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Everything I will discuss today is joint work with Noah
Lebowitz-Lockard (PhD, 2019) and Akash Singha Roy.
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Definition
Let f be an integer-valued arithmetic function; that is, f is a function
from Z>0 to Z. Let q be a positive integer. We say f is uniformly
distributed modulo q (or equidistributed mod q) if, for each
integer a,

1

x
#{n ≤ x : f (n) ≡ a (mod q)} → 1

q
, as x → ∞.

Example (trivial): n 7→ n is equidistributed mod q for every q.

Example (not so trivial): n 7→ Fn (nth Fibonacci number) is
equidistributed mod q if and only if q = 5k for some k .

(Niederreiter, Kuipers–Shiue)
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Let A(n) =
∑

pk∥n kp be the sum of the prime factors of n, counted
with multiplicity; e.g.,

A(20) = 2 + 2 + 5 = 9.

Theorem (Alladi–Erdős)

A(n) is equidistributed modulo 2. In fact,∑
n≤x

(−1)A(n) ≪ x exp(−c
√

log x log log x).

Since primes > 2 are odd, (−1)A(n) very closely resembles the
Liouville λ-function λ(n) = (−1)Ω(n), which in turn “resembles” the
classical Möbius function µ(n). This allows Alladi–Erdős to deduce
their result from a known estimate for partial sums of µ(n).

4 of 20



Theorem (Delange, Goldfeld)

A(n) is equidistributed mod q for each fixed q. In fact,

#{n ≤ x : A(n) ≡ a (mod q)} =
x

q
+ O(x/

√
log x).

The O(x/
√
log x) error term is best possible if (e.g.) q = 3 but can

be improved if q has only large prime factors.

Approach: Work with characters of the additive group Z/qZ. This
requires showing cancelation in the partial sums of the (multiplicative)
function e2πihA(n)/q, for each h not a multiple of q. Goldfeld obtains
these by a version of the Landau–Selberg–Delange (LSD) method.
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Hubert Delange Dorian Goldfeld
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Let φ(n) denote Euler’s totient; that is, φ(n) = #(Z/nZ)×.

It is certainly not the case that φ(n) is equidistributed modulo each
fixed q. For example,

φ(n) is even once n > 2.

In general, φ(n) is divisible by q whenever p | n for some prime p ≡ 1
(mod q). For each fixed q, a positive proportion of primes p satisfy
p ≡ 1 mod q. Moreover, most numbers n have many prime factors.
So it should be rare for φ(n) to not be 0 mod q.

Proposition (Landau? Erdős?)

Fix q. The number of n ≤ x for which φ(n) ̸≡ 0 (mod q) is o(x), as
x → ∞.

7 of 20



Definition (Narkiewicz)

Let f be an integer-valued arithmetic function;
that is, f is a function from Z>0 to Z. Let q be
a positive integer. We say f is weakly
uniformly distributed modulo q if there are
infinitely many n with gcd(f (n), q) = 1 and if,
for each a coprime to q,

#{n ≤ x : f (n) ≡ a (mod q)}
#{n ≤ x : gcd(f (n), q) = 1}

→ 1

φ(q)
,

as x → ∞.
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Perhaps φ(n) is usually weakly equidistributed mod q. We need q
odd to satisfy gcd(φ(n), q) = 1. But this is not enough. For example,

#{n ≤ x : φ(n) ≡ 1 (mod 3)} ∼ c1x/
√
log x ,

while

#{n ≤ x : φ(n) ≡ −1 (mod 3)} ∼ c−1x/
√
log x ,

whereas
c1 = 0.6109 . . . , c−1 = 0.3284 . . .

(see Dence and Pomerance).

Thus, we can only hope for weak equidistribution modulo q when
gcd(q, 6) = 1.
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Theorem (Narkiewicz)

Let q be any positive integer with gcd(q, 6) = 1. Then φ(n) is weakly
equidistributed modulo q.

What goes wrong with q = 3? The numbers p − 1, for p prime and
p ̸= 3, either fail to be coprime to 3 or are “trapped” in the trivial
subgroup of (Z/3Z)×.

Approach: Work with the multiplicative (Dirichlet) characters mod q.
One needs to show that for each χ mod q that is not the trivial
character χ0, one has

∑
n≤x χ(φ(n)) = o(

∑
n≤x χ0(φ(n))), as

x → ∞. This follows from a special case of Halász’s theorem due to
Wirsing (or Landau–Selberg–Delange).
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For general integer-valued additive arithmetic functions, Delange has
a practical necessary and sufficient condition for uniform distribution.
For “polynomial-like” multiplicative functions, Narkiewicz has a
practical condition for weak uniform distribution.

These generalizations can all be thought of as working in the f -aspect.

Question. What about the q-aspect? Can we prove (weak)
equidistribution theorems when q is allowed to vary with our stopping
point x?

Model. The primes are weakly equidistributed mod q for each fixed q.
In fact, the primes ≤ x are asymptotically equidistributed in coprime
residue classes mod q for q ≤ (log x)A (Siegel–Walfisz).
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Theorem (Singha-Roy, P., 2022+)

Fix K > 0. As x → ∞,

#{n ≤ x : A(n) ≡ a (mod q)}
x/q

→ 1,

uniformly for residue classes a mod q with q ≤ (log x)K .

Theorem (Singha-Roy, P., 2022+)

Fix K > 0. As x → ∞,

#{n ≤ x : φ(n) ≡ a (mod q)}
1

φ(q)#{n ≤ x : gcd(φ(n), q) = 1}
→ 1,

uniformly for coprime residue classes a mod q with gcd(q, 6) = 1 and
q ≤ (log x)K .
(w/ Lebowitz-Lockard: special case q = p, prime)
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A word on the proofs

What we don’t do: We don’t use characters! Reducing the problem
to one about mean values of multiplicative functions is the right thing
to do for fixed q. But the standard methods for estimating these
sums (such as Landau–Selberg–Delange, or quantitative versions of
Halász’s theorem) seem to yield the desired asymptotics only in much
more limited ranges of q.

Instead, we develop a quasi-elementary method suggested by work of
Banks–Harman–Shparlinski, who proved a theorem of the same kind
on the weak-equidistribution of P+(n), the largest prime factor of n.
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Here is an outline, suppressing unpleasant details. The case of A(n) is
the simpler one. We make things even simpler by restricting to q odd.

Initial reduction step. Erdős-ian trickery allow us to discard
inconvenient n. Let J = J(x) be an integer that tends to infinity but
very slowly, say

J = ⌊log log log x⌋.

Call n convenient if the J largest prime factors of n (with
multiplicity), say

PJ ≤ PJ−1 ≤ · · · ≤ P1,

are all at least y = exp(
√
log x).

This choice of threshold y is chosen so that past y , primes are very
regularly distributed in coprime residue classes mod q, when
q ≤ (log x)K .
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We can reduce to proving that for each residue class a mod q,

#{n ≤ x : n convenient,A(n) ≡ a (mod q)}
#{n ≤ x : n convenient}

∼ 1

q
.

The denominator here is ∼ x , but we leave it as is for a reason:
Rather than estimate the numerator directly, we will make a direct
comparison with number of convenient n ≤ x .

Write
n = mP1 . . .PJ ,

so that A(n) = A(m) + P1 + P2 + · · ·+ PJ .
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Let N be the count of convenient n ≤ x . Then

N :=
∑
n≤x

n convenient

1 =
∑
m≤x

∑′

P1,...,PJ

1

where the ′ conditions on the primes P1, . . . ,PJ are that

max{P+(m), y} ≤ PJ ≤ PJ−1 ≤ · · · ≤ P2 ≤ P1 ≤ x ,

P1 · · ·PJ ≤ x/m.
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For each m ≤ x , let V (m) be the set of all J-tuples (v1, . . . , vJ) of
coprime residue classes mod q for which

v1 + · · ·+ vJ ≡ a− A(m) (mod q).

Then ∑
n≤x

n convenient
A(n)≡a (mod q)

1 =
∑
m≤x

∑′′

P1,...,PJ

1

where the ′′ conditions on P1, . . . ,PJ are that

max{P+(m), y} ≤ PJ ≤ PJ−1 ≤ · · · ≤ P2 ≤ P1 ≤ x ,

P1 · · ·PJ ≤ x/m,

(P1, . . . ,PJ) (mod q) ∈ V (m).
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Continuing. . . ∑
n≤x

n convenient
A(n)≡a (mod q)

1 =
∑
m≤x

∑′′

P1,...,PJ

1

Carefully applying Siegel–Walfisz, one shows that∑
m≤x

∑′′

P1,...,PJ

1 ≈
∑
m≤x

#V (m)

(φ(q))J

∑′

P1,...,PJ

1.

But #V (m) can be estimated by some fairly straightforward
combinatorial and additive number theory; one finds that
#V (m)/φ(q)J ≈ 1/q, uniformly in m and a. (This uses that q is
odd!) Thus, the RHS in the last display is

≈ 1

q

∑
m≤x

∑′

P1,...,PJ

1 =
1

q
N.
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The proof for φ follows the same general plan but the estimates
require more fancy footwork, mostly from the of the anatomy of
integers and sieve methods repertoires.

It is helpful for us that Scourfield, in the
mid-80s, already estimated
#{n ≤ x : gcd(φ(n), q) = 1} fairly precisely, in a
wide range of q. Our “comparison method” does
not need too sharp an estimate, but the handling
of error terms (suppressed in the sketch above)
needs something, and Scourfield’s results are
more than enough.
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Thank you for your attention!
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