
ON RELATIVELY PRIME AMICABLE PAIRS

PAUL POLLACK

Abstract. An amicable pair consists of two distinct numbers N and M each of which is
the sum of the proper divisors of the other. For example, 220 and 284 form such a pair, as
do 9773505 and 11791935. While over ten million such pairs are known, we know of no pair
where N and M are relatively prime. Artjuhov and Borho have shown (independently) that
if one fixes an upper bound on the number of distinct prime factors of NM , then there are
only finitely many such coprime amicable pairs. We prove the following entirely explicit (but
impractical) upper bound: If N and M form a coprime amicable pair with ω(NM) = K, then

NM < (2K)2
K2

.

1. Introduction

Distinct positive integers N and M are said to form an amicable pair if each is the sum of the
proper divisors of the other; equivalently, σ(N) = σ(M) = M+N . Here σ(·) denotes the usual
sum-of-divisors function. The smallest amicable pair, consisting of the numbers 220 and 284,
was known already to the Pythagoreans (ca. 500 BCE). The extensive lore surrounding these
numbers is entertainingly recounted in Dickson’s History [Dic66, Chapter I], while a thorough
account of modern developments can be found in the survey of Garcia, Pedersen, and te Riele
[GPtR04].

In his 1917 dissertation [Gme17], Otto Gmelin noted that N and M share a nontrivial com-
mon factor in all the 62 then-known amicable pairs, and he conjectured somewhat cautiously
that this was a universal phenomenon. Today, we know more than 10 million amicable pairs
[Ped], none of which violate Gmelin’s hypothesis. (In fairness, it must be admitted that many
of these pairs are constructed by methods that could never produce a coprime pair.) While the
empirical evidence is reasonably compelling, there seems to be no plausible strategy at present
for proving Gmelin’s conjecture.

A natural line of attack is to assume that there is such a pair and see what can be proved
about it. From work of Hagis [Hag69, Hag70], we know that any such pair N,M has NM >
1067. In fact, if N and M are assumed to have opposite parity, then 1067 can be replaced with
10121. Hagis also showed [Hag72, Hag75] that

(1) ω(N) + ω(M) ≥ 22

for any coprime amicable pair. Here ω(·) is the arithmetic function which returns the number
of distinct prime factors of its argument.

Borho [Bor74a, pp. 186–188] and Artjuhov [Art75] have each proven theorems implying
that no matter what number is taken to replace 22, the number of coprime amicable pairs for
which (1) fails is finite (see also the exposition [Pol12]). Neither author gives an explicit bound
on the largest possible failure. Here we establish the following result.

Theorem 1. Suppose that N and M form a relatively prime amicable pair with ω(NM) = K.
Then

NM < (2K)2
K2

.
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Remark. If we count prime factors with multiplicity, then the analogous problem is substantially
simpler. Borho [Bor74b] has a one-page proof that an amicable pair N,M (not assumed

coprime) with Ω(NM) = K has NM < K2K .

The theme taken up in this paper has a parallel in the theory of odd perfect numbers.
Already in 1913, Dickson [Dic13] showed that for each fixed K, there are at most finitely many
odd perfect N with ω(N) = K. More than sixty years later, an explicit upper bound for N in
terms of K was given by Pomerance [Pom77]. Pomerance’s result was subsequently improved
by Heath-Brown [HB94], Cook [Coo99], and Nielsen [Nie03]. Our proof of Theorem 1 is based
on the method of Pomerance; it would be interesting to know if one can adapt the work of
Heath-Brown and subsequent authors to obtain a sharper version of Theorem 1.

It is natural to ask whether one can prove a result in the same spirit as Theorem 1 where
the coprimality condition on N and M is relaxed. The final section reports on some partial
progress in this direction.

Notation. The letters p and q are reserved throughout for prime variables.

Suppose that n has the prime factorization
∏k

i=1 p
ei
i , where p1 < p2 < · · · < pk. We say d is

a prefix of n if d =
∏

0≤i≤j p
ei
i for some j = 0, 1, 2, . . . , k; we then write d |∗ n. For example,

2 |∗ 90 and 18 |∗ 90, but 6 -∗ 90 and 45 -∗ 90. The components of n are the prime powers pe11 ,
pe22 , . . . , pekk . We say that d is a unitary divisor of n if d is a product of some subset of the
components of n; equivalently, n = dd′ with gcd(d, d′) = 1. We then write d ‖ n.

We write h(n) for the multiplicative function σ(n)/n, so that on prime powers pe, we have
h(pe) = 1 + 1/p + · · · + 1/pe. We extend the domain of h to formal expressions of the form∏

p p
ep , where each ep ∈ {0, 1, 2, . . . } ∪ {∞} and ep = 0 for all but finitely many p, by putting

h(
∏

pep) :=
∏
p

h(pep), where h(p∞) := lim
e→∞

h(pe) =
p

p− 1
.

For example, h(2 · 3∞ · 5) = 3
2 ·

3
2 ·

6
5 . Note that for each prime p, the values h(pe) are strictly

increasing for 0 ≤ e ≤ ∞. In what follows, we make crucial use of the observation that for any
amicable pair N and M ,

1

h(N)
+

1

h(M)
=

N

σ(N)
+

M

σ(M)
=

N

N +M
+

M

N +M
= 1.

2. Proof of Theorem 1

2.1. An initial reduction. We begin by reducing the proof of Theorem 1 to the problem of
explicitly bounding above the largest prime factor of NM . This is accomplished by means of
the following lemma, which is valid without any coprimality assumption.

Lemma 2. Let K and B be integers with K ≥ 0 and B ≥ 2. Suppose that N and M form an
amicable pair, that ω(N) + ω(M) = K, and that every prime dividing NM is bounded by B.
Then

NM ≤ (KBK)2
K−1.

Remark. In particular, taking K = 2π(B) gives an explicit upper bound on all amicable pairs
for which NM has each of its prime factors bounded by B.

Proof. The lemma holds vacuously when K = 0, so we suppose that K > 0. We give
an inductive procedure for successively discovering bounded components of N and M . Let
(N0,M0) := (N,M) and (N ′0,M

′
0) := (1, 1). Suppose 0 ≤ i < K, that NiN

′
i = N , MiM

′
i = M ,

that gcd(Ni, N
′
i) = gcd(Mi,M

′
i) = 1, and that ω(N ′i) + ω(M ′i) = i. Assume, moreover, that

N ′iM
′
i ≤ bi, where bi := (KBK)2

i−1.

(This certainly holds when i = 0.) Since N and M form an amicable pair, we have

(2)
1

h(Ni)h(N ′i)
+

1

h(Mi)h(M ′i)
= 1.



ON RELATIVELY PRIME AMICABLE PAIRS 3

Since ω(Ni) + ω(Mi) = K − i > 0, either Ni > 1 or Mi > 1. So either h(
∏

p|Ni
p∞) > h(Ni) or

h(
∏

p|Mi
p∞) > h(Mi). Hence,

1 >
1

h(
∏

p|Ni
p∞)h(N ′i)

+
1

h(
∏

p|Mi
p∞)h(M ′i)

=

∏
p|Ni

(p− 1)∏
p|Ni

p

N ′i
σ(N ′i)

+

∏
p|Mi

(p− 1)∏
p|Mi

p

M ′i
σ(M ′i)

.(3)

Letting

D :=

∏
p|Ni

p

∏
p|Mi

p

σ(N ′i)σ(M ′i),

we see that the right-hand-side of (3) is at most 1−1/D. Comparing with (2), we deduce that
either

(4)
1

h(Ni)h(N ′i)
− 1

h(
∏

p|Ni
p∞)h(N ′i)

≥ 1

2D
,

or that the analogous inequality holds with Ni and N ′i replaced by Mi and M ′i (respectively).
The second case works out similarly to the first, so we assume that (4) holds. We find that

1

2D
≤ 1

h(Ni)h(N ′i)

(
1− h(Ni)

h(
∏

p|Ni
p∞)

)
≤ 1− h(Ni)

h(
∏

p|Ni
p∞)

= 1−
∏
pe‖N

(
1− 1

pe+1

)
≤
∑
pe‖n

1

pe+1
.

In the final step, we use the inequality
∏

(1− tj) ≥ 1−
∑
tj valid for real numbers 0 ≤ tj ≤ 1.

Since the final sum on pe has at most K terms, there must be a prime power pe ‖ Ni with

pe+1 ≤ 2DK.

Now put Ni+1 := Ni/p
e, N ′i+1 := Ni · pe, and leave Mi and M ′i unchanged. (Of course,

had we been in the second case above, the roles of the Ns and Ms would be reversed.) Then
N = Ni+1N

′
i+1, M = Mi+1M

′
i+1, gcd(Ni+1, N

′
i+1) = gcd(Mi+1,M

′
i+1) = 1, and ω(N ′i+1) +

ω(M ′i+1) = i + 1. Moreover, the only new component introduced in N ′i+1 or M ′i+1 is pe. To
bound the size of pe, notice that

D ≤ Bω(Ni)+ω(Mi)σ(N ′i)σ(M ′i)

≤ Bω(Ni)+ω(Mi)2ω(N
′
i)+ω(M ′i)N ′iM

′
i ≤ BKN ′iM

′
i ,

using in the second inequality that σ(qf ) < 2qf for each prime power qf . Thus,

pe ≤ 1

2
pe+1 ≤ DK ≤ KBK ·N ′iM ′i .

Hence,

N ′i+1M
′
i+1 = peN ′iM

′
i ≤ (KBK) · (N ′iM ′i)2 ≤ KBK · b2i = (KBK)2

i+1−1 = bi+1.

This shows that if our opening assumptions hold at step i, then they continue to hold at step
i+ 1. Following the induction through to the end, we obtain that

NM = N ′KM
′
K ≤ bK = (KBK)2

K−1,

precisely as asserted in the lemma. �
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2.2. The proof proper. Another induction argument is needed to bound the primes dividing
NM . This requires several new pieces of notation. If N0 and M0 are any positive integers, let

A (N0,M0) := {(n,m) : N = N0n,M = M0m form a coprime amicable pair,

gcd(N0, n) = gcd(M0,m) = 1}.

For each integer K ≥ 0, put

A (N0,M0)(K) := {(n,m) ∈ A (N0,M0) : ω(nm) = K}.

For integers 0 ≤ k ≤ K, set

A (N0,M0)(K, k) := {(n1,m1) : ω(n1m1) = k, there exists (n,m) ∈ A (N0,M0)(K)

where n1 ‖ n,m1 ‖ m, and n1m1 |∗ nm}.

Put

P(N0,M0)(K, k) := {p : p | n1m1 for some (n1,m1) ∈ A (N0,M0)(K, k)}.
Finally, let

R(N0,M0)(K, k) :=

{
1

h(N0)h(n1)
+

1

h(M0)h(m1)
− 1 : (n1,m1) ∈ A (N0,M0)(K, k)

}
.

Our plan is to obtain an explicit upper bound on P(N0,M0)(K, k) valid in essentially the entire
space of possible parameters N0,M0,K, k. Taking N0 = M0 = 1 and k = K will then yield a
value of B that can be inserted into Lemma 2.

In what follows, we useR(N0,M0)(K, k) for an explicit positive lower bound on R(N0,M0)(K, k),

and we write P (N0,M0)(K, k) for an explicit upper bound on P(N0,M0)(K, k).

Lemma 3. Let K ≥ 1. Then for any N0 and M0, we can choose

R(N0,M0)(K, 0) =
1

σ(N0)σ(M0)
.

Proof. If the set A (N0,M0)(K, 0) is empty, then the lemma is trivial. Otherwise, there is a
coprime amicable pair of the form N := N0n, M := M0m with gcd(N0, n) = gcd(M0,m) = 1
and ω(nm) = K ≥ 1. The last condition shows that either h(N0) < h(N) or h(M0) < h(M).

Now (n1,m1) = (1, 1) is the only element of A (N0,M0)(K, 0), and

0 =
1

h(N)
+

1

h(M)
− 1 <

1

h(N0)h(1)
+

1

h(M0)h(1)
− 1

=
N0

σ(N0)
+

M0

σ(M0)
− 1.

Since this final expression is a positive rational number with denominator σ(N0)σ(M0), it is
bounded below by 1/(σ(N0)σ(M0)). �

Lemma 4. Let K ≥ 1, and suppose that 0 ≤ k < K. For any valid choice of R(N0,M0)(K, k),
we can take

P (N0,M0)(K, k + 1) =
2K

R(N0,M0)(K, k)
.

Proof. Suppose that (n1,m1) ∈ A (N0,M0)(K, k + 1). Choose n2 and m2 coprime to N0n1 and
M0m1 respectively, for which N = N0n1n2 and M = M0m1m2 form a coprime amicable pair,
and where n1m1 |∗ n1m1n2m2.

Let p be the largest prime dividing n1m1. We will assume that p | n1; the case when p | m1

is similar. Say pe ‖ n1. Then (n1/p
e,m1) ∈ A (N0,M0)(K, k), and so

1

h(N0)h(n1/pe)
+

1

h(M0)h(m1)
− 1 ≥ R(N0,M0)(K, k).
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On the other hand,

1

h(N0)h(n1/pe)h(pen2)
+

1

h(M0)h(m1)h(m2)
− 1 = 0.

Comparing the last two displays, we conclude that either

1

h(N0)h(n1/pe)

(
1− 1

h(pen2)

)
≥ 1

2
R(N0,M0)(K, k)

or
1

h(M0)h(m1)

(
1− 1

h(m2)

)
≥ 1

2
R(N0,M0)(K, k).

In the first case, let ` = pen2 and in the second, let ` = m2. Since n1m1 |∗ n1m1n2m2 and p is
the largest prime factor of n1m1, we see that every prime dividing ` is at least p. Thus,

1

2
R(N0,M0)(K, k) ≤ 1− 1

h(`)
≤ 1− 1

h(
∏

q|` q
∞)

= 1−
∏
q|`

(
1− 1

q

)
≤
∑
q|`

1

q
≤ K

p
.

Hence, p ≤ 2K/R(N0,M0)(K, k), as desired. �

Lemma 5. Let K ≥ 2. Suppose it is known that for all choices of N0 and M0, all integers
0 ≤ k < K − 1, and all valid choices of P (N0,M0)(K − 1, j) for 1 ≤ j ≤ k, we may choose

(5) R(N0,M0)(K − 1, k) =
1

(2(K − 1) · σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K − 1, j))2k

.

Then for all N0 and M0, all integers 0 ≤ k < K, and all valid choices of P (N0,M0)(K, j) for
1 ≤ j ≤ k, we may choose

(6) R(N0,M0)(K, k) =
1

(2K · σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j))2k

.

Remark. When K = 2, the only integer with 0 ≤ k < K− 1 is k = 0. In this case, the product
over j in (5) is empty (and to be understood as 1), and the permissibility of choosing (5) is
immediate from Lemma 3.

Proof. When k = 0, (6) follows from Lemma 3, so we assume that 1 ≤ k < K. We let (n1,m1)

be an arbitrary element of A (N0,M0)(K, k) and we show that the right-hand-side of (6) serves
as a lower bound on 1

h(N0)h(n1)
+ 1

h(M0)h(m1)
− 1. We consider three cases based on the sign of

the expresion

(7)
1

h(N0)h(
∏

p|n1
p∞)

+
1

h(M0)h(
∏

p|m1
p∞)

− 1.

Case I. (7) is positive.
One can write (7) as a rational number with denominator σ(N0)σ(M0)

∏
p|n1m1

p. Stripping

components off of n1 and m1 corresponding to the largest primes, we successively obtain
elements of A (N0,M0)(K, k − 1), A (N0,M0)(K, k − 2), . . . , and A (N0,M0)(K, 1). Consequently,∏

p|n1m1

p ≤
k∏

j=1

P (N0,M0)(K, j).

Hence,

1

h(N0)h(n1)
+

1

h(M0)h(m1)
− 1 ≥ 1

h(N0)h(
∏

p|n1
p∞)

+
1

h(M0)h(
∏

p|m1
p∞)

− 1

≥ 1

σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j)

,



6 PAUL POLLACK

which is certainly at least as large as the right-hand side of (6).

Case II. (7) is negative.
In this case, our above estimate of the denominator in (7) yields

1

h(N0)h(
∏

p|n1
p∞)

+
1

h(M0)h(
∏

p|m1
p∞)

− 1 ≤ − 1

σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j)

.

Since 1
h(N0)h(n1)

+ 1
h(N0)h(m1)

− 1 ≥ 0, we see that either

(8)
1

h(N0)h(n1)

(
1− h(n1)

h(
∏

p|n1
p∞)

)
≥ 1

2σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j)

or that the analogous inequality holds with N0 and n1 replaced by M0 and m1. We will assume
that (8) holds, since the other case is similar. Then

1

2σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j)

≤ 1− h(n1)

h(
∏

p|n1
p∞)

= 1−
∏
pe‖n1

(
1− 1

pe+1

)
≤
∑
pe‖n1

1

pe+1
.

Since there are at most K terms in the final sum, there is a prime power pe ‖ n1 with

pe+1 ≤ 2Kσ(N0)σ(M0)
k∏

j=1

P (N0,M0)(K, j).

Now (n1/p
e,m1) ∈ A(N0pe,M0)(K − 1, k − 1), and so from (5),

(9)
1

h(N0)h(n1)
+

1

h(M0)h(m1)
− 1 =

1

h(N0pe)h(n1/pe)
+

1

h(M0)h(m1)
− 1

≥ R(N0pe,M0)(K − 1, k − 1) ≥ 1

(2(K − 1)σ(N0pe)σ(M0)
∏k−1

j=1 P
(N0pe,M0)(K − 1, j))2k−1

.

It is permissible to choose P (N0pe,M0)(K − 1, j) = P (N0,M0)(K, j + 1); this comes from the
existence of the well-defined map

A (N0pe,M0)(K − 1)→ A (N0,M0)(K)

(n′,m′) 7→ (n′pe,m′),

and the fact that the smallest j prime factors of n′ are among the smallest j + 1 prime factors
of n′pe. Hence, the final denominator in (9) is at most2K · σ(N0)σ(M0)

k∏
j=2

P (N0,M0)(K, j)

2k−1

· σ(pe)2
k−1

≤

2K · σ(N0)σ(M0)

k∏
j=2

P (N0,M0)(K, j)

2k−1

·

2K · σ(N0)σ(M0)
k∏

j=1

P (N0,M0)(K, j)

2k−1

,

which in turn is bounded above by2K · σ(N0)σ(M0)

k∏
j=1

P (N0,M0)(K, j)

2k

.
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Thus,

1

h(N0)h(n1)
+

1

h(M0)h(m1)
− 1 ≥ 1

(2K · σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j))2k

.

This is again acceptable for us.

Case III. (7) vanishes.
In fact, this case never occurs. To see this, choose a coprime amicable pair N = N0n and

M = M0m where gcd(N0, n) = gcd(M0,m) = 1, n1 ‖ n, m1 ‖ m, and n1m1 |∗ nm. If (7)
vanishes, then multiplying through by σ(N0)σ(M0)

∏
p|n1m1

p yields

N0σ(M0)
∏
p|n1

(p− 1)
∏
p|m1

p+M0σ(N0)
∏
p|m1

(p− 1)
∏
p|n1

p = σ(N0)σ(M0)
∏

p|n1m1

p.

Let q be the largest prime dividing n1m1. We suppose for simplicity that q | n1; the case when
q | m1 is exactly analogous. Looking modulo q, the previous displayed equation tells us that

q | N0σ(M0)
∏
p|n1

(p− 1)
∏
p|m1

p.

But q is coprime to each right-hand factor except possibly σ(M0). Thus,

q | σ(M0) | σ(M) = N +M.

Now q | n1 | n | N . Since q divides N + M , we must have that q | M . But this contradicts
that N and M are relatively prime. �

What we have shown so far has the following important consequence:

Lemma 6. Let K ≥ 0. If (n,m) ∈ A (N0,M0)(K), then every prime factor of nm is bounded
by

(2K · σ(N0)σ(M0))
2K(K+1)/2

.

Proof. This is vacuously true when K = 0, since then nm = 1. When K = 1, a stronger
estimate is immediate from Lemmas 3 and 4 (with k = 0 in the latter lemma). So assume now
that K ≥ 2.

Induction on K, with K = 2 as the base case and with Lemma 5 providing the induction
step, shows the following: Given any K ≥ 2, any 0 ≤ k < K, and any valid choices of
P (N0,M0)(K, j) for 1 ≤ j ≤ k, we may take

(10) R(N0,M0)(K, k) =
1

(2K · σ(N0)σ(M0)
∏k

j=1 P
(N0,M0)(K, j))2k

.

From Lemmas 3 and 4, an acceptable choice for P (N0,M0)(K, 1) is

2K · σ(N0)σ(M0).

Suppose that for a given k with 1 ≤ k < K, it is acceptable to choose

P (N0,M0)(K, j) = (2K · σ(N0)σ(M0))
2j(j+1)/2

for all 1 ≤ j ≤ k.
(For instance, this holds when k = 1.) From (10) and Lemma 4, we may then choose for

P (N0,M0)(K, k + 1) any number of size at least

2K

R(N0,M0)(K, k)
= (2K)

2K · σ(N0)σ(M0)

k∏
j=1

P (N0,M0)(K, j)

2k

= (2K)1+2k(1+
∑k

j=1 2
j(j+1)/2)(σ(N0)σ(M0))

2k(1+
∑k

j=1 2
j(j+1)/2).

It is straightforward to check that both exponents above are bounded by 2
(k+1)(k+2)

2 . Thus, we
may take

P (N0,M0)(K, k + 1) = (2K · σ(N0)σ(M0))
2(k+1)(k+2)/2

.
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By induction on k, we may choose

P (N0,M0)(K,K) = (2K · σ(N0)σ(M0))
2K(K+1)/2

.

But this is exactly what is asserted by the lemma. �

We are now in a position to complete the proof our main result.

Proof of Theorem 1. In view of Hagis’s result (1), we may assume that K ≥ 22. Taking
N0 = M0 = 1 in Lemma 6, we find that a coprime amicable pair N,M with ω(NM) = K has

all of its prime factors bounded by B := (2K)2
K(K+1)/2

. By Lemma 2,

NM ≤ K2K−1(2K)2
K(K+1)/2·K·(2K−1).

This upper bound is smaller than (2K)2
K2

for all K ≥ 22. �

Remark. While we have followed closely the argument used by Pomerance [Pom77] to bound
odd perfect N with ω(N) = K, our method of converting an upper bound on the prime factors
to an upper bound on the numbers themselves is more efficient than the corresponding step in
Pomerance’s argument. (A similar improvement to Pomerance’s argument was pointed out by
Nielsen; see [Nie03, Proposition 1].) This explains why our upper bound is (essentially) doubly
exponential in K2, whereas Pomerance’s published bound was triply exponential in K2.

3. Concluding remarks

The theorems of Artjuhov and Borho alluded to in the introduction operate under assump-
tions strictly weaker than the coprimality of N and M . Here we briefly sketch how to make
explicit Artjuhov’s result. If N and M form an amicable pair, we define the kernel of N,M —
denoted ∆(N,M) — to be the unitary divisor of lcm[N,M ] supported on the primes dividing
gcd(N,M). In other words,

∆(N,M) :=
∏

p|gcd(N,M)

pmax{vp(N),vp(M)},

where vp(·) is the usual p-adic valuation. We prove the following:

Theorem 7. Let N and M form an amicable pair. Suppose that ω(N) + ω(M) = K. Then

NM ≤ ∆(N,M)2
K+1

K2K−1(2B)K·(2
K−1),

where
B := (2K+1K ·∆(N,M)2)2

K(K+1)/2
.

In particular, if both K and ∆(N,M) are bounded, then there are only finitely many possibilities
for NM .

The main result of Artjuhov in [Art75] is precisely the final assertion of the theorem, without
any bound on NM .

Let S be a fixed, finite set of primes. We say that two integers are S -coprime if all of their
common prime factors lie in S . In place of the set A (N0,M0) defined in §2.2, let

Ã (N0,M0) := {(n,m) : N = N0n,M = M0m form an S -coprime amicable pair,

gcd(nm,
∏
p∈S

p) = gcd(N0, n) = gcd(M0,m) = 1}.

All of the arguments of the preceding section apply essentially verbatim; we deduce in analogy
with Lemma 6 that if (n,m) ∈ Ã (N0,M0) with ω(n) + ω(m) = K, then every prime dividing
nm is bounded above by

(11) (2K · σ(N0)σ(M0))
2K(K+1)/2

.

Now we note the following analogue of Lemma 2. The proof is completely analogous to our
earlier argument and is omitted.
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Lemma 8. Let K and B be integers with K ≥ 0 and B ≥ 2. Let N0 and M0 be positive
integers. Suppose that N = N0n and M = M0m form an amicable pair, where gcd(N0, n) =
gcd(M0,m) = 1, and where ω(n) + ω(m) = K. Suppose also that every prime dividing nm is
bounded above by B. Then

nm ≤ (KBKσ(N0)σ(M0))
2K−1.

Combining the last two results, we obtain the following:

Corollary 9. Let N0 and M0 be positive integers. Suppose that N = N0n and M = M0m
form an S -coprime amicable pair, where gcd(nm,

∏
p∈S p) = gcd(N0, n) = gcd(M0,m) = 1.

If ω(n) + ω(m) = K, then

NM ≤ N0M0 · (KBKσ(N0)σ(M0))
2K−1,

where B is given by (11).

Proof of Theorem 7. Let S be the set of primes dividing both N and M , and let N0 and M0

be the largest divisors of N and M supported on the primes in S . We can write N = N0n
and M = M0m, where gcd(N0, n) = gcd(M0,m) = gcd(nm,

∏
p∈S p) = 1. The stated bound

follows from Corollary 9, using that ω(n) + ω(m) ≤ K, that N0,M0 ≤ ∆(N,M), and that

σ(N0)σ(M0) ≤ 2ω(N0)+ω(M0)N0M0 ≤ 2K ·∆(N,M)2. �

We have not yet said anything about the theorem of Borho. In place of Artjuhov’s strong
requirement that ∆(N,M) be bounded, Borho requires only that Ω(gcd(N,M)) is bounded
(in addition, of course, to the underlying assumption that ω(N) + ω(M) is bounded). Unfor-
tunately, it is not clear how to modify the approach taken in this paper to obtain an explicit
version of Borho’s theorem.
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