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EQUIDISTRIBUTION MOD q OF ABUNDANT AND

DEFICIENT NUMBERS

Paul Pollack

ABSTRACT. The ancient Greeks called the natural number m deficient, perfect,
or abundant according to whether σ(m) < 2m, σ(m) = 2m, or σ(m) > 2m.
In 1933, Davenport showed that all three of these sets make up a well-defined
proportion of the positive integers. More precisely, if we let

D(u; x) :=

{
m ≤ x :

m

σ(m)
≤ u

}
, and put D(u;x) := #D(u; x),

then Davenport’s theorem asserts that limx→∞
1
xD(u;x) exists for every u. More-

over, D(u) is a continuous function of u, with D(0) = 0 and D(1) = 1. In this
note, we study the distribution of D(u; x) in arithmetic progressions. A simple
to state consequence of our main result is the following: Fix u ∈ (0, 1]. Then the
elements of D(u; x) approach equidistribution modulo prime numbers q whenever
q, x, and x

q log log log x all tend to infinity.

Communicated by

1. Introduction

Recall that the natural number m is said to be deficient if σ(m) < 2m (for
example, m = 10), perfect if σ(m) = 2m (for example, m = 6), and abundant if
σ(m) > 2m (for example, m = 12). This classification goes back to the ancient
Greeks; however, it was only in the 20th century that significant progress was
made in understanding how these numbers were distributed within the sequence
of natural numbers. For each u ∈ [0, 1] and each real x ≥ 1, put

D(u;x) :=

{
m ≤ x :

m

σ(m)
≤ u

}
, and put D(u;x) := #D(u;x).

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: 11N60, 11A25.
Keyword s: abundant number, deficient number, distribution function, Erdős–Wintner
theorem.

0



EQUIDISTRIBUTION MOD q OF ABUNDANT AND DEFICIENT NUMBERS

In 1933, Davenport [4] showed that for all u ∈ [0, 1], the limit

D(u) := lim
x→∞

1

x
D(u;x)

exists. Moreover, D(u) is a continuous function of u, with D(0) = 0 and D(1) =
1. From these results, one quickly deduces that the deficient numbers have nat-
ural density 1 −D(12 ), that the perfect numbers have density 0 (here one uses
the continuity of D(u)), and that the abundant numbers have density D(12 ). It
is of some interest to obtain accurate numerical approximations of these values;
improving on much earlier work, Kobayashi [10] has recently shown that the
density of the abundant numbers lies between 0.24761 and 0.24766.

In 1946, Erdős [5] showed that the abundant and deficient numbers have the
distribution predicted by Davenport’s result even in remarkably short intervals
(see [5, Theorem 7(iii)]; see also [1] for closely related material). In fact, he
showed that if A = A(x) → ∞, then

lim
x→∞

#{m ∈ (x, x+A log3 x] :
m

σ(m) ≤ u}
A log3 x

= D(u)

for every fixed u ∈ [0, 1]. The primary purpose of this note is to illustrate how
Erdős’s ideas may be adapted to study the distribution of abundant and defi-
cient numbers in arithmetic progressions. Specifically, we establish a sufficient
condition for the elements of D(u;x) to approach equidistribution modulo q, as
both q and x tend to infinity. Our proof uses the same ideas that feature in
Erdős’s work [5], supplemented by the method of moments.

It is certainly necessary to assume that x → ∞ to meaningfully discuss
equidistribution, but why assume that q → ∞? It turns out that for fixed
q > 1 and u ∈ (0, 1], the elements of D(u;x) do not approach equidistribu-
tion as x → ∞. Let us quickly explain why. Consider those m ∈ D(u;x) which
are 0 mod q. Included here are all m ∈ [1, x] of the form nq, where n/σ(n) ≤ u.
The density of n satifying n/σ(n) ≤ u is D(u), which already implies that the
limiting proportion of elements of D(u;x) that are 0 mod q is at least 1/q. How-
ever, there are many m still unaccounted for! For instance, a positive proportion
of natural numbers n are both coprime to q and satisfy u < n/σ(n) ≤ uσ(q)/q.
(The proof of this parallels the proof that Davenport’s distribution function D
is strictly increasing; compare with [13, Exercise 35, p. 275].) For these n, the
number m = nq also satisfies m/σ(m) ≤ u. It follows that the lower density of
m ≡ 0 (mod q) satisfying m/σ(m) ≤ u is strictly larger than 1

qD(u), contra-
dicting equidistribution. This analysis can easily be extended beyond the residue
class 0 mod q to all of the residue classes a mod q with gcd(a, q) > 1.

1



PAUL POLLACK

Thus, equidistribution for fixed moduli q is not in the cards. So to obtain
equidistribution results, we must allow q to vary with x. To avoid the difficulties
discussed in the last paragraph, we also assume that σ(q)/q = 1 + o(1).

Let Q be an infinite set of natural numbers. We say that Q is
asymptotically tame if σ(q)

q → 1 as q → ∞ through elements of Q.

For instance, the prime numbers form an example of an asymptotically tame
set. Our main theorem establishes equidistribution in a wide range of q and x
provided that q is restricted to an asymptotically tame set. We write logk x for
the kth iterate of the function log1 x := max{1, logx}.

1.1 Let Q be an asymptotically tame set of natural numbers. Let
u be a fixed real number with 0 < u ≤ 1. For q restricted to Q, we have that
whenever q, x, and x

q log3 x all tend to infinity,

#{m ≤ x : m ≡ a mod q, m
σ(m) ≤ u}

#{m ≤ x : m ≡ a mod q} → D(u),

uniformly in the choice of residue class a mod q.

To see that this really is an equidistribution result, note that the denominator
here is ∼ x/q, whileD(u;x) ∼ D(u)x; thus, the proportion of elements of D(u;x)
belonging to the progression a mod q is asymptotically 1/q. As we explain after
the proof of this theorem, the range of uniformity in q is in some sense sharp.

The method of moments can also be used to establish several closely related
results. Rather than try to formulate the most general theorem possible, we focus
on a single theorem that is fairly representative of what may be expected.

Recall that every prime p possesses ϕ(p − 1) primitive roots (i.e., generators
of the multiplicative group modulo p). Work of Burgess [3] shows that for X :=

p
1
4+ϵ, the number of primitive roots mod p in [1, X ] is asymptotic to ϕ(p−1)

p−1 X as
p → ∞. Our second theorem shows that these small primitive roots also follow
Davenport’s distribution.

1.2 Fix ϵ > 0 and fix u ∈ (0, 1]. As p tends to infinity through prime
values,

#{primitive roots 1 ≤ m ≤ p
1
4+ϵ : m

σ(m) ≤ u}

#{primitive roots 1 ≤ m ≤ p
1
4+ϵ}

→ D(u).

Notation and conventions

Throughout, we reserve the letter p for a prime variable. We employ O and
o-notation, as well as the associated Vinogradov symbols ≪ and ≫, with the
usual meanings. We write pe ∥ m to mean that pe | m but that pe+1 ! m. We
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use ω(m) for the number of distinct primes dividing m. Other notation will be
introduced as necessary.

2. Preliminary remarks on the moments of n
σ(n)

The proofs of both theorems hinge on the following well-known result. See, for
example, the textbook of Billingsley [2, Theorems 30.1 and 30.2, pp. 406–408].

2.1 Let F1, F2, F3, . . . be a sequence of distribution functions. Suppose
that each Fn corresponds to a probability measure on the real line concentrated
on [0, 1]. For each k = 1, 2, 3, . . . , assume that

µk := lim
n→∞

∫
uk dFn(u)

exists. Then there is a unique distribution function F possessing the µk as its
moments, and Fn converges weakly to F .

In order to apply Lemma 2.1, we will need a convenient expression for the
moments of Davenport’s distribution function D.

2.2 Let k be a natural number. The kth moment of D(u) is given by
the absolutely convergent sum

µk =
∑

d1,...,dk

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

. (2.1)

Here the di run over all natural numbers, and the multiplicative function g is
defined by the convolution identity

n

σ(n)
=
∑

d|n

g(d).

P r o o f. For each natural number M , let DM (u) := 1
M#{m ≤ M : m

σ(m) ≤ u}.
Then the distribution functions DM converge weakly to D; as a consequence,

∫
uk dD(u) = lim

M→∞

∫
uk dDM (u).

(Compare with [2, Corollary, p. 348].) We now calculate
∫

uk dDM (u) =
1

M

∑

m≤M

(m/σ(m))k
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=
1

M

∑

d1,...,dk≤M

g(d1) · · · g(dk)
∑

m≤M
lcm[d1,...,dk]|m

1.

The final sum is M/lcm[d1, . . . , dk] + O(1), which shows that the kth moment
of DM is given by

∑

d1,...,dk≤M

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

+O

⎛

⎝ 1

M

∑

d1,...,dk≤M

|g(d1) · · · g(dk)|

⎞

⎠ . (2.2)

On each prime power pe, we find that

g(pe) =
pe

σ(pe)
− pe−1

σ(pe−1)
= − pe−1

σ(pe)σ(pe−1)
,

and so in particular, |g(pe)| < 1/pe. Consequently, |g(n)| ≤ 1/n for every n.
Hence, the error term in (2.2) is O( 1

M (1+ logM)k), which vanishes as M → ∞.
If we show that the sum (2.1) defining µk is absolutely convergent, then taking
the limit as M → ∞ in (2.2) will complete the proof of the lemma. But absolute
convergence follows immediately from the bounds

∣∣∣∣
g(d1) · · · g(dk)
lcm[d1, . . . , dk]

∣∣∣∣ ≤
1

d1 · · · dk · lcm[d1, . . . , dk]
≤

k∏

i=1

1

d1+1/k
i

,

using for the final inequality that

lcm[d1, . . . , dk] ≥ max{d1, . . . , dk} ≥ (d1 · · · dk)1/k. !

3. Proof of Theorem 1.1

The theorem is equivalent to the following proposition asserting weak conver-
gence of certain distribution functions. Let Q be an asymptotically tame set, and
let {xj}, {qj}, and {aj} be sequences satisfying the following three conditions:

(i) each xj ≥ 1, and xj → ∞ as j → ∞,

(ii) each qj ∈ Q, and both qj and xj

qj log3 xj
tend to infinity,

(iii) each aj ∈ Z.

If these conditions are satisfied, we write Aj := xj

qj log3 xj
, so that Aj → ∞ as

j → ∞.
For each j, let Dj be the distribution function defined by

Dj(u) :=
#{m ≤ xj : m ≡ aj mod qj and m

σ(m) ≤ u}
#{m ≤ xj : m ≡ aj mod qj}

. (3.1)
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3.1 As j → ∞, Dj converges weakly to D.

From Lemma 2.1, the proposition will follow if we can show that for each
fixed k,

lim
j→∞

∫
uk dDj(u) = µk,

with the µk as defined in (2.1). To begin with, we compute that

∫
uk dDj(u) =

∑
m≤xj

m≡aj mod qj

(m/σ(m))k

∑
m≤xj

m≡aj mod qj

1
. (3.2)

As j → ∞, the denominator in (3.2) is asymptotic to xj/qj. We turn now to a
study of the numerator. In what follows, we adopt the notation

m′ :=
∏

pe∥m
p|qj

pe, m′′ :=
∏

pe∥m
p!qj , p≤log3 xj

pe, m′′′ :=
∏

pe∥m
p!qj , p>log3 xj

pe;

clearly,

m = m′m′′m′′′.

First we work on an upper bound. Since m
σ(m) ≤

m′′

σ(m′′) , we have

∑

m≤xj

m≡aj mod qj

(
m

σ(m)

)k

≤
∑

m≤xj

m≡aj mod qj

(
m′′

σ(m′′)

)k

.

Recalling the definition of the arithmetic function g, we see that

∑

m≤xj

m≡aj mod qj

(
m′′

σ(m′′)

)k

=
∑

d1,...,dk≤xj

p|di⇒p≤log3 xj

gcd(di,q)=1

g(d1) · · · g(dk)
∑

m≤xj

m≡aj mod qj
lcm[d1,...,dk]|m

1.

The inner sum on the right-hand side is xj

qj lcm[d1,...,dk]
+O(1), which shows that

this last expression is

xj

qj

∑

d1,...,dk≤xj

p|di⇒p≤log3 xj

gcd(d1···dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

+O

( ∑

d1,...,dk≤xj

p|di⇒p≤log3 xj

gcd(d1···dk,qj)=1

|g(d1) · · · g(dk)|
)
. (3.3)
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To estimate the error, we recall that |g(d)| ≤ 1/d, so that

∣∣∣∣
∑

d1,...,dk≤xj

p|di⇒p≤log3 xj

gcd(d1···dk,q)=1

g(d1) · · · g(dk)
∣∣∣∣ ≤

(
∑

d≥1
p|d⇒p≤log3 xj

1

d

)k

=
∏

p≤log3 xj

(
1− 1

p

)−k

≤ (2 log4 xj)
k

once j is large. (We use Mertens’ theorem here as well as the bound eγ < 2.)
Since xj/qj = Aj log3 xj , where Aj → ∞, we see that the error term in (3.3) is
o(xj/qj). Thus,

1

xj/qj

∑

m≤xj

m≡aj mod qj

(
m′′

σ(m′′)

)k

=
∑

d1,...,dk≤xj

p|di⇒p≤log3 xj

gcd(d1···dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

+ o(1), (3.4)

as j → ∞. Referring back to (3.2) and remembering that the sum defining µk

in (2.1) converges absolutely, we deduce that

lim sup
j→∞

∫
uk dDj(u) ≤ lim sup

j→∞

∑

d1,...,dk
gcd(d1,...,dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

. (3.5)

Next, we develop an analogous lower bound. Fix a small positive ϵ, say ϵ ∈
(0, 1

2 ). We claim that the number of m ≤ xj in the progression aj mod qj for
which

m′′′

σ(m′′′)
< 1− ϵ

is o(xj/qj), as j → ∞. This claim will be deduced from an upper bound on the

product of the terms σ(m′′′)
m′′′ . For each prime power pe, we have σ(pe)

pe < p
p−1 .

Consequently,
∏

m≤xj

m≡aj mod qj

σ(m′′′)

m′′′ ≤
∏

m≤xj

m≡aj mod qj

∏

p|m
p!q

p>log3 xj

p

p− 1

= exp

( ∑

p≤xj

p!q, p>log3 xj

log
p

p− 1

∑

m≤xj

m≡aj mod qj
p|m

1

)
. (3.6)
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Note that

log
p

p− 1
= log

(
1 +

1

p− 1

)
<

1

p− 1
≤ 2

p
.

For primes p ≤ xj/qj , the inner sum in (3.6) is at most 1 + xj

qjp
≤ 2 xj

qjp
, and so

the contribution to the double sum from these primes is at most

2
xj

qj

∑

p>log3 xj

1

p
log

p

p− 1
≤ 4

xj

qj

∑

p>log3 xj

1

p2
<

xj

qj log3 xj
,

once j is large (using partial summation and the prime number theorem in the
final step). Now suppose that p is a prime not dividing qj with p > xj/qj. Then p
can divide at most one integer m ≤ xj from the progression aj mod qj , since the
difference between any two such m has the form qjℓ with ℓ ≤ xj/qj . So letting

Π :=
∏

m≤xj

m≡aj mod qj

m,

we see that ∑

p>xj/qj
p!q, p>log3 xj

log
p

p− 1

∑

m≤xj

m≡aj mod qj
p|m

1 ≤ 2
∑

p|Π

1

p
.

Now Π ≤ (xj)1+xj/qj ≤ x
2xj/qj
j , and so by the prime number theorem,

Π ≤
∏

p≤4
xj
qj

log(xj)

p.

(We assume here, as we may, that j is large.) Thus, ω(Π) is at most the total
count of primes up to 4xj

qj
log(xj), and the sum of 1

p taken over the primes

dividing Π is bounded above by the corresponding sum over the primes up to
4xj

qj
log(xj). As a consequence,

2
∑

p|Π

1

p
≤ 2

∑

p≤4
xj
qj

log(xj)

1

p
≤ 2 log log(4

xj

qj
log(xj)) +O(1)

≤ 2 log2(xj/qj) + 2 log3 xj +O(1).

Collecting our estimates and referring back to (3.6), we find that

∏

m≤xj

m≡aj mod qj

σ(m′′′)

m′′′ ≪ exp

(
xj

qj log3 xj

)
(log(xj/qj))

2(log2 xj)
2.
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On the other hand, whenever m′′′

σ(m′′′) < 1− ϵ, we have σ(m′′′)
m′′′ > 1+ ϵ; hence, the

number of these m ≤ x is at most

log
∏

m≤xj

m≡aj mod qj

σ(m′′′)
m′′′

log(1 + ϵ)
≪ϵ 1 +

xj

qj log3 xj
+ log2 (xj/qj) + log3 xj .

The first three terms on the right-hand side are clearly o(xj/qj) as j → ∞. The
last one is also, since xj/qj = Aj log3 xj , where Aj → ∞. This proves the claim.

Now recalling the tameness assumption and the identity σ(qj)
qj

=
∑

d|qj
1
d , we

get that

m′

σ(m′)
≥
∏

p|qj

(
1− 1

p

)
≥ 1−

∑

p|qj

1

p
≥ 1−

(
σ(qj)

qj
− 1

)
= 1− o(1)

as j → ∞, uniformly in m. In particular, once j is large, we always have

m′

σ(m′)
≥ 1− ϵ.

Using ∗ for a sum restricted to m having m′′′

σ(m′′′) > 1 − ϵ, we deduce that for
large j,

∑

m≤xj

m≡aj mod qj

(
m

σ(m)

)k

≥
∑∗

m≤xj

m≡aj mod qj

(
m′

σ(m′)

)k ( m′′

σ(m′′)

)k ( m′′′

σ(m′′′)

)k

≥ (1− ϵ)2k
∑∗

m≤xj

m≡aj mod qj

(
m′′

σ(m′′)

)k

.

The final restricted sum differs from the corresponding unrestricted sum by at
most o(xj/qj), since the restriction only removes o(xj/qj) terms (by our earlier
claim), each of which is nonnegative and at most 1. Thus,

lim inf
j→∞

∫
uk dDj(u) = lim inf

j→∞

∑
m≤xj

m≡aj mod qj

(m/σ(m))k

xj/qj

≥ (1− ϵ)2k · lim inf
j→∞

∑
m≤xj

m≡aj mod qj

(m′′/σ(m′′))k

xj/qj
.
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Since ϵ may be taken arbitrarily small, the last inequality remains valid without
the factor of (1 − ϵ)2k. Now referring back to (3.4), we find that

lim inf
j→∞

∫
uk dDj(u) ≥ lim inf

j→∞

∑

d1,...,dk
gcd(d1···dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

. (3.7)

Comparing (3.5) and (3.7), we see that our proposition will be proved if we show
that

lim
j→∞

∑

d1,...,dk
gcd(d1···dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

=
∑

d1,...,dk

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

.

Using once again that |g(d)| ≤ 1/d for all d, we see that
∣∣∣∣∣∣∣∣

∑

d1,...,dk

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

−
∑

d1,...,dk
gcd(d1···dk,qj)=1

g(d1) · · · g(dk)
lcm[d1, . . . , dk]

∣∣∣∣∣∣∣∣

≤
∑

p|qj

k∑

i=1

∑

d1,...,dk
p|di

1

d1 · · · dk · lcm[d1, . . . , dk]
.

Writing di = pd′i, the inner summand is at most

1

pd1 · · · di−1d′idi+1 · · · dklcm[d1, · · · , di−1, d′i, di+1, · · · , dk]
,

and so the triple sum is crudely bounded above by

k

⎛

⎝
∑

p|qj

1

p

⎞

⎠
∑

d1,...,dk

1

d1 · · · dk · lcm[d1, . . . , dk]

≤ k

(
σ(qj)

qj
− 1

) ∑

d1,...,dk

1

(d1 · · · dk)1+1/k
= k

(
σ(qj)

qj
− 1

)
ζ(1 + 1/k)k.

But as j → ∞, the final expression tends to 0 by the tameness hypothesis. This
completes the proof.

Optimality

We might wonder whether, instead of assuming that x
q log3 x → ∞, we can get

by with the weaker assumption that x
q log3 x is sufficiently large. Equivalently, we

might wonder whether there is a large absolute constant A so that Proposition
3.1 is true with condition (ii) replaced by

9



PAUL POLLACK

(ii′) each qj ∈ Q, qj → ∞, and each qj ≤ xj

A log3 xj
.

But this is not so. To see this, it is enough to show that no matter how large A is
taken, there is an asymptotically tame set Q and sequences {xj}, {qj}, and {aj}
satisfying conditions (i), (ii′), and (iii) for which the corresponding distribution
functions Dj , as defined in (3.1), do not converge weakly to D. In fact, we will
show that these conditions do not even guarantee that the first moments of
Dj approach the first moment of D. The argument is closely analogous to one
presented by Erdős in detail (see [5, p. 532]), and so we only outline it.

• We let Q be the set of natural numbers q whose smallest prime factor
exceeds 1

10 log q. Each q ∈ Q satisfies

1 ≤ σ(q)

q
≤ exp

⎛

⎝
∑

p|q

1

p− 1

⎞

⎠ ≤ exp

(
20ω(q)

log q

)
.

Since the maximal order of ω(q) is log q/ log log q (cf. [7, p. 471]), the set
Q is asymptotically tame.

• Let {xj} be a sequence that tends to infinity. We will also assume at
various points that all of the xj are sufficiently large (possibly depending
on A). For each j, let t = tj = ⌊log3 xj⌋, and choose squarefree numbers
nj,1, nj,2, . . . , nj,t−1, all supported on disjoint subsets of the primes in
(log3 xj ,

1
10 log xj ] and satisfying

nj,i

σ(nj,i)
≤ e−9/10.

Since
∑

log3 xj<p≤ 1
10 log xj

log p
σ(p) ∼ − log3 xj , this is easily seen to be pos-

sible by employing a greedy construction.

• Choose qj with
xj

2A log3 xj
< qj <

xj

A log3 xj
(3.8)

as a solution to the system of simultaneous congruences

qj ≡ 1 mod
∏

p≤ 1
10 log xj

p!nj,1nj,2···nj,t−1

p,

and iqj + 1 ≡ 0 mod nj,i (for 1 ≤ i < tj).

(Note that i < log3 xj , so that i is invertible modulo nj,i.) The Chi-

nese remainder theorem lets us to do this, since
∏

p≤ 1
10 log xj

p ≤ x1/5
j <

xj/(2A log3 xj).
Each qj has smallest prime factor > 1

10 log xj >
1
10 log qj , and so qj ∈ Q.

10



EQUIDISTRIBUTION MOD q OF ABUNDANT AND DEFICIENT NUMBERS

• Finally, we choose each aj = 1. This finishes the selection of the set Q and
the sequences {xj}, {qj}, and {aj}.

• Despite (i), (ii′), and (iii) all being satisfied, the first moments of the Dj

turn out to be too small. To make this precise, let ∆ be the first moment
of D, so that

∆ =
∏

p

( ∞∑

e=1

g(pe)/pe
)

≈ 0.67.

Then we can show that

lim sup
j→∞

1

xj/qj

∑

m≤xj

m≡1 mod qj

m

σ(m)
< ∆. (3.9)

Note that the left-hand side here is the lim sup of the first moments of the
Dj.

To see why (3.9) holds, observe that we have rigged the behavior of
the first several terms of the sum. Indeed, all of the terms 1 < m <
tjqj that appear have the form m = iqj + 1 for some 1 ≤ i < tj , and
so m/σ(m) ≤ e−9/10. Thus, these terms contribute at most e−9/10tj to
the sum. We bound the contribution of the terms m > tjqj by replacing
m/σ(m) with m′′/σ(m′′) and mimicking the upper bound argument of the
theorem. (Note that it was not important there that A → ∞.) We find
that the remaining terms make a contribution to the sum of size at most
(xj/qj − tj)∆ + o(xj/qj). Piecing everything together, we find that the
left-hand side of (3.9) is at most

lim sup
j→∞

(
e−9/10 tj

xj/qj
+∆

(
1− tj

xj/qj

))
.

The expression inside the lim sup is a weighted average (convex combina-
tion) of e−9/10 ≈ 0.41 and ∆ ≈ 0.67; moreover, the coefficient of e−9/10

in this convex combination is ≫A 1, because of (3.8). This is enough to
guarantee that the rigged terms skew the lim sup in (3.9) below ∆.

4. Proof of Theorem 1.2

We begin by quoting the following version of Burgess’s character sum esti-
mate, a proof of which can be found in the text of Iwaniec and Kowalski [9, pp.
327–329].

11
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4.1 Let p be a prime, and let χ be a nontrivial Dirichlet character mod
p. Let M and N be integers with N > 0, and let r be a positive integer. Then

∑

M<n≤M+N

χ(n) ≪ N1− 1
r p

r+1
4r2 (log p)

1
r .

Here the implied constant is absolute.

We will also need the following result expressing the characteristic function
of the primitive roots modulo p in terms of Dirichlet characters (see [3, Lemma
5]).

4.2 Let p be a prime number. For each integer m, let

ξ(m) =
ϕ(p− 1)

p− 1

⎛

⎜⎜⎝χ0(m) +
∑

d|p−1
d>1

µ(d)

ϕ(d)

∑

χ of order d

χ(m)

⎞

⎟⎟⎠ ,

where χ0 denotes the principal character mod p and the sum on χ is over those
characters of exact order d. Then ξ(m) = 1 if m is a primitive root mod p, and
ξ(m) = 0 otherwise.

We can now commence the proof of Theorem 1.2. For each prime p, let X =
p

1
4+ϵ and introduce the distribution function

Dp(u) :=
#{primitive roots 1 ≤ m ≤ X : m

σ(m) ≤ u}
#{primitive roots 1 ≤ m ≤ X} .

We will show that for each fixed positive integer k, the kth moment of Dp

converges to the kth moment µk of Davenport’s distribution function D, as
p → ∞. We start by writing
∫

uk dDp(u) =
1

#{primitive roots 1 ≤ m ≤ X}
∑

m≤X
m primitive root

(
m

σ(m)

)k

.

(4.1)
In [3], it is shown that the count of primitive roots in [1, X ] is asymptotic to
ϕ(p−1)
p−1 X as p → ∞, and so we focus our attention on the estimation of the sum

in (4.1). Using ξ for the function defined in Lemma 4.2,

∑

m≤X
m primitive root

(
m

σ(m)

)k

=
∑

m≤X

ξ(m)

(
m

σ(m)

)k

,

12
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which can be expanded as

ϕ(p− 1)

p− 1

⎛

⎜⎜⎝
∑

m≤X
p!m

(
m

σ(m)

)k

+
∑

d|p−1
d>1

µ(d)

ϕ(d)

∑

χ of order d

∑

m≤X

χ(m)

(
m

σ(m)

)k

⎞

⎟⎟⎠ .

(4.2)
Applying Lemma 4.1, with r a parameter to be chosen momentarily, we get

∑

m≤X

χ(m)

(
m

σ(m)

)k

=
∑

m≤X

χ(m)

⎛

⎝
∑

d|m

g(d)

⎞

⎠
k

=
∑

d1,...,dk≤X

g(d1) · · · g(dk)χ(lcm[d1, . . . , dk])
∑

n≤ X
lcm[d1,...,dk]

χ(n)

≪ X1− 1
r p

r+1
4r2 (log p)1/r

∑

d1,...,dk≤X

|g(d1)| · · · |g(dk)|
lcm[d1, . . . , dk]1−

1
r

.

We now assume that r ≥ 2. Using that each |g(di)| ≤ 1/di and that

lcm[d1, . . . , dk] ≥ (d1 . . . dk)
1/k,

we find that the remaining sum on the di is Ok(1). Since there are precisely ϕ(d)
characters χ of order d, we deduce that

∑

d|p−1
d>1

µ(d)

ϕ(d)

∑

χ of order d

∑

m≤X

χ(m)

(
m

σ(m)

)k

≪k X1− 1
r p

r+1
4r2 (log p)1/r

∑

d|p−1

|µ(d)|

= (2ω(p−1)(log p)1/rp−
ϵ
r+

1
4r2 )X.

Now choosing r := max{2, 1 + ⌊(4ϵ)−1⌋}, we obtain after a quick computation
that this last expression is Oϵ(X1−δ) for a certain δ = δ(ϵ) > 0.

Moreover,
∑

m≤X(m/σ(m))k ∼ µkX as p → ∞. Removing the terms in this

sum with m divisible by p (which appear only when ϵ ≥ 3
4 ) changes the sum by

O(X/p), which is o(X) as p → ∞. Hence,

∑

m≤X
p!m

(
m

σ(m)

)k

∼ µkX.

Piecing things together, we conclude that the initial sum in (4.2) is asymptotic

to ϕ(p−1)
p−1 µkX as X → ∞. Combining this with our earlier estimate for the

13



PAUL POLLACK

denominator in (4.1), we see that the kth moment of Dp tends to µk as p → ∞,
as desired.

5. Concluding remarks

Narkiewicz has called a set of integers weakly equidistributed modulo q if the
elements of the set that are coprime to q are uniformly distributed among the
coprime residue classes modulo q. (See, for example, [12].) Suppose that u ∈ (0, 1]
is fixed. Then the elements of D(u;x) become weakly equidistributed modulo
each fixed q, as x → ∞. More precisely, for every fixed coprime residue class
a mod q,

#{m ≤ x : m ≡ a mod q,
m

σ(m)
≤ u} ∼

1

ϕ(q)
#{m ≤ x : gcd(m, q) = 1,

m

σ(m)
≤ u}, (5.1)

as x → ∞. The weaker verison of this claim, where logarithmic density takes the
place of natural density, is a consequence of [6, Lemma 1.17, p. 61]. A full proof
of (5.1) can be obtained either through the method of moments or by the more
concrete methods of [11]. In fact, the moments argument is used in [14, Lemma
2.2] to show that the limiting proportion of m with m/σ(m) ≤ u from a fixed
residue class a mod q is the same for all classes a mod q sharing the same value
of gcd(a, q).

Somewhat frustratingly, none of the methods alluded to in the last paragraph
seem well-suited to establishing an analogue of Theorem 1.1, i.e., showing that
for fixed u > 1, the asymptotic relation (5.1) holds uniformly in a wide range of
q. Some care will be necessary to formulate the right conjecture here; Iannucci
[8] has shown that if q is the product of the primes up to (logx)1/2+ϵ, so that
q ≈ exp((log x)1/2+ϵ), then the interval [1, x] contains no abundant numbers
relatively prime to q.
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