6y

1
s

∏
p|(Ls/s)

(1− 1/p) = D(α)x − x
∑
s∈S
s>y

1
s

∏
p|(Ls/s)

(1− 1/p)

= D(α)x + O

(
x exp

(
−

K

3
(log x)1/3(log2 x)2/3

))
,

using in the last step the upper bound (3.1) on x
∑

s∈S ,s>y 1/s. Collecting
everything, and recalling that E(α; x)= A(α; x)− D(α)x , we obtain the
theorem with C =min{K/3, 1/10}.

§4. Proof of Theorem 1.2. We begin by assuming that α > 1 is fixed. We
use S , A , and As with the same meanings as in the proof of Theorem 1.1.
Throughout this argument, we assume that y is defined by

y := exp
(

1
10

log x
log3 x

log2 x

)
.

We will always assume, sometimes without comment, that x is sufficiently large.
Applying Lemma 2.6 as in the proof of Theorem 1.1, we see that with

us := log(x/s)/log(2P∗(s)),

A(α; x)−
∑

y<s6x

|As | =
∑
s∈S
s6y

∑
q6x/s

gcd(q,Ls/s)=1

1

=

∑
s∈S
s6y

x

s

∏
p|(Ls/s)

(1− 1/p)

(
1+ O

(
exp

(
−

1
2

us log us

))

+ O(exp(−
√

log (x/s)))
)
.

Let us estimate the O-terms appearing above. Setting u := log(x/y)/log(2y),
each us > u. A short computation gives exp(− 1

2 u log u)� (log x)−4. More-
over, for s 6 y, we have exp(−

√
log(x/s))6 exp(− 1

2

√
log x)� (log x)−4.

Using these estimates, we derive that

A(α; x)=
∑
s∈S
s6y

x

s

∏
p|(Ls/s)

(1− 1/p)+
∑
s∈S

y<s6x

|As | + O(x(log x)−4).
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Thus, from (2.3),

E(α; x) = A(α; x)− D(α)x

= A(α; x)− x
∑
s∈S

1
s

∏
p|(Ls/s)

(1− 1/p)

= −

∑
s∈S
s>y

x

s

∏
p|(Ls/s)

(1− 1/p)+
∑
s∈S

y<s6x

|As | + O(x(log x)−4). (4.1)

When us = log(x/s)/log(2P∗(s)) is sufficiently large, Lemma 2.6 yields
|As | � (x/s)

∏
p|(Ls/s)(1− 1/p). In particular, this estimate holds for all

s 6 xδ , for a certain (small) absolute constant δ > 0. Using this estimate for
the values of s ∈ (y, xδ] that appear in the first sum in (4.1), we deduce that

E(α; x) = O

(
x
∑
s∈S
s>xδ

1
s

∏
p|(Ls/s)

(1− 1/p)

)

+ O

( ∑
s∈S

y<s6x

|As |

)
+ O(x(log x)−4). (4.2)

The final O-term in (4.2) is negligible, and the remainder of the proof is
devoted to showing that the first two O-terms on the right-hand side are both
o((x/log x)(log2 x/log3 x)), as x→∞.

To continue, we discard certain inconvenient values of s. Let p(n) be the
smallest prime factor of n, with the convention that p(1)=∞. Recall that P(n)
denotes the largest prime factor of n.

Definition 4.1. Call s ∈S typical if all of the following hold:

(i) �(s) < 10 log2 s;
(ii) P(s) > exp( 1

10 log s log3 s/log2s);
(iii) the largest squarefull divisor of s is smaller than (log s)6;
(iv) if we write s = ab, where P(a)6 (log s)3 and p(b) > (log s)3, then

p(b) > exp( 1
30 log s log3 s/log2s).

LEMMA 4.2. The count of atypical s ∈S ∩ [1, w] is O(w/(log w)3) for all
w > 2. Here the implied constant is absolute.

Proof. Summing dyadically, it is enough to show that for all w

exceeding a certain absolute constant, the count of atypical s ∈ (w/2, w] is
O(w/(log w)3). If s ∈ (w/2, w] fails condition (i), then �(s)> k where
k := d10 log2 (w/2)e. By Lemma 2.4, the number of these s ∈ (w/2, w] is
� (k/2k)w log w� w/(log w)5. If (ii) fails for s ∈ (w/2, w], then P(s)6
exp( 1

10 log w log3 w/log2w), and by Lemma 2.5, this places s into a set of
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size O(w/(log w)9). The number of s ∈ (w/2, w] where (iii) fails is

6 w
∑

n>(log(w/2))6
n squarefull

1
n
�

w

(log w)3
;

here we have applied partial summation, noting that the count of squarefull
numbers in [1, t] is O(t1/2) for all t > 1.

The remainder of the proof consists in bounding from above the number of
s ∈ (w/2, w] satisfying (i)–(iii) but failing (iv).

For each such s, write s = ab with P(a)6 (log s)3 and p(b) > (log s)3.
Note that (iii) implies that b is squarefree. We have

a 6 P(a)�(a) 6 exp(30(log2 s)2)6 exp(30(log2 w)
2),

and since s = ab >w/2, it must be that b > 1 (since we are assumingw is large).
Let p = p(b), so that p > (log s)3 > 1

2 (log w)3. We claim that the integers s/p
are all distinct. Since each s/p < 2w/(log w)3, it will follow that there are only
O(w/(log w)3) values of s satisfying (i)–(iii) but failing (iv), and so the proof of
the lemma will be complete.

To prove the claim, suppose for the sake of contradiction that s1/p1 = s2/p2
where s1 6= s2. Then σ(s1/p1)/(s1/p1)= σ(s2/p2)/(s2/p2). Since each pi ‖ si ,
we have σ(si/pi )= σ(si )/(pi + 1), and so upon rearranging, we obtain

σ(s1)

s1

(
σ(s2)

s2

)−1

=
(p1 + 1)p2

(p2 + 1)p1
.

Clearly, p1 6= p2, and so we can assume without loss of generality that p2 > p1.
Then the right-hand fraction exceeds 1, and so in fact

σ(s1)

s1

(
σ(s2)

s2

)−1

> 1+
1

(p2 + 1)p1
> 1+

1
2p1 p2

> 1+
1

2 exp( 1
15 log w log3 w/log2w)

. (4.3)

We used here that each pi 6 exp( 1
30 log si log3 si/log2si )6 exp( 1

30
log w log3 w/log2w), by our assumption that (iv) fails for si . Now let P denote
the largest prime factor of s1. Since s1 is primitive α-nondeficient, we have
σ(s1/P)/(s1/P) < α, and so

σ(s1)

s1
=
σ(s1/P)

s1/P

σ(P)

P
< α

(
1+

1
P

)
.

Thus,
σ(s1)

s1

(
σ(s2)

s2

)−1

< α

(
1+

1
P

)
· α−1

= 1+
1
P
. (4.4)
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Comparing (4.3) and (4.4), we see that

P < 2 exp( 1
15 log w log3 w/log2w).

But for large w, this contradicts (ii) (remember that s >w/2). This argument is
essentially due to Erdős [15, pp. 28–29]. 2

Recall the definition of Ls given in (2.1).

LEMMA 4.3. Suppose that s is typical, in the sense of Definition 4.1. Then,
provided that s exceeds a certain absolute constant, we have∏

p|(Ls/s)

(1− 1/p)�
1

log P(s)
. (4.5)

Proof. If p 6 P(s) is prime, then p � P(s)= P∗(s). Hence,
∏

p6P(s) p|Ls .

Moreover, every prime p 6 (log s)3 divides Ls/s. Indeed, for p 6 (log s)3,
we may choose an e > 2 with (log s)6 6 pe < (log s)9. By condition (iii) of
typicality, pe - s. On the other hand, the lower bound (ii) on P(s) for typical s
shows that

σ(pe) < 2pe < 2(log s)9 < P(s) < σ(P(s)).

Thus, pe
� P(s)= P∗(s), and so pe

|Ls . Since p divides Ls to a higher power
than that to which it divides s, we get that p|Ls/s.

Putting together the observations of the last paragraph, we see that every
prime p 6 P(s) divides Ls/s except possibly those prime divisors of s exceeding
(log s)3. Since �(s) < 10 log2 s, we find that∏

p|(Ls/s)

(
1−

1
p

)
6

∏
p6P(s)

(
1−

1
p

) ∏
p|s

p>(log s)3

(
1−

1
p

)−1

�
1

log P(s)

∏
p|s

p>(log s)3

(
1+

1
p

)

6
1

log P(s)

(
1+

1

(log s)3

)10 log2 s

�
1

log P(s)
,

as was to be proved. 2

We now continue the proof of the main theorem. Referring back to (4.2),
what remains to be shown is that both expressions

x
∑
s∈S
s>xδ

1
s

∏
p|(Ls/s)

(1− 1/p) (4.6)

and ∑
s∈S

y<s6x

|As | (4.7)
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are o((x/log x) log2 x/log3x), as x→∞. It is comparatively simple to dispense
with (4.6). By Lemma 4.2 and partial summation, the contribution to (4.6) from
atypical s is at most x

∑
atypical s>xδ 1/s� x/(log x)2. This is negligible. For

the remaining values of s, we use (4.5) and condition (ii) of typicality to deduce
that

x
∑
s∈S
s>xδ

s typical

1
s

∏
p|(Ls/s)

(1− 1/p)� x
∑
s∈S
s>xδ

s typical

1
s log P(s)

� x
∑
s∈S
s>xδ

1
s log s

log2 s

log3 s
.

By Lemma 2.1(i) and partial summation, this last expression is o((x/log x)
log2 x/log3x) as x→∞, as desired.

The treatment of (4.7) is more intricate. We again draw on the ideas of Erdős
(compare with [15, pp. 31–32]). The contribution to (4.7) from atypical s is
trivially bounded by x

∑
atypical s>y 1/s� x/(log y)2� x/(log x)3/2. So we

need only consider the contribution from typical s ∈ (y, x]. Recalling condition
(iv) in Definition 4.1, we write each such s in the form s = ab with P(a)6
(log s)3 and p(b)> exp( 1

30 log s log3 s/log2s). We will use this meaning of a
and b for the remainder of the argument.

LEMMA 4.4. For all typical s ∈ (y, x], the fraction σ(a)/a assumes the
same value.

Proof. Suppose that it does not. Then there are s1, s2 ∈ (y, x] with
decompositions si = ai bi so that σ(a1)/a1 > σ(a2)/a2. Since each �(si )6
10 log2 si , each

ai 6 P(ai )
�(ai ) 6 exp(30(log2 si )

2)6 exp(30(log2 x)2).

Consequently,

σ(a1)

a1
−
σ(a2)

a2
>

1
a1a2

>
1

exp(60(log2 x)2)
,

so that

σ(a2)

a2
6
σ(a1)

a1
−

1

exp(60(log2 x)2)
6 α −

1

exp(60(log2 x)2)
.

Hence,

σ(s2)

s2
=
σ(a2)

a2

σ(b2)

b2
6
σ(a2)

a2

(
1+

1
p(b2)

)�(b2)

6

(
α −

1

exp(60(log2 x)2)

)
×

(
1+

1

exp
( 1

30 log y log3 y
log2 y

))10 log2 x

.
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As shown by Gronwall, lim supn→∞ σ(n)/n log2 n = eγ , where γ is the Euler–
Mascheroni constant (see [21, Theorem 323, p. 350]). It follows that α 6
σ(s1)/s1 < 2 log2 x (assuming x is sufficiently large). Now recalling the
definition of y, we see that the final expression in the previous display is

6 α

(
1−

1

exp(60(log2 x)2)α

)(
1+

1

exp
( 1

301 log x(log3 x)2/(log2 x)2
))10 log2 x

6 α

(
1−

1

exp(61(log2 x)2)

)(
1+

1

exp
( 1

400 log x(log3 x)2/(log2 x)2
)),

which is smaller than α. But this contradicts that s is α-nondeficient. 2

We now define

S1 := {typical s ∈S ∩ (y, x] with b prime},

S2 := {typical s ∈S ∩ (y, x] with b composite}.

We estimate separately the contribution to (4.7) from n belonging to As for
s ∈S1 versus s ∈S2.

When s ∈S1. Suppose that n ∈As for a certain s = ab ∈S1. Then b = p
is prime, and

p = s/a > s/exp(30(log2 s)2) > s1/2 > y1/2.

Since n ∈As , if we write n = sq = apq , then q is coprime to Ls/s. The proof
of Lemma 4.3 shows that Ls/s is divisible by every prime not exceeding P(s),
except possibly those dividing s and exceeding (log s)3. In our case, p = P(s)
is the prime divisor of s greater than (log s)3. Hence, if p′ is the least prime
dividing q , then p′ > p > y1/2.

Consequently, every n ∈
⋃

s∈S1
As can be written in the form n = aQ where

p(Q) > y1/2. Fixing a, applying the sieve once more shows that the number of
n 6 x of this form is O(x/(a log y)). Thus, the total number of n belonging to
As for some s ∈S1 is

�
x

log y

∑
a

1
a
. (4.8)

We claim that the sum on a is o(1) as x→∞. This will show that the number
of n in question is o(x/log y), which is o((x/log x) log2 x/log3x) from the
definition of y.

To derive the estimate for the sum, we appeal to the following lemma.

LEMMA 4.5. Let β be an arbitrary real number. Then
∑

a>z,σ (a)/a=β 1/a→
0 as z→∞, uniformly in the choice of β.

Proof. This follows from Wirsing’s theorem [33] that for t > 3, the number
of n ∈ [1, t] with σ(n)/n = β is at most tW/log2t for a certain absolute constant
W . In fact, using Wirsing’s estimate together with partial summation shows that
the sum in the lemma statement is Oε(z−1+ε), as z→∞, uniformly in β. 2
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We know from Lemma 4.4 that σ(a)/a assumes the same value β (say) for all
a appearing in the sum (4.8). So from Lemma 4.5, if we show that the minimal
value of a corresponding to an s ∈S1 tends to infinity with x , then the sum in
(4.8) is indeed o(1). We proceed by contradiction. If the values of a do not tend
to infinity, then there are infinitely many α-primitive nondeficient numbers of the
form s = a0 p, where a0 is fixed and p is a prime not dividing a0. For each of
these values of s,

σ(a0 p)

a0 p
=
σ(a0)

a0
(1+ 1/p)> α.

Since p tends to infinity with s here, it must be that σ(a0)/a0 > α. In other
words, a0 is α-nondeficient. But then a0 p is not primitive α-nondeficient for any
prime p. This is a contradiction.

When s ∈S2. Finally, suppose that n ∈As for an s ∈S2. We show that all
such n number at most O(x/(log x)3/2), which is negligible. Let

p0 =min{p(b) : s ∈S2}.

Since each s ∈S2 is typical and larger than y,

p0 > exp
(

1
30

log y
log3 y

log2 y

)
> exp((log x)0.9), (4.9)

say. We take two cases. Suppose first that n ∈As for some s ∈S2 having

p(b)6 p0(1+ 1/log x).

Then n itself has a prime divisor in the interval [p0, p0(1+ 1/log x)]. The
number of these n 6 x is at most

x
∑

p prime
p06p6p0(1+1/log x)

1
p

6
x

p0

∑
p prime

p06p6p0(1+1/log x)

1

�
x

p0
·

p0/log x

log(p0/log x)
�

x

log x log p0
�

x

(log x)1.9
,

using the Brun–Titchmarsh inequality for primes in short intervals in the second
step (see [19, Theorem 3.7, p. 107]) and the lower bound (4.9) in the last step.
This estimate is acceptable for us.

In the second case, we suppose that n ∈As for an s ∈S2 having

p(b) > p0(1+ 1/log x). (4.10)

Before proceeding further, observe that when s ∈S2 satisfies (4.10), then

σ(b)

b
> 1+

1
p0
.

Indeed, by the definition of p0, there is some typical s0 ∈ (y, x]with the property
that when we decompose s0 = a0b0 (say), the integer b0 is composite and
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divisible by p0. Since a0 p0 is a proper divisor of s0, the integer a0 p0 is α-
deficient. Since s = ab is α-nondeficient,

σ(a0)

a0
(1+ 1/p0) < α 6

σ(a)

a

σ(b)

b
.

By Lemma 4.4, σ(a0)/a0 = σ(a)/a, and so σ(b)/b > 1+ 1/p0, as claimed.
Given s ∈S2 satisfying (4.10), write b = p1 p2 p3 · · · pk , numbered so that

p(b)= p1 < p2 < · · ·< pk . Then k 6 10 log2 x , and so

1+
1
p0
<
σ(b)

b
6

(
1+

1
p1

)(
1+

1
p2

)10 log2 x

.

Hence, (
1+

1
p2

)10 log2 x

>

(
1+

1
p0

)(
1+

1
p1

)−1

>

(
1+

1
p0

)(
1+

1
p0(1+ 1/log x)

)−1

= 1+
1

p0 log x(1+ 1/p0 + 1/log x)
.

Taking logarithms,

10 log2 x

p2
> (10 log2 x) log

(
1+

1
p2

)
> log

(
1+

1
p0 log x(1+ 1/p0 + 1/log x)

)
>

1
2p0 log x(1+ 1/p0 + 1/log x)

>
1

3p0 log x
.

Rearranging gives

p2 6 30p0 log x log2 x < p0(log x)2.

Hence, p1, p2 ∈ (p0, p0(log x)2).
We conclude that if n ∈As for an s ∈S2 satisfying (4.10), then n has at least

two distinct prime divisors from (p0, p0(log x)2). The number of such n 6 x is
at most

1
2

x

( ∑
p prime

p0<p<p0(log x)2

1
p

)2

� x

(
log2 x

log p0

)2

�
x(log2 x)2

(log x)1.8
�

x

(log x)3/2
.

This completes the proof that (4.7) is o((x/log x) log2 x/log3x) and also
completes the proof of the theorem.
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Remarks. There are two places where our estimates are not uniform in α.
The first is when we apply Erdős’s o(x/log x) upper bound for the count of
primitive α-nondeficient numbers in [1, x]. That bound does not hold uniformly
in α; indeed, every prime p 6 x is primitive (1+ 1/x)-nondeficient, and there
are asymptotically x/log x of these as x→∞. The second place non-uniformity
is encountered is in our proof that the sum appearing in (4.8) is o(1).

In both cases, slightly weaker uniform estimates are readily available. For
example, the argument for Lemma 4.5 shows that the sum on a in (4.8) is
bounded by an absolute constant. Making an essentially identical modification
to Erdős’s argument (crudely replacing “c7/b1/2” by “c7” in [15, equation (30)]),
Erdős’s proof shows that the count of primitive α-nondeficient numbers in [1, x]
is O(x/log x), uniformly in α. Making use of these modified estimates in the
proof presented above, we obtain that E(α; x)� (x/log x)(log2 x/log3 x) for
all x exceeding a certain absolute constant and all α > 1. In other words, we
recover the Elliott–Fainleib result quoted in the introduction as Theorem A.

§5. Proof of Theorem 1.3. Our starting point is the following observation of
Fainleib, which is part of [17, Lemma 2].

LEMMA 5.1. Let F and G be distribution functions satisfying
∫

R |F(u)−
G(u)| du <∞. Let f (t)=

∫
R ei tu d F(u) and g(t)=

∫
R ei tu dG(u) be the

corresponding characteristic functions. For all real T > 0, we have∫
R
|F(u)− G(u)|2 du 6

4
πT
+

1
2π

∫ T

−T

∣∣∣∣ f (t)− g(t)

t

∣∣∣∣2 dt.

Proof. For all real t , we have

f (t)− g(t)=
∫

R
ei tu d(F(u)− G(u))=−i t

∫
R
(F(u)− G(u))ei tu du.

So for t 6= 0, ∫
R
(F(u)− G(u))ei tu du = i

f (t)− g(t)

t
.

Since |F − G|6 2 and
∫

R |F(u)− G(u)| du <∞, we see that
∫

R |F(u)−
G(u)|2 du <∞. So by Parseval’s identity,∫

R
|F(u)− G(u)|2 du =

1
2π

∫
R

∣∣∣∣ f (t)− g(t)

t

∣∣∣∣2 dt

6
1

2π

∫
(−∞,T )∪(T,∞)

4

t2 dt +
1

2π

∫ T

−T

∣∣∣∣ f (t)− g(t)

t

∣∣∣∣2 dt

=
4
πT
+

1
2π

∫ T

−T

∣∣∣∣ f (t)− g(t)

t

∣∣∣∣2 dt. 2

We now introduce the relevant distribution functions. For each natural
number N , let

FN (u) :=
1
N

#
{

n 6 N : log
σ(n)

n
6 u

}
.
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Let G(u) denote the natural density of those n with σ(n)6 eun. Note that G is
well defined by Davenport’s theorem, and in fact

G(u)= 1− D(eu).

By the definition of weak convergence, we see that FN converges weakly to G as
N →∞. We let fN (t) be the characteristic function of FN and we let g(t) be the
characteristic function of G. We will need the following convenient expression
for g(t).

LEMMA 5.2. Let t be a real number. Let h be the arithmetic function defined
by (

σ(n)

n

)i t

=

∑
d|n

h(d). (5.1)

(Of course, h depends on t, but we suppress this in our notation.) Then

g(t)=
∞∑

d=1

h(d)

d
.

Proof. Since Fn⇒ G, we find that g(t)= limN→∞ fN (t)= limN→∞(1/N )∑N
n=1(σ (n)/n)i t . In other words, g(t) is the mean value of (σ (n)/n)i t .

Referring back to Lemma 2.7, we see that the claimed expression for g(t) will
follow if we show that

∑
∞

d=1 h(d)/d converges absolutely. Now

∞∑
d=1

|h(d)|

d
=

∏
p prime

(
1+
|h(p)|

p
+
|h(p2)|

p2 + · · ·

)
6 exp

( ∑
p prime

k>1

|h(pk)|

pk

)
.

(5.2)
Each term h(pk)= (σ (pk)/pk)i t

− (σ (pk−1)/pk−1)i t , and thus |h(pk)|6 2
trivially. Hence, the terms corresponding to k > 1 make a bounded contribution
to the final sum in (5.2), and so it is enough to prove that

∑
p prime |h(p)|/p <

∞. To this end, we observe that when p > |t |, we have |i t log(1+ 1/p)|6
|t |/p 6 1; so from the Maclaurin expansion of exp(·),

|h(p)| =

∣∣∣∣exp
(

i t log
(

1+
1
p

))
− 1

∣∣∣∣� |t |p . (5.3)

This immediately implies convergence of
∑

p |h(p)|/p. 2

Assume that x > 3 is given. In what follows, the letter F , sans subscript,
denotes the distribution function Fbxc. We use f = fbxc to denote the
characteristic function of F .

LEMMA 5.3. Suppose that x exceeds a suitable absolute constant.

(i) If |t |6 1
4 , then | f (t)− g(t)| � |t |.

(ii) For all real t ,

f (t)− g(t)� exp
(
−

1
3

log x

log(|t | + 3)

)
· (log (|t | + 3))3.
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(iii) For all real t with |t |> (log x)2,

f (t)− g(t)� exp
(
−

1
2

log x log2 x

log |t |

)
· exp

(
O((log x)1/2)

)
· (log |t |)O(1).

All implied constants are absolute.

Before proving Lemma 5.3, we record a useful estimate extracted from [25]
(see equation (2.4) there). We use the notation li for the logarithmic integral, so
that li(y)=

∫ y
2 (1/log t) dt .

LEMMA 5.4. Suppose that 0< η < 1. If y1−η > 2, then

∑
p prime

p6y

p−η = li(y1−η)

(
1+ O

(
1

log y

))
+ O

(
log

1
1− η

)
.

Lemma 5.4 can be obtained from partial summation and the prime number
theorem with the classical (de la Vallée–Poussin) error term.

Proof. The estimate (i) is implicitly contained in Elliott’s monograph.
Indeed, the second half of [8, Lemma 5.7, p. 203] asserts that fN (t)=
1+ O(|t |) for |t |6 1/4, uniformly in N . Since f (t)= fbxc(t) while g(t)=
limN→∞ fN (t), we see that both f (t) and g(t) are also 1+ O(|t |) in this range
of t . Subtracting gives (i).

Part (ii) is essentially established in Fainleib’s paper [17, proof of Lemma 1].
We give the argument in detail, since we will need it when proving (iii). Define
the arithmetic function h so that (5.1) holds. Then

f (t)=
1
bxc

∑
n6x

(
σ(n)

n

)i t

=
1
bxc

∑
d6x

h(d)

⌊
bxc

d

⌋
=

∑
d6x

h(d)

d
+ O

(
1
x

∑
d6x

|h(d)|

)
.

From Lemma 5.2, we know that g(t)=
∑
∞

d=1 h(d)/d . Thus,

f (t)= g(t)+ O

(∑
d>x

|h(d)|

d
+

1
x

∑
d6x

|h(d)|

)
.

Let η be a real parameter whose precise value will be chosen shortly; for now,
we assume only that 2

3 < η < 1. Observe that xη−1d−η = (x/d)ηx−1 > x−1
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when d 6 x , while xη−1d−η = (x/d)η−1d−1 > d−1 when d > x . Hence,

f (t)− g(t)�
∑
d>x

|h(d)|

d
+

1
x

∑
d6x

|h(d)|6 xη−1
∞∑

d=1

|h(d)|

dη

= xη−1
∏

p prime

(
1+
|h(p)|

pη
+
|h(p2)|

p2η + · · ·

)

6 xη−1 exp
( ∑

p prime
k>1

|h(pk)|

pkη

)
.

As noted in the proof of Lemma 5.2, each term |h(pk)|6 2. So using that
η > 2

3 , we see that
∑

p prime,k>2 |h(p
k)|/pkη is absolutely bounded. Thus,

f (t)− g(t)� xη−1 exp
( ∑

p prime

|h(p)|

pη

)
. (5.4)

We now choose

η = 1−
1

3 log (|t | + 3)
.

(Note that 2
3 < η < 1, as required.) Then

xη−1
= exp

(
−

1
3

log x

log(|t | + 3)

)
. (5.5)

We split the sum on p in (5.4) at |t | + 3. For p 6 |t | + 3, we have

|h(p)|

pη
6

2
p
· p1−η 6

2
p
(|t | + 3)1−η = 2 exp(1/3) ·

1
p
<

3
p
,

and thus ∑
p prime
p6|t |+3

|h(p)|

pη
< 3

∑
p prime
p6|t |+3

1
p
= 3 log2 (|t | + 3)+ O(1). (5.6)

For p > |t | + 3, we know from (5.3) that |h(p)| � |t |/p. Hence,∑
p prime
p>|t |+3

|h(p)|

pη
� |t |

∑
p prime
p>|t |+3

1

pη+1 6 |t |
∑

n>|t |+3

1

nη+1 � (|t | + 3)1−η� 1.

(5.7)
Combining (5.4)–(5.7) gives the estimate (ii).

Part (iii) is very similar, except that now we apply (5.4) with

η = 1−
1
2

log2 x

log |t |
.
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(Since |t |> (log x)2, we have 3
4 < η < 1.) Here

xη−1
= exp

(
−

1
2

log x log2 x

log |t |

)
. (5.8)

This time, we split the sum on p appearing in (5.4) at |t |. Applying Lemma 5.4,
and noting that |t |1−η = (log x)1/2, we find that

∑
p prime
p6|t |

|h(p)|

pη
6 2

∑
p prime
p6|t |

1
pη

= 2 · li((log x)1/2)(1+ O(1/log |t |))+ O(log2 |t |)

� (log x)1/2/log2x + log2 |t |. (5.9)

Using once more that |h(p)| � |t |/p for p > |t |, we find that

∑
p prime
p>|t |

|h(p)|

pη
� |t |

∑
p prime
p>|t |

1

pη+1 6 |t |
∑
n>|t |

1

nη+1 � |t |
1−η
= (log x)1/2.

(5.10)
The estimate (iii) now follows from assembling (5.4) and (5.8)–(5.10). 2

The following estimate, which shows that D(α) decays to 0 extremely rapidly
as α→∞, is due to Erdős [14, Theorem 1]. While this will more than suffice
for our purposes, we note that more precise results have recently been obtained
by Weingartner [31, 32].

LEMMA 5.5. As α→∞, we have

D(α)= exp(−exp((e−γ + o(1))α)).

As before, γ denotes the Euler–Mascheroni constant.

Proof of Theorem 1.3. Our strategy will be to first bound the integral of
|E(α; x)|2 over α ∈ [1, 2 log2 x]. We will then use Lemma 5.5 to show that
the integral taken over the remaining range α > 2 log2 x is negligible. In fact,
we will see that this range of α makes a contribution that is o(1), as x→∞.

With an eye towards applying Lemma 5.1, we start by relating E(α; x) to the
difference F − G. For all α > 1,

F(log α)− G(log α)=
1
bxc

(( ∑
n6x

σ(n)6αn

1
)
− G(log α)bxc

)
.
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Moreover, using that G(log α)= 1− D(α),( ∑
n6x

σ(n)6αn

1
)
− G(log α)bxc

=

(
bxc − A(α; x)+ #

{
n 6 x :

σ(n)

n
= α

})
− (1− D(α))bxc

= −D(α)(x − bxc)+ #
{

n 6 x :
σ(n)

n
= α

}
− E(α; x).

Rearranging, and using Wirsing’s upper bound of xW/log2x for the number of
n 6 x with σ(n)/n = α, we find that

E(α; x)� xW/log2x
+ x |F(log α)− G(log α)|.

Hence,∫ 2 log2 x

1
|E(α; x)|2 dα

�

∫ 2 log2 x

1
(x2W/log2x

+ x2
|F(log α)− G(log α)|2) dα

� (log2 x)

(
x2W/log2x

+ x2
∫ 2 log2 x

1
|F(log α)− G(log α)|2α−1 dα

)
6 x2W/log2x

· log2 x + x2 log2 x
∫

R
|F(u)− G(u)|2 du. (5.11)

We would now like to apply Lemma 5.1, but must first check that F − G ∈
L1(R). We start by observing that for u < 0, we have F(u)− G(u)= 0. Since
σ(n)/n assumes only finitely many values for n 6 x , it follows that F(u)= 1 for
all large enough positive values of u. Hence, F(u)− G(u)= 1− G(u)= D(eu)

for large positive u. Since D(eu) decays extremely rapidly to 0 by Lemma 5.5,
we conclude that

∫
R |F(u)− G(u)|2 du <∞, as desired.

Now let

T := exp(
√

1
2 log x log2 x).

According to Lemma 5.1,∫
R
|F(u)− G(u)|2 du 6

4
πT
+

1
2π

∫ T

−T

∣∣∣∣ f (t)− g(t)

t

∣∣∣∣2 dt. (5.12)

We break the integral appearing on the right-hand side of (5.12) into three pieces.
First, we consider those values of t with |t |6 1/T . By Lemma 5.3(i), this
range of t contributes O(1/T ) to the integral. Next, we consider those t with
1/T < |t |6 (log x)2. For these t , Lemma 5.3(ii) gives

f (t)− g(t)� exp
(
−

1
7

log x

log2 x

)
.
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So the integral of | f (t)− g(t)|2/t2 over this range of t is

� (log x)2 · T 2
· exp

(
−

2
7

log x

log2 x

)
� exp

(
−

1
4

log x

log2 x

)
.

For (log x)2 < |t |6 T , we use Lemma 5.3(iii), which shows that

f (t)− g(t)� exp(−
√
(1/2+ o(1)) log x log2 x).

Thus, the integral of | f (t)− g(t)|2/t2 over this range of t is

� T (log x)−4
· exp(−

√
(2+ o(1)) log x log2 x)

� exp(−
√
(1/2+ o(1)) log x log2 x).

Since T−1
= exp(−

√
1
2 log x log2 x), we find after collecting all of our estimates

that the right-hand side of (5.12) is at most exp(−
√
(1/2+ o(1)) log x log2 x),

as x→∞. Putting this back into (5.11), we see that as x→∞,∫ 2 log2 x

1
|E(α; x)|2 dα 6 x2 exp(−

√
(1/2+ o(1)) log x log2 x).

Finally, we show that
∫
∞

2 log2 x |E(α; x)|2 dα = o(1), as x→∞. For
sufficiently large x , Gronwall’s result gives that A(2 log2 x; x)= 0. So for
α > 2 log2 x , we have |E(α; x)|2 = x2 D(α)2. Since e−γ > 0.56, Lemma 5.5
guarantees that for each j = 1, 2, 3, . . . ,∫ 2 j+1 log2 x

2 j log2 x
D(α)2 dα 6 2 j log2 x · exp(−2 exp(2 j

· 0.56 log2 x))

= 2 j log2 x · exp(−2(log x)1.12·2 j−1
).

(Here we again assume that x is sufficiently large.) With

U j := 2 j log2 x · exp(−2(log x)1.12·2 j−1
),

it is straightforward to check that U j+1 6 1
2U j for all j . Thus,∫

∞

2 log2 x
|E(α; x)|2 dα = x2

∫
∞

2 log2 x
D(α)2 dα

6 x2
∞∑
j=1

U j 6 2x2
·U1

= 4x2 log2 x · exp(−2(log x)1.12),

which is indeed o(1) as x→∞. This completes the proof of the theorem. 2
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§6. A concluding challenge. Let f be a positive-valued multiplicative
function. We say that the natural number n is ( f, α)-abundant if f (n)>
α; our work here corresponds to the choice f (n)= σ(n)/n. Under certain
technical conditions on f , Erdős [11, 12, 13] showed that the ( f, α)-abundant
numbers possess an asymptotic density D f (α), where D f (α)→ 1 as α→ 0
and D f (α)→ 0 as α→∞. (This is the sufficiency half of the Erdős–Wintner
theorem [16].) It would be interesting to adapt the methods of this paper to study
the analogous questions about error terms in this general setting. This would
seem to require a theory of primitive ( f, α)-abundant numbers robust enough to
produce generalizations of both Lemma 2.1 and Proposition 2.3.

Acknowledgements. The authors are grateful to Enrique Treviño for his
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