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Abstract. For positive integers n, let r(n) = #{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n}. Let
g be a positive integer, and let A mod M be any congruence class containing a squarefree
integer. We show that there are infinitely many squarefree positive integers n ≡ A mod M
for which g divides r(n). This generalizes a result of Cho.

1. Introduction

For each positive integer n, let r(n) denote the number of ways of writing n as a sum of
three squares, i.e., r(n) = #{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n}. Recently, Cho established the
following result concerning values of r(n) divisible by a fixed integer [2, Theorem 2].

Theorem A. Let g be a positive integer.

(i) There are infinitely many squarefree n ≡ 1 mod 4 for which 12g | r(n).
(ii) If g is odd, then there are infinitely many squarefree n ≡ 2 mod 4 for which 12g | r(n).

(iii) If g is odd, then there are infinitely many squarefree n ≡ 3 mod 8 for which 24g | r(n).

In this note, we strengthen Theorem A by proving a divisibility result valid not only for
the progressions 1, 2 mod 4 and 3 mod 8, but for any progression A mod M compatible with
the squarefree condition. Moreover, in every case we guarantee divisibility by an arbitrary
positive integer g.

Theorem 1. Let g be a positive integer. Let A mod M be any congruence class containing a
squarefree integer. There are infinitely many squarefree n ≡ A mod M for which g | r(n).

Corollary 2. Let g be a positive integer. Let A mod M be a congruence class containing a
squarefree integer, and suppose that A mod M is not entirely contained in the residue class
7 mod 8. There are infinitely many squarefree n ≡ A mod M with r(n) a nonzero multiple of
g.

Remark. It is well-known that the progression A mod M contains at least one squarefree
integer precisely when gcd(A,M) is squarefree, in which case a positive proportion of the
positive integers n ≡ A mod M are squarefree. See, for instance, §2 of Pappalardi’s survey
[9].

2. Proof of Theorem 1 and Corollary 2

2.1. Sketch. We require two auxiliary results. The first is essentially due to Gauss [4, Art.
291] (cf. [5, Chapter 4]). In what follows, we write h(d) for the class number of the quadratic

field Q(
√
d).
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Proposition 3. Let n be a squarefree integer with n > 3.

(i) If n ≡ 1, 2 mod 4, then r(n) = 12h(−n).
(ii) If n ≡ 3 mod 8, then r(n) = 24h(−n).

(iii) If n ≡ 7 mod 8, then r(n) = 0.

At the heart of the proof of Theorem 1 is a divisibility result for class numbers of imaginary
quadratic fields (compare with [2, Theorem 1]).

Proposition 4. Let g be a positive integer. Let A mod M be a congruence class containing
a squarefree integer. There are infinitely many positive squarefree integers d ≡ A mod M for
which the class group of Q(

√
−d) contains an element of order g.

Proof of Theorem 1. Suppose d > 3 is squarefree with d ≡ A mod M and with the class
group of Q(

√
−d) containing an element of order g. Then g divides h(−d), which in turn

divides r(d) by Proposition 3. By Proposition 4, there are infinitely many of these d, and
Theorem 1 follows. �

Proof of Corollary 2. We claim we can find an arithmetic progression contained in the in-
tersection of the progression A mod M and one of the progressions 1, 2, 3, 5, 6 mod 8, and
containing a squarefree integer. Keeping in mind Proposition 3, the corollary then follows
from Theorem 1.

Let A0 be a squarefree integer from the residue class A mod M . Suppose first that
A0 6≡ 7 mod 8. In this case A0 mod 8M is the desired progression. Suppose now that
A0 ≡ 7 mod 8. Then 8 - M , so that lcm[4,M ] ≡ 4 mod 8. Then A0 + lcm[4,M ] ≡ 3 mod 8
and gcd(A0 + lcm[4,M ], 8M) is squarefree. So (keeping in mind Remark 1) the residue class
A0 + lcm[4,M ] mod 8M has the desired properties. �

The remainder of this note is devoted to a proof of Proposition 4.

2.2. Proof of Proposition 4. To construct our imaginary quadratic fields, we employ a
lemma appearing in work of Soundararajan [10, Proposition 1] (compare with earlier results
of Nagell [8, Sätze IV, V], Humbert [6, Théorème 1], and Ankeny and Chowla [1, Theorem
1]).

Lemma 5. Let g ≥ 3 be an integer. Suppose d ≥ 63 is a squarefree integer satisfying

(1) t2d = mg − n2,

where t,m, n are positive integers with gcd(m, 2n) = 1 and mg < (d + 1)2. Then the class
group of Q(

√
−d) contains an element of order g.

We will also use the following elementary result concerning gth power residues. Below, we
write νp(g) for the p-adic valuation of the integer g.

Lemma 6. Let g be a positive integer. If p is an odd prime, then every integer n ≡
1 mod pνp(g)+1 is a gth power in the ring Zp of p-adic integers. The same holds if p = 2 under
the stronger hypothesis that n ≡ 1 mod pνp(g)+2.

Proof. This follows from the fact that the usual binomial expansion for (1 + x)1/g converges
p-adically for |x|p ≤ p−νp(g)−1 when p is odd, and for |x|p ≤ p−νp(g)−2 when p = 2 (see, for
instance, [3, Corollary 4.2.16, p. 216]). �
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Proof of Proposition 4. The case g = 1 is trivial. Suppose g = 2. By genus theory, h(−d)
is odd for a positive squarefree number d > 2 if and only if d is a prime with d ≡ 3 mod 4.
Since the primes have asymptotic density 0, it follows that the conclusion of Proposition
4 holds for asymptotically 100% of squarefree d ≡ A mod m. Henceforth, we assume that
g ≥ 3. Let A0 be a squarefree integer with A0 ≡ A mod M . By replacing A with A0 and
M by 4M2, we can assume that M is even, squarefull, and that no integer congruent to
A mod M is divisible by the square of a prime dividing M . Set

t = 2
∏
p|M

pνp(g)+1.

We fix an integer m0 satisfying

mg
0 ≡ 1 + t2A mod Mt2.

Such an m0 exists, since 1 + t2A is a gth power in Zp for every prime p |Mt2, by Lemma 6. If
n ≡ 1 mod Mt2, and m ≡ m0 mod Mt2, then mg − n2 ≡ t2A mod Mt2, so that t2 | mg − n2,
and

(2) d :=
mg − n2

t2
≡ A mod M.

We now impose further conditions on m and n in order to apply Lemma 5.
Let x be a large real number. Here “large” always means “sufficiently large, in a way that

can made to depend only on the fixed parameters A, M , and g.” Note that gcd(m0,Mt2) = 1;
thus, by the prime number theorem for progressions, we may choose a prime m ≡ m0 mod Mt2

with 1
2
x < mg ≤ x. With X :=

√
mg/2, we look for integers n ∈ [1, X] with n ≡ 1 mod Mt2,

gcd(m,n) = 1 and with d, as defined in (2), squarefree. For any such n,

d =
mg − n2

t2
≥ 1

2

mg

t2
>

1

4

x

t2
,

and this certainly exceeds 63 for large x. Also, for large x,

(d+ 1)2 >
1

16

x2

t4
> x ≥ mg.

Thus, Lemma 5 applies, and each such n gives rise to a squarefree d ≡ A mod M with the
class group of Q(

√
−d) having an element of order g.

The number of n as above is at least
∑

1−
∑

2−
∑

3, where∑
1

=
∑
n≤X

n≡1 modMt2

1,
∑

2
=

∑
n≤X

n≡1 modMt2
m|n

1,
∑

3
=

∑
n≤X

n≡1 modMt2
gcd(n,m)=1

d not squarefree

1.

Clearly,
∑

1 ≥
X
Mt2
− 1 > 0.9 X

Mt2
, while

∑
2 ≤

X
Mmt2

+ 1 < 0.1 X
Mt2

(for large x). Now suppose
n is counted in

∑
3, and that the prime p is such that p2 | d. Then n2 ≡ mg mod p2. Since

gcd(m,n) = 1, we have p - m. Thus, the congruence n2 ≡ mg mod p2 puts n in one of two
residue classes modulo p2. We also know that p -M ; indeed, d ≡ A mod M and no integer
from the residue class A mod M is divisible by the square of a prime dividing M . Since
n ≡ 1 mod Mt2 and gcd(Mt2, p2) = 1, we see that n is in one of two residue classes modulo
Mt2p2. So for a given p, the number of corresponding n ≤ X is at most 2X

Mt2p2
+ 1. Finally,
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we bound
∑

3 by summing on possible primes p. Note that p is odd (since M is even) and
that p2 ≤ mg/t2 < mg/2 = X2. Thus,∑

3
≤
∑

2<p≤X

(
2X

Mt2p2
+ 1

)
<

X

Mt2

∑
p>2

2

p2
+ π(X).

Since ∑
p>2

2

p2
<

2

9
+ 2

∑
j≥5

1

j2
<

2

9
+ 2

∑
j≥5

∫ j

j−1

dt

t2
< 0.73

and π(X) < 0.01 X
Mt2

for large x (as the primes have density 0), we have
∑

3 < 3
4
X
Mt2

.
Collecting our estimates, we see that the number of suitable n is bounded below by

0.05
X

Mt2
>

0.025

Mt2
· x1/2.

But x can be taken arbitrarily large, and hence Proposition 4 follows. �

Remark. We have stated Proposition 4 in a qualitative form, but the result actually established
is quantitative. Namely, for fixed A, M , and g, the number of d ≤ x satisfying the conclusion
of Proposition 4 is � x1/2, for all large x. Here (and in the next paragraph) the notation
suppresses the dependence of implied constants on A,M , and g.

Without aiming for the sharpest possible lower bound, we now describe how to do slightly
better with little effort. Suppose g ≥ 3. At the moment where we choose m in the above proof,
we can instead consider running the argument for all of the � x1/g/ log x possible choices of
m. We find that if x is large, we produce � x1/2+1/g/ log x values of d ≤ x; the only problem
is that distinct m may yield the same values of d. By an argument of Murty [7, bottom of p.
235], each pair of distinct m results in an overlap of only xo(1) values of d (as x→∞). Hence,
the total overlap is accounted for by subtracting a term of size x2/g+o(1). Since x2/g+o(1) is of
smaller order than x1/2+1/g/ log x, we deduce that there are � x1/2+1/g/ log x values of d ≤ x
satisfying the conclusion of Proposition 4.

3. Conclusion

We finish this note by remarking that Proposition 4 yields a short, conceptually simple
proof of the following theorem of Yamamoto [12, Theorem 1]:

Theorem 7. Let g be a positive integer. Let p1, . . . , pk be distinct primes, and for each
1 ≤ i ≤ k, let εi ∈ {−1, 0, 1}. There are infinitely many negative fundamental discriminants

D with the class group of Q(
√
D) containing an element of order g and with

(
D
pi

)
= εi for all

1 ≤ i ≤ k.

Proof. It is well-known that there are infinitely many fundamental discriminants D0 satisfying(
D0

pi

)
= εi for all 1 ≤ i ≤ k. In fact, a positive proportion of all fundamental discriminants

have this property; for rather far-reaching generalizations of these facts, see [11]. Fix any

such D0. Observe that if D is any fundamental discriminant with D ≡ D0 mod 4
∏k

i=1 pi,
then

(
D
pi

)
= εi for all 1 ≤ i ≤ k.

Suppose that 4 divides D0. Apply Proposition 4 to the progression −D0/4 mod 4
∏k

i=1 pi,
which contains the squarefree integer −D0/4. If d is as in the conclusion of the Proposition,
then −d ≡ D0/4 ≡ 2, 3 mod 4 and so Q(

√
−d) has discriminant D := −4d. Then D ≡
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D0 mod 4
∏k

i=1 pi. Moreover, Q(
√
D) = Q(

√
−d), and the class group has an element of

order g. This completes the proof of Theorem 7 in the case when 4 | D0.
When D0 ≡ 1 mod 4, we argue analogously, this time applying Proposition 4 to the

progression −D0 mod 4
∏k

i=1 pi. �
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