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Abstract. An oft-cited result of Peter Shiu bounds the mean value of a nonnegative
multiplicative function over a coprime arithmetic progression. We prove a variant where
the arithmetic progression is replaced by a sifted set. As an application, we show that the
normalized square roots of −1 (mod m) are equidistributed (mod 1) as m runs through the
shifted primes q − 1.

1. Introduction

Many problems in elementary and analytic number theory require estimates for mean values
of arithmetic functions. One of our most useful tools for obtaining estimates from above is the
following theorem of Peter Shiu [15], which bounds the mean value of a nonnegative-valued
multiplicative function over a coprime arithmetic progression.
Let M be the collection of nonnegative-valued multiplicative functions f satisfying the

following two conditions:

(I) There is a constant A1 > 0 such that f(pk) ≤ Ak
1 for all prime powers pk.

(II) For every ϵ > 0, there is a constant A2(ϵ) > 0 such that

f(n) ≤ A2(ϵ)n
ϵ for all n ≥ 1.

Theorem A (Brun–Titchmarsh for multiplicative functions, [15]). Let f ∈ M , 0 < α, β < 1
2
,

and let a, k be integers satisfying 0 ≤ a < k and gcd(a, k) = 1. Then for all sufficiently large
x, we have that

(1.1)
∑

x−y<n≤x
n≡a (mod k)

f(n) ≪ y

φ(k)

1

log x
exp

(∑
p≤x
p∤k

f(p)

p

)
,

whenever a, k, y satisfy

k < y1−α, xβ < y ≤ x.

Here the implied constant in (1.1), as well as the threshold for “sufficiently large”, depends
only on α, β, the constant A1 in (I) above, and the function A2(ϵ) in (II).

Most of the ideas necessary to prove Theorem A were already in circulation when [15]
appeared (see [7], [16], [1], [4], and [17]), but Theorem A has proved more influential than
many of its precursors. (MathSciNet records over 70 citations to Shiu’s paper so far.) No
doubt this is due to its impressive generality and the ease with which it can be “plugged in”
as an auxiliary tool in number-theoretic investigations.
In this paper, we put forward a variant of Theorem A where the role of the coprime

progression a mod k is taken by a sifted set.
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Theorem 1.1 (Brun’s upper bound sieve for multiplicative functions). Let f ∈ M , let
0 < β < 1

2
, and let k be a nonnegative integer. For each prime p ≤ x, let Ep be a union of

ν(p) nonzero residue classes modulo p, where we suppose that each ν(p) ≤ k. Let

S =
⋂
p≤x

E c
p .

(In words, S is the set of all positive integers n not belonging to any Ep.) If x is sufficiently
large, then

(1.2)
∑

x−y<n≤x
n∈S

f(n) ≪ y

log x
exp

(∑
p≤x

f(p)− ν(p)

p

)
for all y satisfying

xβ < y ≤ x.

Here the implied constant in (1.2), as well as the threshold for “sufficiently large”, depends
only on β, k, the constant A1 in (I) above, and the function A2(ϵ) in (II).

Remarks.

(i) Theorem 1.1, while obviously a close relative of Theorem A, does not obviously imply
it (nor vice versa).

(ii) It may initially seem strange that we require Ep to only contain nonzero residue
classes. This does not entail any loss of generality, since we can effectively remove n
not coprime to a given P by replacing the function f(n) with 1gcd(n,P ) · f(n).

(iii) Keeping the last remark in mind, one easily deduces from Theorem 1.1 that the
number of n ≤ x that avoid any prescribed ν(p) ≤ k residue classes modulo p, for
each prime p ≤ x, is

≪k x exp

(
−
∑
p≤x

ν(p)

p

)
;

this is a familiar form of Brun’s upper bound sieve.

An immediate, but interesting, application of Theorem 1.1 is an upper bound for the mean
value of f(n) with n restricted to shifted primes, or shifted twin primes.

Corollary 1.2. Let f be a function belonging to M . Let 0 < β < 1/2. For all x ≥ 3 and
y ∈ (xβ, x], ∑

x−y<q≤x
q prime

f(q − 1) ≪f,β
y

log x
exp

(∑
p≤x

f(p)− 1

p

)
,

and ∑
x−y<q≤x

q−2, q prime

f(q − 1) ≪f,β
y

(log x)2
exp

(∑
p≤x

f(p)− 1

p

)
,

The first statement of Corollary 1.2 was shown, implicitly, by Barban and Levin [3] in the
special case y = x.1 Their argument would also prove the second statement of the Corollary
when y = x. However, a different method seems to be needed to get these results for short
intervals.

1“Implicitly” means that Barban and Levin only discuss the the conjugate problem of estimating∑
p<N f(N − p). Their conditions on f are also slightly more restrictive than ours.
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Taking f(n) = tω(n) and y = x in the second statement of Corollary 1.2, we deduce that
for each fixed t0, and all x ≥ 3,∑

q≤x
q−2, q prime

tω(q−1) ≪t0

x

(log x)2
(log x)t−1.

One can now extract information on the distribution of ω(q − 1) by varying t. For example,
mimicking the proof of Theorem 010 in [8] yields: Uniformly for 0 ≤ ψ ≤ (log log x)1/6,
the number of prime pairs q − 2, q in [1, x] with |ω(q − 1) − log log x| > ψ

√
log log x is

O(x(log x)−2 exp(−ψ2/2)). This last statement is a strengthened form of a theorem of
Barban [2].

We now describe our original motivation for proving Theorem 1.1. The application is a riff
on two theorems of Hooley.

An infamous conjecture of Landau (one of his “four unattackable problems”) predicts that
there are infinitely many primes of the form x2 + 1. This is still open, but the analogous
problem for primes of the form x2 + y2 + 1 was settled by Hooley in 1957 [9]. Put

r(n) = #{(x, y) ∈ Z2 : x2 + y2 = n}.
Hooley gives the mean value of r(n) along the shifted primes q − 1.

Theorem B. For a certain positive constant K, we have∑
q≤x

q prime

r(q − 1) ∼ K
x

log x
(x→ ∞).

Actually, Hooley’s work was conditional on GRH, but the discovery of the Bombieri–
Vinogradov theorem allowed for this dependence to be removed with minimal changes
to Hooley’s argument. See [6]. (In the intervening years, Linnik gave an alternative proof of
Theorem B [13].)

The following variant of Hooley’s result was shown by Kátai in 1968 [11] (see also [12]).

Theorem B′. For a certain positive constant K ′, we have∑
q≤x

q prime
q−1 squarefree

r(q − 1) ∼ K ′ x

log x
(x→ ∞).

It is elementary that for squarefree n, the number of square roots of −1 modulo n is precisely
r(n)
4
. In particular, Theorem B′ implies that −1 is a square modulo q − 1 for infinitely many

primes q.
We now bring in the second theorem of Hooley. First, a definition: If P (T ) is a polynomial

with integer coefficients, and k is any positive integer, then a normalized root of P , modulo k,
is a rational number of the form ϖ/k, where

f(ϖ) ≡ 0 (mod k), 0 ≤ ϖ < k.

In 1964, Hooley proved the following equidistribution theorem for normalized roots [10].

Theorem C. Let P (T ) ∈ Z[T ] be an irreducible polynomial of degree at least 2. For each
positive integer k, list the normalized roots of P modulo k (in any order), and then concatenate
the lists sequentially for k = 1, 2, 3, . . . . The resulting sequence is uniformly distributed in
[0, 1).
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After this set-up, the reader can perhaps guess where we are headed. We prove that when
P (T ) = T 2 + 1, the conclusion of Hooley’s Theorem C holds with the moduli restricted to
the shifted primes q − 1.

Theorem 1.3. Let P (T ) = T 2 + 1. For each prime q, list the normalized roots of P modulo
q − 1, and then concatenate the lists successively for q = 2, 3, 5, 7, . . . . The resulting sequence
is uniformly distributed in [0, 1).

Remark. By a different (deeper) method, Duke, Friedlander, and Iwaniec [5] have shown that
Theorem 1.3 holds with the moduli running over primes q rather than shifted primes q − 1.

Notation. Most of our notation is standard. A possible exeption is our use of P+(n) and
P−(n) for the largest and smallest prime factors of n (respectively); we adopt the convention
that P+(1) = 1 while P−(1) = ∞. We let 1 denote the function that is identically 1, and we
use 1C for the characteristic function of a property or set C. We write e(x) for e2πix. We
reserve the letter p for prime numbers.

2. Proof of Theorem 1.1

2.1. Generalities. Let f ∈ M , and let A1 and A2(ϵ) be as in (I) and (II). Let x ≥ 3, and
let θ ∈ (0, 1). For each integer n ∈ [1, x], we may write

n = p1 . . . pjpj+1 · · · pJ ,

where

p1 ≤ p2 ≤ · · · ≤ pJ ,

and where j is chosen as the largest index for which

p1 · · · pj ≤ xθ and p1 · · · pj ∥ n.

We let

d := p1 · · · pj,
and we refer to d as the canonical unitary prefix divisor of n.
We will assume that n has no proper prime power2 divisor in the interval (xθ/2, xθ] and

that

Ω(n/d) ≥ 2θ−1.

(In our eventual application, we will be able to handle the excluded values of n by a separate
argument.)

Since p
Ω(n/d)
j+1 ≤ pj+1 · · · pJ ≤ n ≤ x, we see that

(2.1) pj+1 ≤ x1/Ω(n/d) ≤ xθ/2.

Let t be the largest positive integer for which

pj+1 = pj+2 = · · · = pj+t.

Then p1 · · · pj+t is a unitary divisor of n, so that the choice of j forces p1 · · · pj+t > xθ. Thus,

d = p1 · · · pj > xθ/ptj+1.

2Here and below, a proper prime power is a prime power pk with k ≥ 2.
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If ptj+1 > xθ/2, then t > 1, by (2.1); moreover, some power of pj+1 is then a proper prime

power divisor of n belonging to (xθ/2, xθ], contradicting our assumptions on n. So ptj+1 ≤ xθ/2,
and, from the last displayed equation,

d > xθ/2.

From (2.1), there is a (unique) integer r ≥ 2 satisfying

xθ/(r+1) < pj ≤ xθ/r.

Since
x ≥ p

Ω(n/d)
j+1 ≥ xΩ(n/d)·θ/(r+1),

we have Ω(n/d) ≤ (r + 1) · θ−1, so that

f(n) = f(p1 · · · pj)f(pj+1 · · · pJ)

≤ f(p1 · · · pj)AΩ(n/d)
1 ≤ f(d)A

(r+1)θ−1

1 .

We collect the salient results in the following proposition.

Proposition 2.1. Let f ∈ M , and let θ ∈ (0, 1). Let x ≥ 3. Let n be an integer in [1, x],
and assume n does not have a squarefull divisor in (xθ/2, xθ]. Let d be the canonical unitary
prefix divisor of n. If Ω(n/d) ≥ 2/θ, then

(2.2) xθ/2 < d ≤ xθ, xθ/(r+1) < P+(d) ≤ xθ/r for some integer r ≥ 2,

and
f(n) ≤ exp(O(r))f(d).

Here the implied constants depend only on θ, A1, and A2(ϵ).

2.2. Completion of the proof of Theorem 1.1. Fix θ = β/4. We put those n ∈ S
belonging to (x− y, x] into the following three (possibly overlapping) categories. For each
category we then bound the corresponding contribution to

∑
n∈S∩(x−y,x] f(n).

(1) Arithmetically atypical n: Here we include all n with a proper prime power divisor in
(xθ/2, xθ]. We also put in this category all n which have a log(xθ)-smooth divisor in
the interval (xθ/2, xθ].

(2) Those n for which Ω(n/d) ≤ 2/θ, where (as above) d is the canonical unitary prefix
divisor.

(3) All remaining n ∈ S .

We handle category (1) using the crude pointwise bound f(n) ≪ϵ n
ϵ. The number of

n ∈ (x− y, x] divisible by a proper prime power pk ∈ (xθ/2, xθ] does not exceed∑
xθ/2<pk≤xθ

k≥2

(
y

pk
+ 1

)
≤ xθ + y

∑
m>xθ/2

m squarefull

1

m
≪ xθ + yx−θ/4 ≪ yx−θ/4.

Similarly, the number of n ∈ (x− y, x] possessing a log(xθ)-smooth divisor e ∈ (xθ/2, xθ] is at
most

xθ + y
∑

xθ/2<e≤xθ

P+(e)≤log(xθ)

1

e
≤ xθ + yx−θ/2 ·#{e ≤ xθ : P+(e) ≤ log(xθ)}

≪ xθ + yx−θ/3 ≪ yx−θ/3.
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(To justify passing from the first to the second line, we use that the count log T -smooth
numbers up to T is T o(1), as T → ∞; see, e.g., [14, Corollary 7.9, p. 209].) Since f(n) ≪ xθ/8

(say), it follows that the contribution to
∑

n∈S∩(x−y,x] f(n) from arithmetically inconvenient
n is

≪ (yx−θ/4 + yx−θ/3)xθ/8 ≪ yx−θ/8.

This is negligible, since the our target upper bound — the right-hand side of (1.2) — is
≫ y(log x)−k−1.

For n falling into category (2), we have that n = dpj+1 · · · pJ , where Ω(n/d) = J − j < 2/θ.

If all of pj+1, pj+2, . . . , pJ are bounded by xθ
2/2, then n ≤ d(xθ

2/2)2/θ ≤ x2θ. Since f(n) ≪ xθ,
these n contribute ≪ x3θ ≪ yx−θ, which is once again negligible. So we may assume that
pj+t > xθ

2/2 for some positive integer t ≤ J − j. If t is chosen minimally, then putting

d′ = p1p2 · · · pj+t−1,

we see that d′ is a unitary divisor of n, that

d′ ≤ x2θ,

that

P−(n/d′) > xθ
2/2,

and that

f(n) = f(d′)f(n/d′)

≤ f(d′)A2θ−1

1 ≪ f(d′).

Thus, these n make a contribution that is

(2.3) ≪
∑

d′≤x2θ

f(d′) ·#{m :
x− y

d′
< m ≤ x

d′
,md′ ∈ S , P−(m) > xθ

2/2}.

We use Brun’s upper bound sieve to bound the count of m appearing in (2.3). Let p be a

prime not exceeding xθ
2/2. The stated conditions imply that m avoids the residue class of 0

modulo p and, if p ∤ d′, also an additional ν(p) residue classes modulo p. Keeping in mind
that each ν(p) ≤ k, Brun’s sieve bounds the sum as

≪ y

d′

∏
p≤xθ2/2

p∤d′

(
1− ν(p) + 1

p

) ∏
p≤xθ2/2

p|d′

(
1− 1

p

)

≪ y

d′ log x

∏
p≤xθ2/2

p∤d′

(
1− ν(p)

p

)
.
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We can extend the product over all primes p ≤ x without changing the order of magnitude.
We conclude that ∑

x−y
d′ <m≤ x

d′
md′∈S

P−(m)>xθ2/2

1 ≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

))∏
p|d′

(
1− ν(p)

p

)−1

≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

))
g(d′),

where

g(d′) :=
∏
p|d′

(
1− min{k, p− 1}

p

)−1

.

Inserting these bounds back into (2.3), we find that the remaining n in category (2) contribute

≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

)) ∑
d′≤x2θ

f(d′)g(d′)

d′

≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

))∏
p≤x

(
1 +

f(p)g(p)

p
+
f(p2)g(p2)

p2
+ . . .

)
.

Now f(p)g(p)/p = f(p)/p + O(1/p2), while
∑

p≤x

∑
k≥2 f(p

k)g(pk)/pk ≪ 1. It follows that

the last displayed product on p is ≪ exp(
∑

p≤x f(p)/p), leading to an upper bound for the
entire expression of

≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

))∏
p≤x

(
1 +

f(p)

p

)
,

which in turn is

≪ y

log x
exp

(∑
p≤x

f(p)− ν(p)

p

)
.

This expression coincides with that on the right-hand side of (1.2), and so the contribution
from the n in category (2) is acceptable.
Finally, we turn to category (3). We subdivide the n in that category according to the

value of r for which (2.2) holds. Since we are assuming that n does not have a log(xθ)-smooth
divisor in (xθ/2, xθ], we only consider r for which xθ/r ≥ log(xθ), so that

(2.4) 2 ≤ r ≤ log(xθ)

log log(xθ)
.

By Proposition 2.1, for each fixed r in the range (2.4), the corresponding n make a
contribution that is

≪ exp(O(r))
∑

xθ/2<d≤xθ

P+(d)≤xθ/r

f(d) ·#{m :
x− y

d
< m ≤ x

d
, P−(m) > xθ/(r+1),md ∈ S }.
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In this case, Brun’s sieve gives that the count of m is

≪ y

d

∏
p≤xθ/(r+1)

p∤d

(
1− ν(p) + 1

p

) ∏
p≤xθ/(r+1)

p|d

(
1− 1

p

)
≪ (rθ−1)k+1

(
y

log x

∏
p≤x

(
1− ν(p)

p

))
g(d)

d
,

where g has the same meaning as above. Since (rθ−1)k+1 = exp(O(r)), we see that these n
contribute

(2.5) ≪ exp(O(r))

(
y

log x

∏
p≤x

(
1− ν(p)

p

)) ∑
xθ/2<d≤xθ

P+(d)≤xθ/r

f(d)g(d)

d
.

The sum on d is estimated by the following special case of [15, Lemma 4].

Lemma 2.2. Let F ∈ M . Then, for all sufficiently large Z,∑
n≥Z1/2

P+(n)≤Z1/R

F (n)

n
≪ exp

(∑
p≤Z

F (p)

p
− 1

10
R logR

)
,

uniformly for R satisfying 1 ≤ R ≤ logZ
log logZ

. Here the threshold for “sufficiently large”, as well

as the implied constant, depends at most on the constant A1 and the function A2(ϵ) associated
to F in the definition of M .

Let F = fg, Z = xθ, and R = r. Using that f ∈ M , it is straightforward to check that
F ∈ M ; moreover, the A1 and A2(ϵ) corresponding to f suffice to determine, together with
k, choices for A1 and A2(ϵ) corresponding to F . By (2.4), 2 ≤ R ≤ logZ

log logZ
. Applying Lemma

2.2, ∑
xθ/2<d≤xθ

P+(d)≤xθ/r

f(d)g(d)

d
≪ exp

(∑
p≤xθ

f(p)g(p)

p
− 1

10
r log r

)

≪ exp

(
− 1

10
r log r

)
exp

(∑
p≤x

f(p)

p

)
.

(We used once more that f(p)g(p)/p = f(p)/p+O(1/p2).) We put this estimate back into
(2.5) and then sum on r in the range (2.4). Since∑

r

exp(O(r)) exp(− 1

10
r log r) ≪ 1,

we conclude that the total contribution of n from category (3) is

≪

(
y

log x

∏
p≤x

(
1− ν(p)

p

))
exp

(∑
p≤x

f(p)

p

)
,

which is

≪ y

log x
exp

(∑
p≤x

f(p)− ν(p)

p

)
,

as desired. This completes the proof of Theorem 1.1.
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3. Equidistribution of square roots of −1 modulo shifted primes: Proof of
Theorem 1.3

We follow the original arguments of Hooley [10] as closely as possible.
For each positive integer k, let ϱ(k) denote the number of square roots of −1 modulo k.

From elementary number theory, ϱ is multiplicative and ϱ(ps) ≤ 2 for all prime powers ps, so
that ϱ(k) ≤ 2ω(k). Moreover, as noted in the introduction, ϱ(k) = 1

4
r(k) for squarefree values

of k. Thus, letting

K = {q − 1 : q prime},
Theorem B′ gives that

(3.1)
∑
k≤x
k∈K

ϱ(k) ≫ x

log x
.

For each pair of integers h, k with k > 0, let

S(h, k) =
∑

ϖ mod k
ϖ2≡−1 (mod k)

e(hϖ/k).

Trivially, |S(h, k)| ≤ ϱ(k). By Weyl’s criterion and the lower bound (3.1), to prove Theorem
1.3 it will suffice to show that∑

k≤x
k∈K

S(h, k) = o(x/ log x) (x→ ∞)

for each fixed h ̸= 0. (Cf. the discussion on p. 48 of [10].)
In what follows, we let

X = x1/ log log x.

For each positive integer k ≤ x, we write k = k1k2, where k1 is X-smooth and k2 is “X-rough”
(meaning that P−(k2) > X). We decompose∑

k≤x
k∈K

S(h, k) =
∑
k≤x
k∈K

k1≤x1/3

S(h, k) +
∑
k≤x
k∈K

k1>x1/3

S(h, k) =
∑

1
+
∑

2
,

say. Concerning
∑

2, Cauchy–Schwarz gives

(3.2)
∑

2
≤
( ∑

k≤x
k1>x1/3

1

)1/2( ∑
k≤x

k1>x1/3

|S(h, k)|2
)1/2

.

Since |S(h, k)| ≤ 2ω(k), we have that∑
k≤x

k1>x1/3

|S(h, k)|2 ≤
∑
k≤x

22ω(k) ≪ x(log x)3;

the final estimate here follows, for instance, from Shiu’s Theorem A (or the much more
elementary Theorem 01 in [8]). On the other hand, by the estimate for ‘Θ(x, y, z)’ appearing
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at the bottom of p. 9 of [8],∑
k≤x

k1>x1/3

1 ≤ x exp

(
−
(
1

3
+ o(1)

)
log log x · log log log x

)
,

as x→ ∞. Putting these estimates back into (3.2), we see that∑
2
= O(x/(log x)A)

for each fixed A. Thus, it will suffice to show that
∑

1 = o(x/ log x), as x→ ∞.
Exactly as in [10] (see that paper’s Lemma 3), we have S(h, k) = S(hk̄2, k1)S(hk̄1, k2),

where k̄1 denotes the inverse of k1 modulo k2, and k̄2 denotes the inverse of k2 modulo k1.
Now using k1 and k2 for generic X-smooth and X-rough numbers,∑

1
=

∑
k1k2≤x

k1k2∈K , k1≤x1/3

S(hk̄2, k1)S(hk̄1, k2)

≪
∑

k1k2≤x
k1k2∈K , k1≤x1/3

ϱ(k2)|S(hk̄2, k1)| ≪
∑

k1≤x1/3

Θ(x/k1, k1),

where, for y ≥ x2/3 and k1 ≤ x1/3, we set

Θ(y, k1) =
∑
k2≤y

k1k2∈K

ϱ(k2)|S(hk̄2, k1)|.

Note that by Cauchy–Schwarz,

(3.3) Θ(y, k1)
2 ≤

( ∑
k2≤y

k1k2+1 prime

ϱ(k2)
2

)( ∑
k2≤y

k1k2+1 prime

|S(hk̄2, k1)|2
)
.

The first parenthesized sum in (3.3) can be handled by Theorem 1.1. With P the product
of the primes not exceeding X, we have that∑

k2≤y
k1k2+1 prime

ϱ(k2)
2 ≤

∑
n≤y

k1n+1 prime

1gcd(n,P )=12
2ω(n).

To proceed, we observe that for k1n+ 1 to be prime, either n ≤ y1/2, or n avoids the class
of −k−1

1 mod p for all primes p ≤ X not dividing k1. The former case accounts for O(y1/2)
values of n. By Theorem 1.1, the latter case contributes

≪ y

log y
exp

(∑
p≤X
p∤k1

−1

p
+
∑

X<p≤y

4

p

)
≪ y

log y

1

logX

(
log y

logX

)4

exp

(∑
p|k1

1

p

)
≪ y(log log x)6

(log x)2
.

such values. (We used here that log y ≍ log x, that logX = log x/ log log x, and that
exp(

∑
p|k1

1
p
) ≪ k1

φ(k1)
≪ log log 3k1 ≪ log log x.) The contribution of y1/2 is negligible

compared to this, and so ∑
k2≤y

k1k2+1 prime

ϱ(k2)
2 ≪ y(log log x)6

(log x)2
.
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Turning to the second parenthesized sum in (3.3), we have that∑
k2≤y

k1k2+1 prime

|S(hk̄2, k1)|2 =
∑

0≤a<k1

|S(ah, k1)|2 ·#{k2 ≤ y : k2 ≡ ā (mod k1), k1k2 + 1 prime}.

Writing a0 for the least nonnegative residue of ā modulo k1, we see that the values of k2
counted here have the form a0 + k1t for some t ≤ y/k1. Moreover, either t ≤ (y/k1)

1/2, or
both a0 + k1t and k1(a0 + k1t) + 1 have no prime factors exceeding X. Brun’s sieve now
implies that the count of k2 is

≪ y

k1(logX)2
exp

(∑
p|k1

2

p

)
≪ y(log log x)4

k1(log x)2
,

and thus∑
0≤a<k1

|S(ah, k1)|2 ·#{k2 ≤ y : k2 ≡ ā (mod k1), k1k2 + 1 prime}

≪ y(log log x)4

k1(log x)2

∑
0≤a<k1

|S(ah, k1)|2.

Exactly as in [10] (see Lemma 1 there), the sum on a is at most ϱ(k1)k1 gcd(h, k1), and now
collecting estimates yields ∑

k2≤y
k1k2+1 prime

|S(hk̄2, k1)|2 ≪
y(log log x)4

(log x)2
ϱ(k1)

where here and for the remainder of the argument, the implied constants may depend on h.
Referring back to (3.3),

Θ(y, k1) ≪
y

(log x)2
(log log x)5ϱ(k1)

1/2,

so that ∑
1
≪

∑
k1≤x1/3

Θ(x/k1, k1) ≪
x

(log x)2
(log log x)5

∑
k1≤x1/3

ϱ(k1)
1/2

k1
.

Bounding the sum on k1 by an Euler product, as in [10] (cf. the display immediately preceding
that paper’s eq. (12)), we find that∑

k1≤x1/3

ϱ(k1)
1/2

k1
≪ (log x)1/

√
2.

We conclude that ∑
1
≪ x

(log x)
2− 1√

2

(log log x)5.

Since 2− 1√
2
> 1, this implies that

∑
1 = o(x/ log x), as desired. This completes the proof of

Theorem 1.3.
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