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An arithmetic function arising from Carmichael’s

conjecture

par Florian Luca et Paul Pollack

Résumé. Soit φ la fonction indicatrice d’Euler. Une conjecture de
Carmichael qui a 100 ans affirme que pour chaque n, l’équation
φ(n) = φ(m) a au moins une solution m 6= n. Ce suggère l’on
définisse F (n) comme le nombre de solutions m de l’équation
φ(n) = φ(m). (Donc, la conjecture de Carmichael est équivalent à
l’inégalité F (n) ≥ 2 pour tout n.) Resultats sur F sont répandus
dans la littérature. Par example, Sierpiński a conjecturé et Ford
a démontré que l’image de F contient tous les nombres k ≥ 2.
Aussi, l’ordre maximal de F a été recherché par Erdős et Pomer-
ance. Dans notre article, nous étudions l’ordre normal de F . Soit

K(x) := (log x)(log log x)(log log log x).

On démontre que pour chaque ε > 0, l’inégalité

K(n)1/2−ε < F (n) < K(n)3/2+ε

est vraie pour presque tous les entiers positifs n. Comme applica-
tion, on montre que φ(n) + 1 est sans facteur carré pour presque
tous les n. On conclut avec quelques remarques sur les valeurs de
n telles que F (n) est proche de sa valeur maximale conjecturée.

Abstract. Let φ denote Euler’s totient function. A century-old
conjecture of Carmichael asserts that for every n, the equation
φ(n) = φ(m) has a solution m 6= n. This suggests defining F (n)
as the number of solutions m to the equation φ(n) = φ(m). (So
Carmichael’s conjecture asserts that F (n) ≥ 2 always.) Results on
F are scattered throughout the literature. For example, Sierpiński
conjectured, and Ford proved, that the range of F contains every
natural number k ≥ 2. Also, the maximal order of F has been
investigated by Erdős and Pomerance. In this paper we study the
normal behavior of F . Let

K(x) := (log x)(log log x)(log log log x).

We prove that for every fixed ε > 0,

K(n)1/2−ε < F (n) < K(n)3/2+ε

for almost all natural numbers n. As an application, we show
that φ(n) + 1 is squarefree for almost all n. We conclude with
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some remarks concerning values of n for which F (n) is close to
the conjectured maximum size.

1. Introduction

Let φ denote Euler’s totient function, so that φ(n) = #(Z/nZ)×. In
1907, R. D. Carmichael [3] claimed to have shown for every n, the equation
φ(n) = φ(m) has a solution m with m 6= n. This claim, which for a time
appeared as an exercise in Carmichael’s introductory number theory text,
was eventually retracted [4] and is now known as Carmichael’s conjecture.

Define F (n) as the number of solutions m to the equation φ(m) = φ(n).
While Carmichael’s conjecture remains elusive, other aspects of F have
succumbed to detailed study. For example, we know from the work of Ford
[13] that every natural number > 1 belongs to the range of F . (This had
been conjectured by Sierpiński in the 1950s.) In 1935, Erdős [7] showed
the existence of a positive constant c for which F (n) > nc infinitely often.
Work of Baker and Harman [1] implies that we may take c = 0.7038, and
it is conjectured that any c < 1 is permissible. Erdős’s investigations were
extended by Pomerance [20] (see also [22, §4], and cf. [21, p. 591–592]),
who showed that

(1.1) max
n≤x

F (n) ≤ x/L(x)1+o(1), where L(x) := x
log log log x
log log x ,

and that equality holds in this estimate under a plausible (but seemingly
difficult) hypothesis on the distribution of smooth shifted primes.

We study the normal behavior of F , i.e., how many solutions m there
typically are to an equation of the form φ(m) = φ(n). Our main result is
as follows:

Theorem 1.1. Fix ε > 0. For almost all natural numbers n (i.e., all n
outside of a set of asymptotic density zero), we have

K(n)1/2−ε < F (n) < K(n)3/2+ε,

where K(x) := (log x)(log log x)(log log log x).

Let V denote the set of elements in the range of φ (so-called totients), and
let V (x) = #V ∩ [1, x] be the corresponding counting function. Theorem
1.1 contrasts with Ford’s result (see [12, Theorem 3]) that if k = k(x) tends
to infinity (however slowly), then only o(V (x)) totients v ≤ x are such
that the equation φ(m) = v has more than k solutions m. This is one
manifestation of the seeming paradox that φ(n), for a typical n, displays
very different properties from a typical v ∈ V. Another example of this
phenomenon is given by the theorem of Erdős and Pomerance mentioned
in §3 below.
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Theorem 1.1 can also be compared with [2, Theorem 4(i)]. In that paper,
the analogue of F is defined with respect to the Carmichael λ-function.
(Recall that λ(n) denotes the exponent of the group (Z/nZ)×.) It is shown

there that λ(m) = λ(n) almost always has more than exp((log log n)10/3)
solutions m.

It seems that the method used to establish Theorem 1.1 may provide
insight into other aspects of the Euler function. We offer the following
application to the study of shifted totients:

Theorem 1.2. For x ≥ 20, we have

(1.2)
∑
n≤x

(Ω(φ(n) + 1)− ω(φ(n) + 1))2 � x
(log log log x)5

log log x
.

An immediate consequence of Theorem 1.2 is that the number φ(n) + 1
is squarefree for almost all n. One might expect that this last result could
be established by a routine argument, but it seems surprisingly difficult to
estimate the frequency with which φ(n) + 1 is divisible by the square of
a large prime. We work around this by observing that when this occurs,
there are not many possibilities for φ(n); the proof of Theorem 1.1 then
shows that there must be few corresponding values of n.

Our proof of Theorem 1.2 can be adapted to yield a similar estimate
for the κth moment, for any κ > 0. (In the general case, the exponent of
log log log x on the right-hand side of (1.2) may depend on κ.) We choose
to deal only with the case κ = 2, which already involves all of the central
ideas.

In addition to the normal order, is sensible to ask also about the average
order of F . If equality holds in (1.1), as we expect, then a superficial
argument shows that

(1.3) x/L(x)2+o(1) ≤ 1

x

∑
n≤x

F (n) ≤ x/L(x)1+o(1),

as x → ∞. Of course the upper bound here is immediate from (1.1), but
the lower bound is almost as trivial: Put x′ = x/(2 log log x), and pick an
m ≤ x′ for which F (m) is as large as possible. Assuming equality in (1.1),

F (m) ≥ x′/L(x′)1+o(1) = x/L(x)1+o(1).

Now F (n) = F (m) for any solution n to φ(n) = φ(m), and there are
precisely F (m) such values of n. Moreover, all such n belong to [1, x] if x
is large, by a well-known result on the minimal order of the Euler function
(see the start of the proof of Lemma 2.1 below). So the contribution of

these n to the sum is at least F (m)2 = x2/L(x)2+o(1), which gives the left-
half of (1.3). We do not know which side of (1.3), if either, gives the truth
about the average size of F .
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A natural way to attack this problem is to study the structure of those
n for which equality is attained in (1.1). The examples of n of this type
(conditionally) obtained by Pomerance are products of primes p for which
p − 1 is (log x)-smooth (i.e., p − 1 has no prime factors > log x), where
the number of distinct primes dividing n is about log x/(log log x)2. The
next theorem shows that whenever equality holds in (1.1), v := φ(n) has

at least (log x)1−o(1) prime factors below (log x)1+o(1), and almost all of the

F (n) elements of φ−1(v) have at least log x/(log log x)2+o(1) distinct prime
factors:

Theorem 1.3. Fix δ with 0 < δ < 1.

(i) If v ≤ x has fewer than (log x)1−δ distinct prime factors from the

interval [1, (log x)1+δ], then #φ−1(v) ≤ x/L(x)1+δ+o(1).
(ii) For any v ≤ x, the number of preimages m of v with ω(m) ≤

log x/(log log x)2+δ is bounded by x/L(x)1+δ+o(1).

In both parts, the o(1) is as x→∞ and is uniform in v.

Notation. Most of our notation is standard in analytic number theory.
We use the arithmetic functions ω and Ω with their usual meanings, so
that ω(n) :=

∑
p|n 1 and Ω(n) :=

∑
p`|n 1. We also use the function

Ω(n, z) :=
∑

p≤z, p`|n

1,

which counts with multiplicity the number of primes p dividing n not ex-
ceeding z. We write rad(n) :=

∏
p|n p for the radical of n, i.e., the largest

squarefree divisor of n. We let P (n) denote the largest prime factor of n
(with P (1) = 1) and put

Ψ(x, y) := #{n ≤ x : P (n) ≤ y}.

It is convenient to introduce abbreviated notation for iterated logarithms:
For x > 0, we put log1 x := max{log x, 1} and define logk as the kth
iterate of log1. We use C1, C2, . . . for absolute positive constants, which
are numbered consecutively in order of appearance.

2. The key lemma

Define S(x; d) as the number of n for which φ(n) is a multiple of d
belonging to [1, x], i.e.,

S(x; d) =
∑
v≤x
d|v

#φ−1(v).
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In the case d = 1, the study of S(x; d) goes back to Erdős and Turán [8],
who showed that 1

xS(x; 1) tends to a nonzero limit as x→∞; later Dressler

[6] computed the limit as ζ(2)ζ(3)
ζ(6) .

Our principal tool is a uniform upper bound for S(x; d). In what follows,
we let Bk (the kth Bell number) denote the number of set partitions of a
k-element set.

Lemma 2.1 (cf. [19, Lemma 2.4]). Let x be sufficiently large. Then for
each squarefree d ≤ x, we have

S(x; d) ≤ Bω(d)(C1 log2 x)ω(d)x(log2 x)2

d
,

where C1 is an absolute positive constant.

Proof. When d = 1, we have already remarked that a stronger estimate
holds, so we assume that d > 1. Since φ(n) ≥ (e−γ + o(1))n/ log2 n as
n → ∞ (see [16, Theorem 328]), we have that for large x, the relation
φ(n) ≤ x implies that n ≤ 2x log2 x. Thus, S(x; d) is bounded above by
the number of n ≤ 2x log2 x for which d | φ(n). For each such n, write its
unique factorization in the form

∏
i p
ei
i . Since d | φ(n), it follows that there

is a factorization of d of the form d = d1d2 · · · for which each di | φ(peii ).
By discarding those di = 1 and reordering, we can assume d = d1 · · · dl,
where each di > 1. Note that l ≤ ω(d).

Now consider the factorization ‘d = d1 . . . dl’ as fixed and count the
number of corresponding n. Clearly this number is bounded by

2x log2 x
l∏

i=1

 ∑
pe≤x
di|φ(pe)

1

pe

 .

The terms of the inner sum corresponding to primes p for which di | p− 1
contribute

≤
∑

p≡1 (mod di)

(
1

p
+

1

p2
+ . . .

)
�

∑
p≡1 (mod di)

1

p
� log2 x

φ(di)
,

by the Brun–Titchmarsh inequality and partial summation (see [9, eq.
(3.1)]). So, suppose that di - p − 1 but that di | φ(pe) = (p − 1)pe−1

for some e ≥ 2. Then p | di. Moreover, since di is squarefree, we have
that di/p is a divisor of p − 1 in this case, so that di | p(p − 1) = φ(p2).

In particular, p ≥
√
di/2. Since p | di, the number of possibilities for p is

O(1), uniformly in di, and the powers of each such p contribute

≤ 1

p2
+

1

p3
+ · · · = 1

p(p− 1)
≤ 1

di
.
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Hence, the inner sum is

� log2 x

φ(di)
+

1

di
� log2 x

φ(di)
,

uniformly in 1 ≤ i ≤ l. Substituting this above, we obtain a bound for the
number of such n of the form

2x log2 x

l∏
i=1

(
C1 log2 x

φ(di)

)
≤ 2x log2 x

φ(d)
(C1 log2 x)ω(d)

≤ 4x(log2 x)2

d
(C1 log2 x)ω(d).

Now we sum over the Bω(d) (unordered) factorizations of the squarefree
number d. This gives the estimate of the lemma, apart from an additional
factor of 4, which can be absorbed into the constant C1. �

Lemma 2.1 gives strong results when ω(d) is fairly small, which is all that
is needed for our proof of Theorem 1.1. Nevertheless, it seems also worth
highlighting what the method yields in more extremal cases. To state our
results, let us define the roundness R(n) of the natural number n by the
ratio

R(n) :=
ω(n)

log n/ log logn
.

It is worthwhile to recall that lim supR(n) = 1 (see, e.g., [15, p. 263]); in
fact, it follows from the prime number theorem with error term that

(2.1) R(n) ≤ 1 +O((log2 n)−1).

(See, e.g., [23], where versions of this result are established with explicit
constants.) One should also keep in mind that very round numbers are
quite rare: A theorem of Erdős and Nicolas [10, Theorem 2] asserts that

for each fixed η ∈ (0, 1), the number of n ≤ x with R(n) ≥ 1− η is xη+o(1).

Theorem 2.1. Suppose that d ≤ x is squarefree and that

d ≥ exp((log x)1/ log3 x).

(i) Fix η ∈ (0, 1). If R(d) ≤ 1− η, then S(x; d) ≤ x/dη+o(1), as x→∞.

(ii) S(x; d) ≤ x/L(d)1+o(1), as x → ∞, uniformly in d. Here L(·) is as
in (1.1).

Proof. We start with (i). Put Z(d) := b(1− η) log d/ log log dc. To simplify
notation, we write Z instead of Z(d) when d is understood. Hence, ω(d) ≤
Z. Since the Bell numbers satisfy the crude upper bound Bk ≤ kk (by a
straightforward combinatorial argument), we have

S(x; d) ≤ (C1Z log2 x)Z
x(log2 x)2

d
,
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and so

log

(
S(x; d)

x/d

)
≤ Z(logZ + log3 x+O(1)) +O(log3 x).

Our hypothesized lower bound on d asserts that

log3 d ≥ log3 x− log4 x.

In particular, log3 x ∼ log3 d as x→∞; also, for large x,

logZ + log3 x ≤ log2 d− log3 d+ log3 x

≤ log2 d+ log4 x < log2 d+ 2 log4 d.(2.2)

Inserting this bound and the definition of Z := Z(d) into our earlier esti-
mate, we deduce that

log

(
S(x; d)

x/d

)
≤ (1− η)

log d

log2 d
(log2 d+O(log4 d)) +O(log3 x)

= (1− η)(1 +O(log4 d/ log2 d)) log d+O(log3 d)

= (1− η + o(1)) log d,

as x→∞, and now (i) follows upon exponentiating.
The proof of (ii) is similar, except that in place of the trivial upper bound

BZ ≤ ZZ , we use the bound BZ ≤ ZZ/(logZ)Z(1+o(1)), as Z →∞ (see [5,
p. 108]). Let C2 be a sufficiently large constant. We put

Z(d) := blog d/ log log d+ C2 log d/(log log d)2c.

Keeping with our previous convention of writing Z instead of Z(d), we have
ω(d) ≤ Z uniformly in d, by (2.1). By (2.2),

logZ + log3 x ≤
(

log
log d

log2 d
+ o(1)

)
+ log3 x < log2 d+ 3 log4 d.

Hence,

log

(
S(x; d)

x/d

)
≤ Z(logZ + log3 x+O(1)) +O(log3 x)− (1 + o(1))Z log2 Z

≤ Z(log2 d+O(log4 d)) +O(log3 d)− (1 + o(1))Z log2 Z

= log d+O

(
log d log4 d

log2 d

)
− (1 + o(1))

log d log3 d

log2 d

= log d− (1 + o(1))
log d log3 d

log2 d
(as x→∞).

Once again, exponentiating gives the result. �
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3. Proof of Theorem 1.1

Because the logarithm function grows so slowly, it is enough to show that
all but o(x) of the natural numbers n ≤ x satisfy

(3.1) K(x)1/2−ε < F (n) < K(x)3/2+ε.

Our proof makes heavy use of the determination by Erdős and Pomerance
[11] of the normal number of prime factors of φ(n): For each fixed δ > 0,(

1

2
− δ
)

(log2 x)2 ≤ ω(φ(n)) ≤
(

1

2
+ δ

)
(log2 x)2

for all but o(x) natural numbers n ≤ x (as x → ∞). Moreover, the same
holds with Ω in place of ω. (By contrast, it is known that a typical totient
v ∈ V∩ [1, x] has about 2.186 log2 x prime divisors, counted with or without
multiplicity; see [12, Theorem 10].)

Lower bound: Set

V1 :=

{
φ(n) : n ≤ x, F (n) ≤ K(x)1/2−ε, ω(φ(n)) ≥ 1− ε

2
(log log x)2

}
.

By the Erdős–Pomerance result with δ = ε/2,

#{n ≤ x : F (n) ≤ K(x)1/2−ε} ≤ o(x) + #φ−1(V1) ≤ o(x) +K(x)1/2−ε#V1.

But by a well-known result of Hardy and Ramanujan [15, Lemma B],

#V1 ≤
x

log x

∑
l≥Z

1

l
(log2 x+ C3)l, where Z :=

⌈
1− ε

2
(log log x)2

⌉
.

The sum is dominated by its first term, and using the elementary inequality
Z! ≥ (Z/e)Z , we see that #V1 ≤ x/K(x)(1−ε)/2+o(1). Substituting above
shows that the lower bound in (3.1) holds for all but o(x) values of n ≤ x.

Upper bound: We prove what at first glance appears to be a stronger
result. Observe that with V2 := {φ(n) : n ≤ x, F (n) > K(x)3/2+ε}, we
have

K(x)3/2+ε#V2 ≤ #φ−1(V2) ≤ 2x log2 x

for large x, so that

(3.2) #V2 ≤
2x log2 x

K(x)3/2+ε
.

Clearly

(3.3) #{n ≤ x : F (n) > K(x)3/2+ε} ≤ #{n ≤ x : φ(n) ∈ V2}.

The upper bound aspect of (3.1) asserts that the left-hand side of (3.3) is
o(x), as x → ∞. We now show that if V2 is any subset of [1, x] satisfying
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the upper bound (3.2), then #{n ≤ x : φ(n) ∈ V2} = o(x), as x → ∞,
uniformly in V2.

We may suppose each v ∈ V2 satisfies the following four conditions:

(i) v ≥ x/(log2 x log3 x),
(ii) Ω(v) ≤ (1/2 + ε/6)(log2 v)2,
(iii) if p is a prime for which p2 | v, then p ≤ (log2 x)2,
(iv) Ω(v, (log2 x)2) ≤ 2 log2 x log4 x.

Indeed, any n for which φ(n) < x/ log2 x log3 x satisfies n� x/ log3 x, and
the number of such n is clearly o(x). The result of Erdős–Pomerance (with
δ = ε/6) immediately implies that we may assume (ii). In their paper
[11], it is also shown explicitly that the number of n ≤ x for which φ(n) is
divisible by p2 for some p > (log2 x)2 is o(x) (see [11, p. 350, middle]) and
that the number of n ≤ x with Ω(φ(n), (log2 x

2)) > 2 log2 x log4 x is o(x)
(see [11, p. 350, top]). So, we can assume (iii) and (iv).

Now fix v ∈ V2. Clearly, the number of n ≤ x with φ(n) = v is bounded
by S(x; rad(v)). We now apply Lemma 2.1. Notice that by (iii), (iv), and
(i),

rad(v) ≥ v/
∏
pe‖v

p≤(log2 x)2

pe ≥ v/((log2 x)2)Ω(v,(log2 x)2)

≥ v/(log2 x)4 log2 x log4 x ≥ x/K(x)o(1),

and that by (ii),

ω(rad(v)) ≤ Ω(v) ≤ Z, where now Z :=

⌊(
1

2
+
ε

6

)
(log2 x)2

⌋
.

Using again the inequality Bk ≤ kk, Lemma 2.1 shows that

S(x; rad(v)) ≤ (C1Z log2 x)ZK(x)o(1) = K(x)3/2+ε/2+o(1).

Since this holds uniformly for v ∈ V2, the result now follows from (3.2).

4. Proof of Theorem 1.2

We let x be large and we start by eliminating some integers n ≤ x. Let
N be the set of all positive integers n ≤ x which fulfill the following five
conditions:

(i) P (n) > y, where y := L(x)1/4.
(ii) P (n)2 - n;
(iii) Ω(n) < 10 log2 x;
(iv) Ω(φ(n)) < 110(log2 x)2;
(v) Ω(φ(n) + 1) < 10(log2 x)2.
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We claim that

#{n ≤ x : n 6∈ N} � x

(log x)3
.

The number of positive integers n ≤ x failing (i) is Ψ(x, y). From well-
known estimates for smooth numbers (see, e.g., [14], esp. pp. 269–270),

we have Ψ(x, y) = Ψ(x, L(x)1/4) ≤ x/(log x)4+o(1). Positive integers n ≤ x
passing (i) but failing (ii) have a prime factor p > y with p2 | n. The
number of such n is at most x

∑
p>y 1/p2 � x/(log x)3. Lemma 13 in [18]

shows that uniformly for each positive integer Z we have

(4.1)
∑
n≤x

Ω(n)≥Z

1� Z

2Z
x log x.

Applying this with Z := b10 log2 xc, we get that the set of positive integers
n ≤ x failing (iii) has cardinality � x/(log x)3. If n ≤ x has passed (iii)
but failed (iv), then, since

Ω(φ(n)) ≤ Ω(n) +
∑
p|n

Ω(p− 1),

it follows that n ≤ x has a prime factor p for which Ω(p − 1) ≥ Z. The
number of such n is at most∑

p≤x
Ω(p−1)≥Z

x

p
<

∑
p≤x

Ω(p−1)≥Z

x

p− 1
≤

∑
d≤x

Ω(d)≥Z

x

d

� x
Z

2Z

∫ x

2

log t

t
dt� x

Z(log x)2

2Z
� x

(log x)3
,

by estimate (4.1) and Abel summation. Assume now that n ≤ x passes
(i)–(iv) but fails (v). Then there are at least b9(log2 x)2c prime factors of

φ(n) + 1 counting multiplicities not exceeding x1/(log2 x)2 . Writing d for the
product of the first Z such prime factors of φ(n) + 1, we get that

d < xZ/(log2 x)2 < y1/2,

where the last inequality holds for large values of x. We fix d. Now writing
n = Pm, where P = P (n), we have that φ(n) = (P − 1)φ(m) + 1. We
fix m and observe that P ≤ x/m. Since d | φ(n) + 1, we get that φ(m) is
invertible modulo d and P ≡ 1−φ(m)−1 (mod d). Let ad,m ∈ {1, 2, . . . , d}
be the first positive integer in the above progression modulo d. By the
Brun–Titchmarsh theorem, for fixed d and m, the number of possibilities
for P is
(4.2)

π(x/m; d, ad,m)� x

mφ(d) log(x/(md))
� x log2 x

md log(y1/2)
� x(log2 x)2

md log x
,
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where in the above chain of inequalities we use that x/(md) ≥ P/d ≥ y1/2.
Summing (4.2) over all m ≤ x and all d ≤ x with Ω(d) = Z, we get that
the number of n ≤ x passing (i)–(iv) but failing (v) is

�
∑
m≤x

∑
d≤x

Ω(d)=Z

x(log2 x)2

md log x
� x(log2 x)2

log x

∑
m≤x

1

m


 ∑

d≤x
Ω(d)=Z

1

d


� Z

2Z
x(log x)2(log2 x)2 � x

(log x)3
,

which is what we wanted. Since Ω(φ(n) + 1)� log x for all n ≤ x, we have∑
n≤x

(Ω(φ(n) + 1)− ω(φ(n) + 1))2

=
∑
n∈N

(Ω(φ(n) + 1)− ω(φ(n) + 1))2 +O

(
x

log x

)
.

Next we shrink N by throwing away those n ≤ x for which P (n) ≤ y1,
where

y1 := exp

(
log x log4 x

6 log3 x

)
.

We denote the resulting set by N0. Then

# (N\N0) ≤ Ψ(x, y1) ≤ x/(log2 x)5

for large x. Since Ω(φ(n) + 1) � (log2 x)2 holds for all n ∈ N , it follows
that ∑

n∈N\N0

(Ω(φ(n) + 1)− ω(φ(n) + 1))2 � x

log2 x
,

so that∑
n≤x

(Ω(φ(n) + 1)− ω(φ(n) + 1))2

=
∑
n∈N0

(Ω(φ(n) + 1)− ω(φ(n) + 1))2 +O

(
x

log2 x

)
.

We now look at the subset of n ∈ N0 for which φ(n) + 1 is not squarefree.
We put

z1 :=
C4 log2 x

log3 x
, z2 := log x, z3 := y

1/5
1 ,

where C4 > 0 is a constant to be specified later, and we let

I1 := [2, z1), I2 := [z1, z2), I3 := [z2, z3), I4 := [z3,
√
x].
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For i = 1, . . . , 4, write

Ωi(n) :=
∑

pap‖φ(n)+1
p∈Ii

(ap − 1), for i = 1, . . . , 4,

and let Ni be the subset of N0 such that Ωi(n) = max1≤j≤4{Ωj(n)}.
Clearly,

(4.3)
∑
n≤x

(Ω(φ(n) + 1)− ω(φ(n) + 1))2 �
4∑
i=1

Ω2
i#Ni +

x

log2 x
.

We now deal with the various i = 1, . . . , 4.
When i = 1, the proof of Lemma 2 in [17] shows that there exists a

constant C4 > 0 such that the set of n ≤ x with the property that φ(n) is
not a multiple of all primes p ≤ z1 has cardinality � x/(log2 x)10. Let C4

have the above value. Since Ω1 � (log2 x)2, it follows that

(4.4) Ω2
1#N1 �

x

(log2 x)6
.

Assume now that i = 2. Let n ∈ N2. Put

d :=
∏

pap‖φ(n)+1
ap>1
p∈I2

pap .

Observe that

d < z
10(log2 x)2

2 = exp(10(log2 x)3) < y
1/2
1 ,

where the last inequality holds for all sufficiently large x. We now write
again n = Pm, so φ(n) = (P − 1)φ(m) + 1. We fix both m and d. Then,
as in the argument used to bound the number of n ≤ x failing condition
(v) from the definition of N , we have that the number of such n ≤ x when
both m and d are fixed is at most

π(x/m; d, ad,m)� x

mφ(d) log(x/(md))
� x

mφ(d) log(y
1/2
1 )

� x log3 x

mφ(d) log x
.

Since ω(d) ≤ Ω(d) ≤ T := b10(log2 x)2c, it follows that if we write 2 =
p1 < p2 < · · · < pk < · · · for the increasing sequence of all prime numbers,
we have that

φ(d)

d
≥

s+T∏
i=s

(
1− 1

pi

)
,

where s := π(z1). For large x, we have ps+T < (log2 x)3, and so

φ(d)

d
≥

∏
p≤(log2 x)3

(
1− 1

p

)
� 1

log3 x
,
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where the last inequality follows from Mertens’ formula. Hence, for our
values of d and m, we in fact have

π(x/m; d, ad,m)� x(log3 x)2

md log x
.

Summing the above bound up over all values of m ≤ x, we get an upper
bound of

� x(log3 x)2

d
.

Let D be the set of all allowable values for d. Observe that D consists of
squarefull numbers. Recall that a number d is squarefull if q2 | d whenever
q is a prime factor of d. The above argument shows that

(4.5) Ω2
2#N2 �

∑
d∈D

xΩ(d)2(log3 x)2

d
� x(log3 x)2

∑
d>z21

d squarefull

(log d)2

d
.

The counting function of the set of squarefull positive integers d ≤ s is
O(s1/2). By Abel’s summation formula, it follows immediately that∑

d>z21
d squarefull

(log d)2

d
� (log z1)2

z1
� (log3 x)3

log2 x
,

which together with estimate (4.5) implies that

(4.6) Ω2
2#N2 �

x(log3 x)5

log2 x
.

We now deal with the case i = 3. In this case, Ω2
3 � (log2 x)4 for all

n ∈ N3. Furthermore, for each such n, there is a prime p ∈ I3 such that
p2 | φ(n) + 1. Fix the prime p. Write again n as n = Pm, where P = P (n).
Fix also m. Then φ(n) + 1 = (P − 1)φ(m) + 1 is a multiple of p2. By an
argument already used several times, the number of possibilities for P is
bounded by

π(x/m; p2, ap2,m)� x

mφ(p2) log(x/(mp2))
� x

mp2 log(y
1/2
1 )

� x log3 x

mp2 log x
.

Here, we use that x/(mp2) ≥ P/z2
3 > y

1/2
1 . Summing up the above bound

over all m ≤ x and over all p ∈ I3, we get that

Ω2
3#N3 � x(log2 x)4 log3 x

log x

∑
m≤x

1

m

 ∑
z2≤p≤z3

1

p2


� x(log2 x)4 log3 x

z2 log z2
� x(log2 x)3(log3 x)

log x
.(4.7)
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Finally, take i = 4. Let N ′4 consist of those n ∈ N4 ∩ [x/ log2 x, x] for
which nφ(n) is not divisible by the square of a prime p > (log2 x)3. From
[18, Proposition 8], we have that

(4.8) #(N4 \ N ′4)� x/ log2 x.

We now turn our attention to #N ′4. Suppose that n ∈ N ′4, and say that

p2 | φ(n) + 1 for some p ∈ I4 (so that p > y
1/5
1 ). Then the number

of possibilities for m = φ(n) is clearly � x
∑

p>y
1/5
1

p−2 � x/y
1/5
1 . For

each fixed value of m, the number of n ∈ N ′4 with φ(n) = m is at most
S(x; rad(m)). We have

rad(m) ≥
∏
p|m

p>(log2 x)3

p = φ(n)
∏

pep‖φ(n)
p≤(log2 x)3

p−ep ≥ φ(n)

((log2 x)3)Ω(φ(n))

≥ x/(2(log2 x)2)

exp(330(log2 x)2 log3 x)
>

x

K(x)O(1)
;

here we use use that n ≥ x/ log2 x for n ∈ N ′4, so that φ(n) ≥ x/(2(log2 x)2)
for large x. Moreover, ω(rad(m)) ≤ Ω(φ(n)) ≤ T . Hence, by Lemma 2.1,

S(x; rad(m)) ≤ Bω(m)(C1 log2 x)ω(m)K(x)O(1)

≤ T T (C1 log2 x)TK(x)O(1) ≤ K(x)O(1).

Summing over the possible values of m, we see that

#N ′4 � (x/y
1/5
1 )K(x)O(1) � x/y

1/10
1 .

With (4.8), this shows that

#N4 � x/y
1/10
1 + x/ log2 x� x/ log2 x.

Since obviously Ω4 � log3 x, it follows from the above analysis that

(4.9) Ω2
4#N4 �

x(log3 x)2

log2 x
.

The estimate (1.2) in the statement of the theorem follows now by in-
serting estimates (4.4), (4.6), (4.7) and (4.9) into estimate (4.3).

5. Proof of Theorem 1.3

The proof uses the upper-bound technique of [20]. Put z := 2x log2 x, so
that for large x, the set φ−1([1, x]) is a subset of [1, z]. If v ≤ x and c is a
positive real number, we have
(5.1)

#φ−1(v) ≤
∑
m≤z

φ(m)=v

(z/m)c ≤ zc
∑

m : p|m⇒p−1|v

1

mc
= zc

∏
p−1|v

(1− p−c)−1,
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where the product is over those primes p for which p−1 divides v. Assuming
c ≥ 2/3 (say), we have

∏
p−1|v

(1− p−c)−1 � exp

∑
p−1|v

1

pc


≤ exp

∑
d|v

1

dc

 = exp

exp

O
∑

p|v

1

pc

 .(5.2)

For the proof of (i), we choose

c := 1− (1 + δ) log3 x/ log2 x.

(So certainly c ≥ 2/3 for large x.) Then zc = x/L(x)1+δ+o(1), and it suffices

to show that the contribution from the product in (5.1) is L(x)o(1). We will
show that

(5.3)
∑
p|v

1

pc
� (log2 x)1−δ2 ,

which by (5.2) is enough. Write this sum in the form
∑

1 +
∑

2 +
∑

3,
corresponding to splitting p into three ranges:

(1) p ≤ (log x)1−δ,
(2) (log x)1−δ < p ≤ (log x)1+δ,
(3) p > (log x)1+δ.

To estimate
∑

1, we use the estimate (see [22, eq. (2.4)])∑
p≤y

1

pc
= li(y1−c) (1 +O(1/ log y)) +O(| log (1− c)|),

valid with uniform implied constants whenever 0 < c < 1 and y1−c ≥ 2.
(Since we require only a crude bound on

∑
1, this could be avoided, but

this estimate will be needed in the proof of (ii).) Putting y := (log x)1−δ,
we find that

y1−c = (log x)(1−δ)(1+δ) log3 x/ log2 x = (log2 x)1−δ2 .

Thus,
∑

1 � li(y1−c) = o((log2 x)1−δ2), which fits nicely inside the right-
hand side of (5.3). The contribution from

∑
2 is more easily estimated; by

our hypothesis on the number of prime factors of v in [1, (log x)1+δ], we
have ∑

2
≤ 1

((log x)1−δ)c
#{p | v : (log x)1−δ < p ≤ (log x)1+δ}

≤ 1

((log x)1−δ)c
(log x)1−δ = y1−c = (log2 x)1−δ2 .
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Finally,
∑

3 = o(1), since the number of terms is trivially bounded by
ω(v) = o(log x), while each term is smaller than (log x)−1 (for large x).
Collecting our results gives (5.3) and completes the proof of (i).

To prove (ii), we modify the method slightly, in order to insert the con-
dition ω(m) ≤ Z := blog x/(log2 x)2+δc. By the multinomial theorem,∑

m : φ(m)=v
ω(m)≤Z

1 ≤ zc
∑

m : p|m⇒p−1|v
ω(m)≤Z

1

mc

≤ zc
∑

0≤k≤Z

1

k!

∑
p−1|v

(
1

pc
+

1

p2c
+ . . .

)k

.

As in (i), we take

c = 1− (1 + δ) log3 x/ log2 x,

so that zc = x/L(x)1+δ+o(1), and we seek to show that the multiplicative

contribution from the sums is L(x)o(1). Since c > 2/3, we have∑
p−1|v

(
1

pc
+

1

p2c
+ . . .

)
≤
∑
p−1|v

1

pc
+O(1)

≤
∑
d|v

1

dc
+O(1)� exp

∑
p|v

1

pc

 .

For a given value of ω(v), the remaining sum is largest when the primes are
smallest. From the prime number theorem,∑

p|v

1

pc
≤

∑
p≤2 log x

1

pc
� li((2 log x)1−c)� (log2 x)1+δ

log3 x

for large x. It follows that for certain absolute constants C5 and C6, we
have

∑
0≤k≤Z

1

k!

∑
p−1|v

(
1

pc
+

1

p2c
+ . . .

)k

≤
∑

0≤k≤Z

1

k!

(
C5 exp(C6(log2 x)1+δ/ log3 x)

)k
.

This sum is dominated by the term corresponding to k = Z, and so it is

� 1

Z!
CZ5 exp (C6 log x/(log2 x log3 x)) = L(x)o(1) (as x→∞),

as desired.
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[7] P. Erdős, On the normal number of prime factors of p − 1 and some related problems

concerning Euler’s φ-function, Quart. J. Math. 6 (1935), 205–213.
[8] , Some remarks on Euler’s φ-function and some related problems, Bull. Amer. Math.

Soc. 51 (1945), 540–544.
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