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ABSTRACT. In 1992, Reid asked whether hyperbolic 3–manifolds with the same geodesic length spectra are necessar-
ily commensurable. While this is known to be true for arithmetic hyperbolic 3–manifolds, the non-arithmetic case is
still open. Building towards a negative answer to this question, Futer and Millichap recently constructed infinitely many
pairs of non-commensurable, non-arithmetic hyperbolic 3–manifolds which have the same volume and whose length
spectra begin with the same first m geodesic lengths. In the present paper, we show that this phenomenon is surprisingly
common in the arithmetic setting. In particular, given any arithmetic hyperbolic 3–orbifold derived from a quaternion
algebra, any finite subset S of its geodesic length spectrum, and any k ≥ 2, we produce infinitely many k–tuples of
arithmetic hyperbolic 3–orbifolds which are pairwise non-commensurable, have geodesic length spectra containing S,
and have volumes lying in an interval of (universally) bounded length. The main technical ingredient in our proof is a
bounded gaps result for prime ideals in number fields lying in Chebotarev sets which extends recent work of Thorner.

1. INTRODUCTION

Given a closed, negatively curved Riemannian manifold M with fundamental group π1(M), each π1(M)–conjugacy
class [γ] has a unique geodesic representative. The multi-set of lengths of these closed geodesics is called the
geodesic length spectrum and is denoted by L (M). The extent to which L (M) determines M is a basic problem
in geometry and is the main topic of the present paper. Specifically, our interest lies with the following question,
which was posed and studied by Reid [13, 14]:

Question 1. If M1,M2 are complete, orientable, finite volume hyperbolic n–manifolds and L (M1) =L (M2), then
are M1,M2 commensurable?

The motivation for this question is two-fold. First, Reid [13] gave an affirmative answer to Question 1 when n = 2
and M1 is arithmetic. In particular, if M1 is arithmetic and L (M1) = L (M2), then M1,M2 are commensurable
and hence M2 is also arithmetic as arithmeticity is a commensurability invariant. Second, the two most common
constructions of Riemannian manifolds with the same geodesic length spectra (Sunada [15], Vignéras [17]) both
produce manifolds that are commensurable. Question 1 has been extensively studied in the arithmetic setting
(i.e., when M1 is arithmetic). When n= 3, Chinburg–Hamilton–Long–Reid [3] gave an affirmative answer. Prasad–
Rapinchuk [12] later showed that the geodesic length spectrum of an arithmetic hyperbolic n–manifold determines
the manifold up to commensurability when n 6≡ 1 (mod 4) and n 6= 7. Most recently, Garibaldi [5] has confirmed
the question in dimension n = 7.

In the non-arithmetic setting (i.e., when neither M1 nor M2 is arithmetic), the relationship between the geodesic
length spectrum and commensurability class of the manifold is rather mysterious. To our knowledge, the only
explicit work in this area is Millichap [11] and Futer–Millichap [4]. In [4], which extends work from [11], Futer
and Millichap produce, for every m ≥ 1, infinitely many pairs of non-commensurable hyperbolic 3–manifolds
which have the same volume and the same m shortest geodesic lengths. Additionally, they give an upper bound
on the volume of their manifolds as a function of m. In this paper we also consider hyperbolic 3-manifolds and
orbifolds. Note that in this context we consider the complex length spectrum, which encodes both the real length
of a closed geodesic as well as the holonomy angle incurred in traveling once around the geodesic. Inspired by [4],
in this paper we consider the following question.

1



2

Question 2. Let M be an arithmetic hyperbolic 3–orbifold and S be a finite subset of the complex length spectrum
L (M) of M. What can one say about the set of hyperbolic 3–orbifolds N which are not commensurable with M
and for which L (N) contains S?

This question was previously studied by the authors in [8]. Let π(V,S) denote the maximum cardinality of a
collection of pairwise non-commensurable arithmetic hyperbolic 3–orbifolds derived from quaternion algebras,
each of which has volume less than V and geodesic length spectrum containing S. In [8], it was shown that, if
π(V,S)→ ∞ as V → ∞, then there are integers 1≤ r,s≤ |S| and constants c1,c2 > 0 such that

c1V

log(V )1− 1
2r
≤ π(V,S)≤ c2V

log(V )1− 1
2s

for all sufficiently large V . This shows that not only is it quite common for an arithmetic hyperbolic 3–orbifold
to share large portions of its geodesic length spectrum with other (non-commensurable) arithmetic hyperbolic
3–orbifolds, but that the cardinality of sets of commensurability classes of such orbifolds grows relatively fast.

A few remarks about the hypothesis that π(V,S)→ ∞ as V → ∞ are in order. In [8] a number field K (containing a
unique complex place) and collection of quadratic field extensions L1, . . . ,Lr of K were associated to S. Theorem
4.10 of [8] shows that a necessary and sufficient condition for π(V,S)→ ∞ as V → ∞ is that there exist infinitely
many quaternion algebras over K which are ramified at all real places of K and which admit embeddings of all of
the extensions Li/K. The Albert-Brauer-Hasse-Noether theorem, which characterizes when a quaternion algebra
over a number field admits an embedding of a quadratic extension, therefore implies that it is quite common for
π(V,S)→ ∞ as V → ∞. It is, however, possible for π(V,S) to be non-zero yet eventually constant. In light of the
comments above, this amounts to constructing a suitable collection of quadratic extensions of a number field K with
the property that only finitely many quaternion algebras over K admit embeddings of all of the quadratic extensions.
Examples of this were given in [7] in the context of hyperbolic surfaces. In order to construct hyperbolic 3-manifold
examples one need only apply [7, Theorem 4.2], which holds for quaternion algebras over arbitrary number fields,
to a number field K having a unique complex place.

We now state our main geometric result.

Theorem 1.1. Let M be an arithmetic hyperbolic 3–orbifold which is derived from a quaternion algebra and
let S be a finite subset of the length spectrum of M. Suppose that π(V,S) → ∞ as V → ∞. Then, for every
k ≥ 2, there is a constant C > 0 such that there are infinitely many k–tuples M1, . . . ,Mk of arithmetic hyperbolic
3–orbifolds which are pairwise non-commensurable, have length spectra containing S, and volumes satisfying∣∣vol(Mi)−vol(M j)

∣∣<C for all 1≤ i, j ≤ k.

We note that the main novelty of Theorem 1.1 compared to [8] is that we are able to impose a great amount
of control on the volumes of the orbifolds M1, . . . ,Mk. As a corollary to Theorem 1.1 we are able to show (see
Corollary 5.1) that, when M is a hyperbolic 3–manifold arising from the elements of reduced norm one in a
maximal quaternion order, the orbifolds M1, . . . ,Mk produced by Theorem 1.1 may be taken to be manifolds.

The main technical ingredient in the proof of Theorem 1.1 is a result showing that there are bounded gaps between
prime ideals in number fields which lie in certain Chebotarev sets (see Theorem 3.1). This extends a theorem of
Thorner [16]. All of these results stem from the seminal work of Zhang [18] and Maynard–Tao [10] on bounded
gaps between primes. The techniques employed by Maynard and Tao, in particular, have proven fruitful in resolv-
ing a wide array of interesting questions within number theory. The present paper is yet another example of the
impact of their ideas.

2. ARITHMETIC HYPERBOLIC 3–ORBIFOLDS

In this brief section, we review the construction of arithmetic lattices in PSL(2,C). For a more detailed treatment
of this topic, we refer the reader to [9]. Given a number field K with ring of integers OK and a K–quaternion
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algebra B, the set of places of K which ramify in B will be denoted by Ram(B). It is known that Ram(B) is a finite
set of even cardinality. The subset of Ram(B) consisting of the finite (resp. infinite) places of K which ramify in
B will be denoted by Ram f (B) (resp. Ram∞(B)). By the Albert–Brauer–Hasse–Noether theorem, if B1 and B2 are
quaternion algebras over K, then B1 ∼= B2 if and only if Ram(B1) = Ram(B2). An order of B is a subring O < B
which is finitely generated as an OK–module and with B = O⊗OK K. An order is maximal if it is maximal with
respect to the partial order induced by inclusion.

Fixing a maximal order O < B, we will denote by O1 the multiplicative group consisting of the units of O with
reduced norm 1. Via B⊗K Kν

∼= M(2,C), the image of O1 in PSL(2,C) is a discrete subgroup with finite covolume
which we will denote by Γ1

O . The group Γ1
O is cocompact precisely when B is a division algebra. A subgroup Γ

of PSL(2,C) is an arithmetic Kleinian group if it is commensurable with a group of the form Γ1
O . A hyperbolic

3–orbifold M = H3/Γ is arithmetic if its orbifold fundamental group π1(M) = Γ is an arithmetic Kleinian group.
An arithmetic hyperbolic 3–orbifold is derived from a quaternion algebra if its fundamental group is contained
in a group of the form Γ1

O .

For a discrete subgroup Γ < PSL(2,C), the invariant trace field KΓ of Γ is the field Q(tr(γ2) : γ ∈ Γ). Provided Γ

is a lattice, the invariant trace field is a number field by Weil Local Rigidity. We define BΓ to be the KΓ–subalgebra
of M(2,C) generated by

{
γ2 : γ ∈ Γ

}
. Provided Γ is non-elementary, which is the case when Γ is a lattice, BΓ is

a quaternion algebra over KΓ which is called the invariant quaternion algebra of Γ. The invariant trace field and
invariant quaternion algebra of an arithmetic hyperbolic 3–orbifold are complete commensurability class invariants
in the sense that, if Γ1 and Γ2 are arithmetic Kleinian groups, then the arithmetic hyperbolic 3–orbifolds H3/Γ1
and H3/Γ2 are commensurable if and only if KΓ1 ∼= KΓ2 and BΓ1 ∼= BΓ2 (see [9, Ch 8.4]).

3. BOUNDED GAPS BETWEEN PRIMES IN NUMBER FIELDS

For the number-theoretic background assumed in this section, we refer the reader to [6, Ch 3, §§2 – 3]. Before
stating our bounded gap result, we set some notation. Suppose that F/K is a Galois extension of number fields. By
a prime ideal of a number field, we mean a nonzero prime ideal of its ring of integers. Let P be a prime ideal of
K unramified in F , and let Q be a prime ideal of F lying above P. We let

[F/K
Q

]
∈ Gal(F/K) denote the Frobenius

automorphism associated to Q. Replacing Q with a different prime Q′ above P replaces
[F/K

Q

]
with σ

[F/K
Q

]
σ−1 for

a certain σ ∈Gal(F/K); thus, it makes sense to define the Frobenius conjugacy class
(F/K

P

)
as the conjugacy class

of
[F/K

Q

]
(inside Gal(F/K)) for an arbitrary prime Q of F lying above P.

Theorem 3.1. Let L/K be a Galois extension of number fields, let C be a conjugacy class of Gal(L/K), and let
k be a positive integer. Then, for a certain constant c = cL/K,C ,k, there are infinitely many k–tuples P1, . . . ,Pk of
prime ideals of K for which the following hold:

(i)
(L/K

P1

)
= · · ·=

(L/K
Pk

)
= C ,

(ii) P1, . . . ,Pk lie above distinct rational primes,
(iii) each of P1, . . . ,Pk has degree 1,
(iv) |N(Pi)−N(Pj)| ≤ c, for each pair of i, j ∈ {1,2, . . . ,k}.

When K = Q, Theorem 3.1 was proved by Thorner [16]. The following proposition allows us to reduce to that
case.

Proposition 3.2. Let L/K be a Galois extension of number fields, let C be a conjugacy class of Gal(L/K), and
let F be the Galois closure of L/Q. There is a conjugacy class C ′ of Gal(F/Q) for which the following holds. If
p ∈ N is a prime for which

(F/Q
p

)
= C ′, then there is a prime ideal P of K lying above p for which

(i)
(L/K

P

)
= C ,

(ii) N(P) = p.
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Proof. The Chebotarev density theorem guarantees that a positive proportion of the prime ideals P of K satisfy(L/K
P

)
= C . Since almost all prime ideals of K have degree 1 and only finitely many rational primes ramify in F ,

we may fix a prime ideal P0 of K with
(L/K

P0

)
=C , with P0 having degree 1, and with P0∩Z = p0Z (say) unramified

in F . Let Q0 be a prime ideal of F lying above P0. We claim that C ′ =
(F/Q

p0

)
has the desired properties. Indeed,

suppose that p is a rational prime with
(F/Q

p

)
= C ′. (Note that there exist infinitely many such primes by the

Chebotarev density theorem.) Since
(F/Q

p

)
=

(F/Q
p0

)
and

(F/Q
p0

)
is the conjugacy class of

[F/Q
Q0

]
, we may choose a

prime ideal Q of F lying above p with
[F/Q

Q

]
=

[F/Q
Q0

]
. Setting P = Q0 ∩OK , we see that P is a prime ideal of K

lying above p.

We proceed to show that (i) and (ii) hold for this choice of P. Note first that, with f (·/·) denoting the inertia degree
and D(·/·) denoting the decomposition group,

(1) f (P/p) =
f (Q/p)
f (Q/P)

=
|D(Q/p)|
|D(Q/P)|

=
|D(Q/p)|

|(D(Q/p)∩Gal(F/K))|
.

Similarly,

(2) f (P0/p0) =
|D(Q0/p0)|

|(D(Q0/p0)∩Gal(F/K))|
.

Now, D(Q/p) is cyclic and generated by
[F/Q

Q

]
, while D(Q0/p0) is generated by

[F/Q
Q0

]
. Since

[F/Q
Q

]
=

[F/Q
Q0

]
, we

have D(Q/p) =D(Q0/p0), and so f (P/p) = f (P0/p0) via (1), (2). We chose P0 to have degree 1, and so f (P/p) =

1. This proves property (ii). To show (i), note that
(L/K

P

)
is the conjugacy class of

[L/K
Q∩L

]
=
[F/K

Q

]∣∣∣∣
L
=
[F/Q

Q

]∣∣∣∣
L
. The

last equality uses that P has degree 1, so that
[F/K

Q

]
=

[F/Q
Q

]
. Similarly,

(L/K
P0

)
=

[F/Q
Q0

]∣∣
L. Since

[F/Q
Q

]
=

[F/Q
Q0

]
, it

follows that
(L/K

P

)
=
(L/K

P0

)
= C , which is (i). �

Proof of Theorem 3.1. Choose F and C ′ as in Proposition 3.2. By that proposition, it suffices to show that if
P is the set of primes p with

(F/Q
p

)
= C ′, then there are infinitely many k–tuples of elements of P lying in

bounded length intervals. This is a direct consequence of Thorner’s generalization of the Maynard–Tao theorem to
Chebotarev sets [16, Thm 1]. �

4. PROOF OF THEOREM 1.1

Let M = H3/Γ be a compact arithmetic hyperbolic 3–orbifold which is derived from a quaternion algebra B over
K and let S = {`1, . . . , `r} be a finite subset of the length spectrum of M. For each i = 1, . . .r, let γi be a loxodromic
element of Γ whose axis in H3 projects to a closed geodesic in M having length `i, and let λi be the eigenvalue
of a lift of γi to SL(2,C) for which |λi| > 1. For each i = 1, . . . ,r, we let Li = K(λi) and Ωi ⊂ Li be a quadratic
OK–order containing a preimage in Li of γi.

Lemma 4.1. Let B′ be a quaternion algebra over K for which Ram(B)( Ram(B′) and Ram f (B) 6= /0. If B′ admits
embeddings of L1, . . . ,Lr then the commensurability class defined by (K,B′) contains a hyperbolic 3–orbifold M′

which is not commensurable to M and has length spectrum containing S. In fact, M′ can be taken to be of the form
M′ = H3/Γ1

O ′ , where O ′ is a maximal order of B′.

Proof. Let B′ be as in the statement of the lemma and O ′ be a maximal order of B′. Because K is the invariant trace
field and B is the invariant trace field of an arithmetic Kleinian group, the field K is a number field with a unique
complex place and the set Ram(B) contains all real places of K. By hypothesis, Ram(B) ( Ram(B′), hence B′ is
also ramified at all real places of K and M′ = H3/Γ1

O ′ is an arithmetic hyperbolic 3–orbifold. By hypothesis B′

admits embeddings of the quadratic extensions L1, . . . ,Lr of K and is ramified at a finite prime of K. By [2, Thm
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3.3], O ′ admits embeddings of all of the quadratic orders Ω1, . . . ,Ωr. It follows that Γ1
O ′ contains conjugates of

the loxodromic elements γ1, . . . ,γr and that the length spectrum of the orbifold M′ contains S. To show that M′ is
not commensurable to M it suffices to show that B 6∼= B′, since the invariant trace field and quaternion algebra are
complete commensurability class invariants [9, Thm 8.4]. Because two quaternion algebras defined over number
fields are isomorphic if and only if their ramification sets are equal, that B 6∼= B′ follows from the hypothesis that
Ram(B)( Ram(B′). �

Proof of Theorem 1.1. For M as in the statement of Theorem 1.1, let K,B be the invariant trace field and quaternion
algebra of M, and let L1, . . . ,Lr be the quadratic extensions of K associated to the geodesics lengths in S as defined
above. We may assume without loss of generality that these extensions are all distinct. That there are infinitely
many non-commensurable arithmetic hyperbolic 3–orbifolds with length spectra containing S implies that there are
infinitely many non-isomorphic K–quaternion algebras over K admitting embeddings of the extensions L1, . . . ,Lr.
This in turn implies that the degree of the compositum L of L1, . . . ,Lr over K has degree [L : K] = 2r. These
assertions were proven in [7, §6-7]. Note that while [7] deals with hyperbolic surfaces rather than hyperbolic
3-orbifolds, the assertions in question were proven using results about quaternion algebras over arbitrary number
fields and thus apply to our present setting by taking the number fields to have a unique complex place. The Galois
group Gal(L/K) is isomorphic to (Z/2Z)r and the primes of K whose Frobenius elements represent the element
(1, . . . ,1) correspond to those which are inert in each of the extensions L1/K, . . . ,Lr/K. Fix a prime P0 of K whose
Frobenius element represents (1, . . . ,1) and which does not lie in Ram f (B). By Theorem 3.1 there is a constant
C1 > 0 such that there are infinitely many k–tuples P1, . . . ,Pk of primes of K, all of which are inert in the extensions
L1/K, . . . ,Lr/K and have norms lying within an interval of length C1. We may assume that none of the primes Pi
ramify in B. As M is derived from a quaternion algebra, π1(M)< Γ1

O for some maximal order O of B. Finally, by
Borel [1], we have

vol(H3/Γ
1
O) =

|∆K |3/2ζK(2)
(4π2)nK−1 ∏

P∈Ram f (B)
(N(P)−1) ,

where nK = [K : Q], ζK(s) is the Dedekind zeta function of K, and ∆K is the discriminant of K.

We now use the primes P1, . . . ,Pk to construct quaternion algebras B1, . . . ,Bk over K. For each i = 1, . . . ,k, define Bi
to be the unique quaternion algebra over K for which Ram(Bi) =Ram(B)∪{P0,Pi}. As B admits embeddings of all
of the quadratic extensions Li, no prime of Ram(B) splits in Li/K. Similarly, none of the primes P0,P1, . . . ,Pk split
in Li/K for any i. The Albert–Brauer–Hasse–Noether theorem implies that a quaternion algebra over a number
field K admits an embedding of a quadratic extension of K if and only if no prime which ramifies in the algebra
splits in the extension of K. This allows us to conclude that all of the quaternion algebras which we have defined
are pairwise non-isomorphic and admit embeddings of all of the Li. Let O1, . . . ,Ok be maximal orders of B1, . . . ,Bk.
By Lemma 4.1, the arithmetic hyperbolic 3–orbifolds Mi = H3/Γ1

Oi
, which are all pairwise non-commensurable

since the algebras B1, . . . ,Bk are pairwise non-isomorphic, have length spectra containing S. By [1], the volume
of Mi is equal to vol(H3/Γ1

O) · (N(P0)−1)(N(Pi)−1). As the k primes P1, . . . ,Pk have norms lying in a bounded
length interval, the orbifolds M1, . . . ,Mk have volumes lying in a bounded length interval. This completes the proof
of Theorem 1.1. �

5. PRODUCING ARITHMETIC HYPERBOLIC 3–MANIFOLDS

In this section we prove a variant of Theorem 1.1 that produces infinitely many k–tuples (for any k≥ 2) of arithmetic
hyperbolic 3–manifolds which are pairwise non-commensurable, have geodesic length spectra containing some
fixed set of lengths and have volumes lying in an interval of (universally) bounded length.

Corollary 5.1. Let M = H3/Γ1
O be a compact arithmetic hyperbolic 3–manifold whose invariant quaternion al-

gebra is ramified at some finite prime and let S be a finite subset of the length spectrum of M. Suppose that
π(V,S)→ ∞ as V → ∞. Then, for every k ≥ 2, there is a constant C > 0 such that there are infinitely many
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k–tuples M1, . . . ,Mk of arithmetic hyperbolic 3–manifolds which are pairwise non-commensurable, have length
spectra containing S, and volumes satisfying

∣∣vol(Mi)−vol(M j)
∣∣<C for all 1≤ i, j ≤ k.

Proof. We will show that our hypotheses on M imply that the orbifolds M1, . . . ,Mk produced by Theorem 1.1 in
this case are all manifolds. Let K,B be the invariant trace field and quaternion algebra of M. As M is a manifold,
Γ1

O is torsion-free and so B does not admit an embedding of any cyclotomic extension F of K with [F : K] = 2.
This follows from [9, Thm 12.5.4] and makes use of the fact that Ram f (B) is nonempty. The Albert–Brauer–
Hasse–Noether theorem therefore implies that, for every cyclotomic extension F of K with [F : K] = 2, there exists
a prime P ∈ Ram(B) such that P splits in F/K. Let B1, . . . ,Bk, O1, . . . ,Ok and M1, . . . ,Mk be as in the proof of
Theorem 1.1. The quaternion algebras B1, . . . ,Bk were defined so that Ram(B) ( Ram(Bi), hence the Albert–
Brauer–Hasse–Noether theorem again implies that no cyclotomic extension F of K with [F : K] = 2 embeds into
any of the quaternion algebras Bi. By [9, Thm 12.5.4], the groups Γ1

Oi
are all torsion-free, and hence the orbifolds

M1, . . . ,Mk are all manifolds. �
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