THE REPRESENTATION FUNCTION FOR SUMS OF THREE SQUARES
ALONG ARITHMETIC PROGRESSIONS

PAUL POLLACK

ABSTRACT. For positive integers n, let 7(n) = #{(z,y,2) € Z3 : 2*> + y*> + 22 = n}. Let
g be a positive integer, and let A mod M be any congruence class containing a squarefree
integer. We show that there are infinitely many squarefree positive integers n = A mod M
for which g divides 7(n). This generalizes a result of Cho.

1. INTRODUCTION

For each positive integer n, let 7(n) denote the number of ways of writing n as a sum of
three squares, i.e., r(n) = #{(z,y, 2) € Z* : 2> + y*> + 22 = n}. Recently, Cho established the
following result concerning values of r(n) divisible by a fixed integer [2, Theorem 2].

Theorem A. Let g be a positive integer.

(i) There are infinitely many squarefree n = 1 mod 4 for which 12g | r(n).
(i) If g is odd, then there are infinitely many squarefree n = 2 mod 4 for which 12g | r(n).
(i) If g is odd, then there are infinitely many squarefree n = 3 mod 8 for which 24¢g | r(n).

In this note, we strengthen Theorem A by proving a divisibility result valid not only for
the progressions 1,2 mod 4 and 3 mod 8, but for any progression A mod M compatible with
the squarefree condition. Moreover, in every case we guarantee divisibility by an arbitrary
positive integer g.

Theorem 1. Let g be a positive integer. Let A mod M be any congruence class containing a
squarefree integer. There are infinitely many squarefree n = A mod M for which g | r(n).

Corollary 2. Let g be a positive integer. Let A mod M be a congruence class containing a
squarefree integer, and suppose that A mod M is not entirely contained in the residue class
7 mod 8. There are infinitely many squarefree n = A mod M with r(n) a nonzero multiple of

g.
Remark. Tt is well-known that the progression A mod M contains at least one squarefree

integer precisely when ged(A, M) is squarefree, in which case a positive proportion of the
positive integers n = A mod M are squarefree. See, for instance, §2 of Pappalardi’s survey

[9].
2. PROOF OF THEOREM 1 AND COROLLARY 2

2.1. Sketch. We require two auxiliary results. The first is essentially due to Gauss [4, Art.
291] (cf. [5, Chapter 4]). In what follows, we write h(d) for the class number of the quadratic

field Q(V/d).
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Proposition 3. Let n be a squarefree integer with n > 3.
(i) If n =1,2mod 4, then r(n) = 12h(—n).
(ii) If n =3 mod 8, then r(n) = 24h(—n).
(iii) If n =7 mod 8, then r(n) = 0.

At the heart of the proof of Theorem 1 is a divisibility result for class numbers of imaginary
quadratic fields (compare with [2, Theorem 1]).

Proposition 4. Let g be a positive integer. Let A mod M be a congruence class containing
a squarefree integer. There are infinitely many positive squarefree integers d = A mod M for
which the class group of Q(v/—d) contains an element of order g.

Proof of Theorem 1. Suppose d > 3 is squarefree with d = A mod M and with the class
group of Q(v/—d) containing an element of order g. Then g divides h(—d), which in turn
divides r(d) by Proposition 3. By Proposition 4, there are infinitely many of these d, and
Theorem 1 follows. ]

Proof of Corollary 2. We claim we can find an arithmetic progression contained in the in-
tersection of the progression A mod M and one of the progressions 1,2, 3,5,6 mod 8, and
containing a squarefree integer. Keeping in mind Proposition 3, the corollary then follows
from Theorem 1.

Let Ay be a squarefree integer from the residue class A mod M. Suppose first that
Ag #Z 7mod 8. In this case Ay mod 8M is the desired progression. Suppose now that
Ap = 7mod 8. Then 81 M, so that lem[4, M] = 4 mod 8. Then Ay + lem[4, M| = 3 mod 8
and ged(Ap + lem[4, M],8M) is squarefree. So (keeping in mind Remark 1) the residue class
Ag + lem[4, M] mod 8M has the desired properties. O

The remainder of this note is devoted to a proof of Proposition 4.

2.2. Proof of Proposition 4. To construct our imaginary quadratic fields, we employ a
lemma appearing in work of Soundararajan [10, Proposition 1] (compare with earlier results
of Nagell [8, Satze IV, V]|, Humbert [6, Théoreme 1], and Ankeny and Chowla [1, Theorem

1]).

Lemma 5. Let g > 3 be an integer. Suppose d > 63 is a squarefree integer satisfying

(1) t2d = mf —n?,

where t,m,n are positive integers with ged(m,2n) =1 and m9 < (d + 1)*>. Then the class

group of Q(v/—d) contains an element of order g.

We will also use the following elementary result concerning gth power residues. Below, we
write v,(g) for the p-adic valuation of the integer g.

Lemma 6. Let g be a positive integer. If p is an odd prime, then every integer n =
1 mod p»9*L is a gth power in the ring Z, of p-adic integers. The same holds if p = 2 under
the stronger hypothesis that n = 1 mod p*»(9+2,

Proof. This follows from the fact that the usual binomial expansion for (1 + x)9 converges
p-adically for |z|, < p~@~1 when p is odd, and for |z|, < p~»9~2 when p = 2 (see, for
instance, [3, Corollary 4.2.16, p. 216]). O
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Proof of Proposition 4. The case g = 1 is trivial. Suppose g = 2. By genus theory, h(—d)
is odd for a positive squarefree number d > 2 if and only if d is a prime with d = 3 mod 4.
Since the primes have asymptotic density 0, it follows that the conclusion of Proposition
4 holds for asymptotically 100% of squarefree d = A mod m. Henceforth, we assume that
g > 3. Let Ay be a squarefree integer with Ay = A mod M. By replacing A with Ay and
M by 4M?, we can assume that M is even, squarefull, and that no integer congruent to
A mod M is divisible by the square of a prime dividing M. Set

pIM
We fix an integer m satisfying
mj =1+ t*A mod M#t>.
Such an my exists, since 14 t?A is a gth power in Z, for every prime p | Mt*, by Lemma 6. If

n =1 mod Mt? and m = mo mod M2, then m9 — n? = t2A mod M#t?, so that t? | m9 — n?,
and
g _ 2
2) d::mt—anAmodM.
We now impose further conditions on m and n in order to apply Lemma 5.

Let x be a large real number. Here “large” always means “sufficiently large, in a way that
can made to depend only on the fixed parameters A, M, and ¢g.” Note that ged(mg, Mt?) = 1;
thus, by the prime number theorem for progressions, we may choose a prime m = my mod M¢?
with 2 < m? < z. With X := \/m9/2, we look for integers n € [1, X| with n = 1 mod M#?,
ged(m,n) = 1 and with d, as defined in (2), squarefree. For any such n,

mI —n? 1m9 - 1x
2 T 22 7 AY
and this certainly exceeds 63 for large x. Also, for large =z,

d:

(d+1)* > 1 >z >md.
16 ¢4 -
Thus, Lemma 5 applies, and each such n gives rise to a squarefree d = A mod M with the
class group of Q(y/—d) having an element of order g.
The number of n as above is at least >, — >, —> 5, where

P D D S D N D DD DRt

n<X n<X n<X
n=1 mod M¢t> n=1 mod Mt> n=1 mod M¢t>
m|n ged(n,m)=1
d not squarefree

Clearly, >, > -5 — 1> 0975, while Y-, < -2 +1 < 0.155 (for large z). Now suppose
n is counted in Y 5, and that the prime p is such that p? | d. Then n? = m? mod p?. Since
ged(m,n) = 1, we have p{m. Thus, the congruence n? = m¢ mod p? puts n in one of two
residue classes modulo p?. We also know that p t M; indeed, d = A mod M and no integer
from the residue class A mod M is divisible by the square of a prime dividing M. Since
n =1 mod Mt?* and ged(Mt?,p?) = 1, we see that n is in one of two residue classes modulo

Mt?*p?. So for a given p, the number of corresponding n < X is at most #)222 + 1. Finally,
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we bound ), by summing on possible primes p. Note that p is odd (since M is even) and
that p?> < m9/t* < m9/2 = X?. Thus,

Y < Z(w ><%p>2§+ﬂ<x>_

2<p<X

Since

Z_ _+22—< +22/ —<073

p>2

and 7(X) < 0.015% for large x (as the primes have density 0), we have >, < 3%
Collecting our estimates, we see that the number of suitable n is bounded below by

X 0.025
A Ve
0 O5Mt2 ~ Mt? v

But x can be taken arbitrarily large, and hence Proposition 4 follows. 0

Remark. We have stated Proposition 4 in a qualitative form, but the result actually established
is quantitative. Namely, for fixed A, M, and g, the number of d < z satisfying the conclusion
of Proposition 4 is > x'/2, for all large x. Here (and in the next paragraph) the notation
suppresses the dependence of implied constants on A, M, and g¢.

Without aiming for the sharpest possible lower bound, we now describe how to do slightly
better with little effort. Suppose g > 3. At the moment where we choose m in the above proof,
we can instead consider running the argument for all of the =< 2'/9/log x possible choices of
m. We find that if 2 is large, we produce > z'/2+1/9/log  values of d < z; the only problem
is that distinct m may yield the same values of d. By an argument of Murty [7, bottom of p.
235], each pair of distinct m results in an overlap of only z°!) values of d (as z — o). Hence,
the total overlap is accounted for by subtracting a term of size 22/9t°()  Since z2/9+°(1) is of
smaller order than x'/2*1/9 /log x, we deduce that there are > x'/2¥1/9 /log x values of d < x
satisfying the conclusion of Proposition 4.

3. CONCLUSION

We finish this note by remarking that Proposition 4 yields a short, conceptually simple
proof of the following theorem of Yamamoto [12, Theorem 1]:

Theorem 7. Let g be a positive integer. Let py,...,pr be distinct primes, and for each
1<i<k,lete; € {—1,0,1}. There are infinitely many negative fundamental discriminants
D with the class group of Q(v/D) containing an element of order g and with (g) =¢; for all
1<i<k.

Proof. 1t is well-known that there are infinitely many fundamental discriminants Dy satisfying
(%) =¢; for all 1 <7 < k. In fact, a positive proportion of all fundamental discriminants
have this property; for rather far-reaching generalizations of these facts, see [11]. Fix any
such Dy. Observe that if D is any fundamental discriminant with D = Dy mod 4 Hle Dis

then (in) =¢ foralll <i<k.

Suppose that 4 divides Dy. Apply Proposition 4 to the progression —Dy/4 mod 4 Hle Dis
which contains the squarefree integer —Dg/4. If d is as in the conclusion of the Proposition,
then —d = Dy/4 = 2,3 mod 4 and so Q(v/—d) has discriminant D := —4d. Then D =
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Do mod 4[5, p;. Moreover, Q(v/D) = Q(v/—d), and the class group has an element of
order g. This completes the proof of Theorem 7 in the case when 4 | Dj.

When Dy = 1 mod 4, we argue analogously, this time applying Proposition 4 to the
progression — Dy mod 4 Hle Ds. O
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