# Uniform and weak uniform distribution of certain arithmetic functions 



Paul Pollack, University of Georgia, Athens, GA, USA

Combinatorial and Additive Number Theory

May 2022

Everything I will discuss today is joint work with Noah
Lebowitz-Lockard (PhD, 2019) and Akash Singha Roy.

## Everything I will discuss today is joint work with Noah Lebowitz-Lockard (PhD, 2019) and Akash Singha Roy.



Noah Lebowitz-Lockard


Akash Singha Roy

## Definition

Let $f$ be an integer-valued arithmetic function; that is, $f$ is a function from $\mathbb{Z}_{>0}$ to $\mathbb{Z}$. Let $q$ be a positive integer. We say $f$ is uniformly distributed modulo $q$ (or equidistributed $\bmod q$ ) if, for each integer $a$,

$$
\frac{1}{x} \#\{n \leq x: f(n) \equiv a \quad(\bmod q)\} \rightarrow \frac{1}{q}, \quad \text { as } x \rightarrow \infty
$$

Example (trivial): $n \mapsto n$ is equidistributed $\bmod q$ for every $q$.
Example (not so trivial): $n \mapsto F_{n}$ ( $n$th Fibonacci number) is equidistributed $\bmod q$ if and only if $q=5^{k}$ for some $k$.
(Niederreiter, Kuipers-Shiue)

Let $A(n)=\sum_{p^{k} \| n} k p$ be the sum of the prime factors of $n$, counted with multiplicity; e.g.,

$$
A(20)=2+2+5=9
$$

## Theorem (Alladi-Erdős)

$A(n)$ is equidistributed modulo 2. In fact,

$$
\sum_{n \leq x}(-1)^{A(n)} \ll x \exp (-c \sqrt{\log x \log \log x})
$$

Since primes $>2$ are odd, $(-1)^{A(n)}$ very closely resembles the Liouville $\lambda$-function $\lambda(n)=(-1)^{\Omega(n)}$, which in turn "resembles" the classical Möbius function $\mu(n)$. This allows Alladi-Erdős to deduce their result from a known estimate for partial sums of $\mu(n)$.

## Theorem (Delange, Goldfeld)

$A(n)$ is equidistributed $\bmod q$ for each fixed $q$. In fact,

$$
\#\{n \leq x: A(n) \equiv a \quad(\bmod q)\}=\frac{x}{q}+O(x / \sqrt{\log x})
$$

The $O(x / \sqrt{\log x})$ error term is best possible if (e.g.) $q=3$ but can be improved if $q$ has only large prime factors.

Approach: Work with characters of the additive group $\mathbb{Z} / q \mathbb{Z}$. This requires showing cancelation in the partial sums of the (multiplicative) function $e^{2 \pi i h A(n) / q}$, for each $h$ not a multiple of $q$. Goldfeld obtains these by a version of the Landau-Selberg-Delange (LSD) method.


Hubert Delange


Dorian Goldfeld

Let $\varphi(n)$ denote Euler's totient; that is, $\varphi(n)=\#(\mathbb{Z} / n \mathbb{Z})^{\times}$.

It is certainly not the case that $\varphi(n)$ is equidistributed modulo each fixed $q$. For example,
$\varphi(n)$ is even once $n>2$.

In general, $\varphi(n)$ is divisible by $q$ whenever $p \mid n$ for some prime $p \equiv 1$ $(\bmod q)$. For each fixed $q$, a positive proportion of primes $p$ satisfy $p \equiv 1 \bmod q$. Moreover, most numbers $n$ have many prime factors. So it should be rare for $\varphi(n)$ to not be $0 \bmod q$.

## Proposition (Landau? Erdős?)

Fix $q$. The number of $n \leq x$ for which $\varphi(n) \not \equiv 0(\bmod q)$ is $o(x)$, as $x \rightarrow \infty$.


## Definition (Narkiewicz)

Let $f$ be an integer-valued arithmetic function; that is, $f$ is a function from $\mathbb{Z}_{>0}$ to $\mathbb{Z}$. Let $q$ be a positive integer. We say $f$ is weakly uniformly distributed modulo $q$ if there are infinitely many $n$ with $\operatorname{gcd}(f(n), q)=1$ and if, for each a coprime to $q$,

$$
\frac{\#\{n \leq x: f(n) \equiv a \quad(\bmod q)\}}{\#\{n \leq x: \operatorname{gcd}(f(n), q)=1\}} \rightarrow \frac{1}{\varphi(q)}
$$

as $x \rightarrow \infty$.

Perhaps $\varphi(n)$ is usually weakly equidistributed $\bmod q$. We need $q$ odd to satisfy $\operatorname{gcd}(\varphi(n), q)=1$. But this is not enough. For example,

$$
\#\{n \leq x: \varphi(n) \equiv 1 \quad(\bmod 3)\} \sim c_{1} x / \sqrt{\log x}
$$

while

$$
\#\{n \leq x: \varphi(n) \equiv-1 \quad(\bmod 3)\} \sim c_{-1} x / \sqrt{\log x}
$$

whereas

$$
c_{1}=0.6109 \ldots, \quad c_{-1}=0.3284 \ldots
$$

(see Dence and Pomerance).

Thus, we can only hope for weak equidistribution modulo $q$ when $\operatorname{gcd}(q, 6)=1$.

## Theorem (Narkiewicz)

Let $q$ be any positive integer with $\operatorname{gcd}(q, 6)=1$. Then $\varphi(n)$ is weakly equidistributed modulo q.

What goes wrong with $q=3$ ? The numbers $p-1$, for $p$ prime and $p \neq 3$, either fail to be coprime to 3 or are "trapped" in the trivial subgroup of $(\mathbb{Z} / 3 \mathbb{Z})^{\times}$.

Approach: Work with the multiplicative (Dirichlet) characters mod $q$. One needs to show that for each $\chi \bmod q$ that is not the trivial character $\chi_{0}$, one has $\sum_{n \leq x} \chi(\varphi(n))=o\left(\sum_{n \leq x} \chi_{0}(\varphi(n))\right)$, as $x \rightarrow \infty$. This follows from a special case of Halász's theorem due to Wirsing (or Landau-Selberg-Delange).

For general integer-valued additive arithmetic functions, Delange has a practical necessary and sufficient condition for uniform distribution. For "polynomial-like" multiplicative functions, Narkiewicz has a practical condition for weak uniform distribution.

These generalizations can all be thought of as working in the $f$-aspect.

For general integer-valued additive arithmetic functions, Delange has a practical necessary and sufficient condition for uniform distribution. For "polynomial-like" multiplicative functions, Narkiewicz has a practical condition for weak uniform distribution.

These generalizations can all be thought of as working in the $f$-aspect.

Question. What about the $q$-aspect? Can we prove (weak) equidistribution theorems when $q$ is allowed to vary with our stopping point $x$ ?

Model. The primes are weakly equidistributed $\bmod q$ for each fixed $q$. In fact, the primes $\leq x$ are asymptotically equidistributed in coprime residue classes $\bmod q$ for $q \leq(\log x)^{A}$ (Siegel-Walfisz).

Theorem (Singha-Roy, P., 2022+)
Fix $K>0$. As $x \rightarrow \infty$,

$$
\frac{\#\{n \leq x: A(n) \equiv a \quad(\bmod q)\}}{x / q} \rightarrow 1
$$

uniformly for residue classes a mod $q$ with $q \leq(\log x)^{K}$.

Theorem (Singha-Roy, P., 2022+)
Fix $K>0$. As $x \rightarrow \infty$,

$$
\frac{\#\{n \leq x: \varphi(n) \equiv a \quad(\bmod q)\}}{\frac{1}{\varphi(q)} \#\{n \leq x: \operatorname{gcd}(\varphi(n), q)=1\}} \rightarrow 1
$$

uniformly for coprime residue classes a mod $q$ with $\operatorname{gcd}(q, 6)=1$ and $q \leq(\log x)^{K}$.
(w/ Lebowitz-Lockard: special case $q=p$, prime)

## A word on the proofs

What we don't do: We don't use characters! Reducing the problem to one about mean values of multiplicative functions is the right thing to do for fixed $q$. But the standard methods for estimating these sums (such as Landau-Selberg-Delange, or quantitative versions of Halász's theorem) seem to yield the desired asymptotics only in much more limited ranges of $q$.

Instead, we develop a quasi-elementary method suggested by work of Banks-Harman-Shparlinski, who proved a theorem of the same kind on the weak-equidistribution of $P^{+}(n)$, the largest prime factor of $n$.

Here is an outline, suppressing unpleasant details. The case of $A(n)$ is the simpler one. We make things even simpler by restricting to $q$ odd.

Initial reduction step. Erdős-ian trickery allow us to discard inconvenient $n$. Let $J=J(x)$ be an integer that tends to infinity but very slowly, say

$$
J=\lfloor\log \log \log x\rfloor .
$$

Call $n$ convenient if the $J$ largest prime factors of $n$ (with multiplicity), say

$$
P_{J} \leq P_{J-1} \leq \cdots \leq P_{1},
$$

are all at least $y=\exp (\sqrt{\log x})$.

This choice of threshold $y$ is chosen so that past $y$, primes are very regularly distributed in coprime residue classes $\bmod q$, when $q \leq(\log x)^{K}$.

We can reduce to proving that for each residue class a mod $q$,

$$
\frac{\#\{n \leq x: n \text { convenient, } A(n) \equiv a \quad(\bmod q)\}}{\#\{n \leq x: n \text { convenient }\}} \sim \frac{1}{q} .
$$

The denominator here is $\sim x$, but we leave it as is for a reason:
Rather than estimate the numerator directly, we will make a direct comparison with number of convenient $n \leq x$.

Write

$$
n=m P_{1} \ldots P_{J}
$$

so that $A(n)=A(m)+P_{1}+P_{2}+\cdots+P_{J}$.

Let $N$ be the count of convenient $n \leq x$. Then

$$
N:=\sum_{\substack{n \leq x \\ n \text { convenient }}} 1=\sum_{m \leq x} \sum_{P_{1}, \ldots, P_{J}}^{\prime} 1
$$

where the ' conditions on the primes $P_{1}, \ldots, P_{J}$ are that

$$
\begin{gathered}
\max \left\{P^{+}(m), y\right\} \leq P_{J} \leq P_{J-1} \leq \cdots \leq P_{2} \leq P_{1} \leq x, \\
P_{1} \cdots P_{J} \leq x / m
\end{gathered}
$$

For each $m \leq x$, let $V(m)$ be the set of all J-tuples $\left(v_{1}, \ldots, v_{J}\right)$ of coprime residue classes mod $q$ for which

$$
v_{1}+\cdots+v_{J} \equiv a-A(m) \quad(\bmod q)
$$

Then

$$
\sum_{\substack{n \leq x \\ \text { n convenient } \\ A(n) \equiv a(\text { mod } q)}} 1=\sum_{m \leq x} \sum_{P_{1}, \ldots, P_{J}}^{\prime \prime} 1
$$

where the " conditions on $P_{1}, \ldots, P_{J}$ are that

$$
\begin{gathered}
\max \left\{P^{+}(m), y\right\} \leq P_{J} \leq P_{J-1} \leq \cdots \leq P_{2} \leq P_{1} \leq x \\
P_{1} \cdots P_{J} \leq x / m \\
\left(P_{1}, \ldots, P_{J}\right) \quad(\bmod q) \in V(m)
\end{gathered}
$$

Continuing. . .

$$
\sum_{\substack{n \leq x \\ \text { nconvenient } \\ A(n) \equiv a(\bmod q)}} 1=\sum_{m \leq x} \sum_{P_{1}, \ldots, P_{J}}^{\prime \prime} 1
$$

Carefully applying Siegel-Walfisz, one shows that

$$
\sum_{m \leq x} \sum_{P_{1}, \ldots, P_{J}}^{\prime \prime} 1 \approx \sum_{m \leq x} \frac{\# V(m)}{(\varphi(q))^{J}} \sum_{P_{1}, \ldots, P_{J}}^{\prime} 1
$$

But \#V(m) can be estimated by some fairly straightforward combinatorial and additive number theory; one finds that $\# V(m) / \varphi(q)^{J} \approx 1 / q$, uniformly in $m$ and $a$. (This uses that $q$ is odd!) Thus, the RHS in the last display is

$$
\approx \frac{1}{q} \sum_{m \leq x} \sum_{P_{1}, \ldots, P_{J}}^{\prime} 1=\frac{1}{q} N .
$$

The proof for $\varphi$ follows the same general plan but the estimates require more fancy footwork, mostly from the of the anatomy of integers and sieve methods repertoires.


It is helpful for us that Scourfield, in the mid-80s, already estimated
$\#\{n \leq x: \operatorname{gcd}(\varphi(n), q)=1\}$ fairly precisely, in a wide range of $q$. Our "comparison method" does not need too sharp an estimate, but the handling of error terms (suppressed in the sketch above) needs something, and Scourfield's results are more than enough.

## Thank you for your attention!

