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Abstract. A real-valued arithmetic function F is said to cluster about the point u ∈ R
if the upper density of n with u− δ < F (n) < u+ δ is bounded away from 0, uniformly
for all δ > 0. We establish a simple-to-check sufficient condition for a linear combination
of multiplicative functions to be nonclustering, meaning not clustering anywhere. This
provides a means of generating new families of arithmetic functions possessing continuous
distribution functions. As a specific application, we resolve a problem posed recently by
Luca and Pomerance.

1. Introduction

Let F be a real-valued arithmetic function. We say that F clusters around the real
number u if there is some ε > 0 such that, for every δ > 0, the solutions n to

u− δ < F (n) < u+ δ

form a set of upper density at least ε. If F does not cluster around any u, we say that
F is nonclustering. The main result of this note is the following criterion for a linear
combination of multiplicative functions to be nonclustering.

Theorem 1. Let f1, . . . , fk be multiplicative arithmetic functions taking values in the
nonzero real numbers and satisfying the following conditions:

(i) f1 is nonclustering,
(ii) none of f1, . . . , fk cluster around 0,
(iii) for all i < j with i, j ∈ {1, 2, . . . , k}, the function fi/fj is nonclustering.

Then for all nonzero c1, . . . , ck ∈ R, the arithmetic function F := c1f1 + · · · + ckfk is
nonclustering.

Theorem 1 has consequences for the study of limit laws of arithmetic functions (for
background, see, e.g., [14, Chapters III.2 and III.4] and [12, Chapter 4]). It is easy to see
that for an arithmetic function F possessing a limit law (i.e., possessing a distribution
function), the distribution function is continuous precisely when F is nonclustering. Now it
is often the case that one can prove a distribution function exists by some general principle,
but that the proof does not offer any insight into whether that function is continuous.
Theorem 1 sometimes provides a convenient way of establishing continuity.

We illustrate by proving a recent conjecture of Luca and Pomerance. Let s(n) be the
sum-of-proper-divisors function, so that s(n) = σ(n)− n. Let sφ(n) = n− φ(n) denote the
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cototient function. In [10], Luca and Pomerance noted that s(n)/sφ(n) ≥ 1 for all n ≥ 2
and showed that the sequence {s(n)/sφ(n)}∞n=2 is dense in [1,∞). We prove:

Theorem 2. The arithmetic function s(n)/sφ(n) possesses a continuous distribution
function Ds/sφ. Moreover, Ds/sφ(u) is strictly increasing for u ≥ 1.

Theorem 2 was conjectured at the end of [10, §1].

2. Nonclustering of c1f1 + · · ·+ ckfk: Proof of Theorem 1

Our argument is modeled on work of Galambos and Kátai [6] concerning pairs of additive
functions (generalizing an earlier result of Fein and Shapiro [5]).

2.1. Setup. Since f1 is nonclustering and c1 is nonzero, the theorem is obvious when
k = 1. Proceeding inductively, we may assume that k ≥ 2 and that the theorem is already
known to hold for all smaller values of k.

Let u ∈ R. We will show that by making a judicious choice of δ, the upper density of
the set of n satisfying

(1) u− δ < F (n) < u+ δ

can be made arbitrarily small.
Let ε > 0. We let Y and Z be large, fixed real numbers (independent of n); their values

will be specified more precisely in the course of the proof. To begin with, we assume that
Y, Z ≥ 2.

For each solution n to (1), we split off the Y -smooth part of n, writing

n = st, where p | s =⇒ p ≤ Y, and p | t =⇒ p > Y.

(Here and below, p always refers to a prime.) We refer to this way of writing n as the
‘basic decomposition’, and we reserve the letters s and t for this purpose. We sometimes
make use of obvious modifications of this notation, e.g., using s′ and t′ for the components
in the decomposition of n′.

For a set S of positive integers, we write d̄S for its upper density.

2.2. Those n with large smooth part. It is known that the upper density of n with
Y -smooth part larger than Y Z is

� exp(−cZ),

where c > 0 is an absolute constant, and the implied constant is also absolute (see [8,
Theorem 07, p. 4]). Hence, this same expression bounds the upper density of solutions n
to (1) with s > Y Z .

2.3. Splitting the set of remaining n. Let S be the set of n satisfying (1) with s ≤ Y Z .
We split S into two pieces, S1 and S2, where

S1 = {n ∈ S : there is an n′ ∈ S with t = t′ and with fi(s) 6= fi(s
′) for some i},

S2 = S \ S1.

We proceed to bound the upper densities of S1 and S2.
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2.4. Bounding d̄S1. Let n ∈ S1, and choose n′ as in the definition of S1. Since n and n′

both satisfy (1),

|F (n)− F (n′)| =
∣∣ k∑
i=1

cifi(n)−
k∑
i=1

cifi(n
′)
∣∣ < 2δ.

Writing fi(n) = fi(s)fi(t), fi(n
′) = fi(s

′)fi(t
′) and keeping in mind that t = t′, the

preceding inequality becomes∣∣ k∑
i=1

ci(fi(s)− fi(s′))fi(t)
∣∣ < 2δ.

Let r = r(n) be the largest index in {1, 2, . . . , k} with fr(s) 6= fr(s
′). Then∣∣ r−1∑

i=1

ci(fi(s)− fi(s′))
fi
fr

(t) + cr(fr(s)− fr(s′))
∣∣ < 2

|fr(t)|
δ.

Since none of f1, . . . , fk cluster around 0, we may select ρ > 0 (depending on the fi, ε,
Y , and Z) in such a way that the set T of positive integers m satisfying |fi(m)| < ρ for
some i has upper density less than εY −Z . If |fr(t)| < ρ, then t = n/s ∈ T , and so n ∈ sT .
For each s,

d̄(sT ) =
1

s
d̄(T ) ≤ d̄(T ) < εY −Z .

But the number of possibilities for s is at most Y Z . Thus, the set of n ∈ S1 with |fr(t)| < ρ
has upper density at most ε.

Suppose now that n ∈ S1 and that |fr(t)| ≥ ρ. Then continuing the above calculation,

(2)
∣∣ r−1∑
i=1

ci(fi(s)− fi(s′))
fi
fr

(t) + cr(fr(s)− fr(s′))
∣∣ < 2

ρ
δ.

We enforce the condition that δ > 0 is small enough that

2

ρ
δ < min

1≤i≤k
min

S,S′≤Y Z
fi(S)6=fi(S′)

|ci(fi(S)− fi(S ′))|.

Then (2) implies that there is at least one value of i ∈ {1, 2, . . . , r − 1} with fi(s) 6= fi(s
′).

We now apply the induction hypothesis to the list of functions fi/fr, where i runs over
those indices not exceeding r − 1 for which fi(s) 6= fi(s

′). (It is easy to see that condition
(iii) for the original list f1, . . . , fk implies all of conditions (i)–(iii) for the new list of
functions fi/fr.) This induction hypothesis implies that

r−1∑
i=1

ci(fi(s)− fi(s′))
fi
fr

does not cluster around −cr(fr(s)− fr(s′)). We may thus fix δr,s,s′ > 0 small enough to
guarantee that the set Ur,s,s′ of positive integers m satisfying∣∣ r−1∑

i=1

ci(fi(s)− fi(s′))
fi
fr

(m) + cr(fr(s)− fr(s′))
∣∣ < 2

ρ
δr,s,s′
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has upper density smaller than εY −2Zk−1. We make the further stipulation that our choice
of δ > 0 satisfies

δ < min δr,s,s′

where the minimum runs over all of the (finitely many!) possible triples r, s, s′ that arise
in this way.

With δ so restricted, whenever (2) holds, n ∈ sUr,s,s′ . Each set sUr,s,s′ has upper density
smaller than εY −2Zk−1, while the number of possibilities for the triple r, s, s′ is at most
kY 2Z . Hence, the set of n ∈ S1 with |fr(t)| ≥ ρ has upper density smaller than ε.

We conclude that S1 has upper density smaller than 2ε.

2.5. Bounding d̄S2. For each large real number x, we partition S2 ∩ [1, x] as follows.
Given a pair of nonnegative integers U, V , we let S2(U, V ) be the subset of S2 ∩ [1, x]
consisting of those n with

x/2U+1 < n ≤ x/2U and x/2(U+1)+V < t ≤ x/2U+V .

Thus,

S2 ∩ [1, x] =
⋃

U,V≥0

S2(U, V ).

If n ∈ S2(U, V ), then

2V−1 < s = n/t < 2V+1.

Since each n ∈ S2 has s ≤ Y Z , the set S2(U, V ) is empty unless 2V−1 < Y Z , and so we will
assume this condition on V . To bound #S2(U, V ), we first fix the large-primes component
t and count the number of corresponding n. List these as

n1 = s1t, n2 = s2t, . . . , nJ = sJt.

Then for each 1 ≤ i ≤ k,

fi(s1) = fi(s2) = · · · = fi(sJ);

otherwise, some of n1, . . . , nJ would belong to S1. In particular, every n ∈ S2(U, V )
corresponding to this particular t has

f1(s) = d

for a fixed d. By a theorem of Halász, the number of positive integers S < 2V+1 with
f1(S) = d is

(3) � 2V+1/
√
E(2V+1)

with an absolute implied constant, where E(T ) is defined for real values of T by

E(T ) =
∑
p≤T

f1(p)6=±1

1

p
.

(To deduce this from the main theorem of [7], apply that result to the additive function
log |f1(n)|.) Our hypothesis that f1 is nonclustering implies that the unrestricted sum
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p: f1(p)6=±1

1
p

diverges: Otherwise, the set of squarefree n divisible only by primes p with

f1(p) = ±1 has density ∏
p: f1(p) 6=±1

(
1− 1

p

) ∏
p: f1(p)=±1

(
1− 1

p2

)
> 0,

which forces f1 to cluster around one of ±1. Hence, the denominator in (3) tends to
infinity with V . Thus, there is a positive integer V0 = V0(ε) such that whenever V ≥ V0,
the number of S < 2V+1 satisfying f1(S) = d is at most ε · 2V+1. (We could also have
reached this conclusion by applying [3, Theorem IV] instead of [7].) We conclude that, for
each fixed t, the number of corresponding n = st ∈ S2(U, V ) is

≤

{
2V+1 always,

ε · 2V+1 when V ≥ V0.

On the other hand, since t ≤ x/2U+V and has no prime factors in [2, Y ], inclusion-exclusion
shows that the number of possibilities for t is

≤ x

2U+V

∏
p≤Y

(
1− 1

p

)
+O(2Y ) ≤ x

2U+V log Y
+O(2Y ).

Combining these upper bounds, we deduce that

#S2(U, V ) ≤

{
2x

2U log Y
+O(2V+Y ) always,

2εx
2U log Y

+O(2V+Y ) for V ≥ V0.

Finally we sum over U and V . Let S2(U) =
⋃
V S2(U, V ). Since we need only consider V

with 2V−1 < Y Z , we have

#S2(U) ≤
∑

0≤V <V0
V <

log(Y Z )
log 2

+1

(
2x

2U log Y
+O(2V+Y )

)
+

∑
V≥V0

V <
log(Y Z )

log 2
+1

(
2εx

2U log Y
+O(2V+Y )

)

≤ 2V0
log Y

x

2U
+ 4εZ

x

2U
+O(2Y · Y Z).

Now we sum on all nonnegative U with 2U ≤ x to find that

#S2 ∩ [1, x] ≤ 4V0
log Y

· x+ 8εZ · x+O(2Y · Y Z · log x).

It follows that S2 has upper density at most

4V0
log Y

+ 8εZ.

2.6. Denouement. Putting everything together, we see that the upper density of solutions
to (1) is at most

C exp(−cZ) + 2ε+
4V0

log Y
+ 8εZ,

where C and c are absolute positive constants. We now fix our choices of parameters
ε, Y, Z. Given any η > 0, we first fix Z large enough to make C exp(−cZ) < η/3, then fix
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ε > 0 small enough to make 2ε+ 8εZ < η/3, and then finally fix Y large enough to make
4V0/ log Y < η/3. Our arguments then show that for a suitable of choice of δ > 0, the set
of n satisfying (1) has upper density < η.

3. s vs sφ: Proof of Theorem 2

We begin with a result of independent interest.

Proposition 3. Fix a nonzero real number R. Then F (n) = σ(n)
n

+ Rφ(n)
n

possesses a
continuous distribution function.

Proof that a (possibly discontinuous) distribution function exists. We argue via the method
of moments. The argument is very similar to one described in detail in [11, §4], and so we
only sketch the proof. For each positive integer k, define

µk = lim
x→∞

1

x

∑
n≤x

(
σ(n)

n
+R

φ(n)

n

)k
.

To see that µk exists, it suffices to note that

(σ(n)/n+Rφ(n)/n)k =
k∑
j=0

(
k

j

)
Rk−jσ(n)jφ(n)k−j/nk

and that each of the functions σ(n)jφ(n)k−j/nk possesses a finite mean value, by a
straightforward application of Wintner’s mean value theorem [12, Theorem 1, p. 138].
Since (

k

j

)
≤ 2k and σ(n)jφ(n)k−j/nk ≤ (σ(n)/n)k ≤ (n/φ(n))k,

we can use the estimation of the moments of n/φ(n) appearing in the proof of [11,
Proposition 4.3] to deduce that

µk � exp(O(k log log(3k))).

(Here we allow implied constants to depend on R.) In particular, the condition

lim sup
k→∞

µ
1/2k
2k /k <∞

that is required for application of [2, Theorem 3.3.12, p. 123] is satisfied, and so F (n)
possesses a distribution function. �

Proof of continuity. We apply Theorem 1 with f1(n) = σ(n)/n and f2(n) = φ(n)/n. The
Erdős–Wintner theorem [4] (see also [12, §4.7]), applied to log f1, log f2, and log(f1/f2)
shows that all of f1, f2, f1/f2 have continuous distribution functions, which immediately
implies conditions (i)–(iii). �

Remark 4. Results closely related to Proposition 3 can already be found in the literature.

For example, [9] contains a proof of the continuity of the distribution function of σ(n)
n

+ φ(n)
n

in a strong form (a sharp estimate for the modulus of continuity). The strength of Theorem
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1 is its ease of applicability and wide generality. To illustrate with a random example, an
argument analogous to the above will prove that

c1
φ(n)

σ(n)
+ c2 exp

∑
p|n

1

log p

+ c3
σ(n)λ(n)

n

has a continuous distribution function for any nonzero c1, c2, c3. Here σ, φ are as usual,
and λ is the Liouville function, the completely multiplicative function with λ(p) = −1 for
every prime p. (To estimate the moments in this case one should appeal to [15, Sätze I,
II] in place of Wintner’s theorem.)

Proof of Theorem 2. Let u > 0. Writing s(n) = σ(n) − n and sφ(n) = n − φ(n), the
inequality s(n)/sφ(n) ≤ u can be put in the form

σ(n)

n
+ u

φ(n)

n
≤ 1 + u.

By Proposition 3, σ(n)
n

+ uφ(n)
n

possesses a continuous distribution function, say D1,u. It
follows that, for each u > 0,

lim
x→∞

1

x
#{2 ≤ n ≤ x : s(n)/sφ(n) ≤ u}

exists and equals D1,u(1 + u). Since s(n)/sφ(n) ≥ 1, the same limit also exists for u ≤ 0,
where it vanishes. We denote the value of this limit by Ds/sφ(u).

We now check the boundary conditions necessary for Ds/sφ to qualify as a distribution
function. It is trivial that limu→−∞Ds/sφ(u) = 0. To see that limu→∞Ds/sφ(u) = 1,
suppose that s(n)/sφ(n) > u, where u is large and positive. We can write this inequality
in the form

σ(n)
n
− 1

1− φ(n)
n

> u.

So either σ(n)
n

> 1 +
√
u or φ(n)

n
> 1 − 1√

u
. Each of these inequalities holds on a set of

density tending to 0 as u → ∞, since σ(n)
n

and φ(n)
n

each have continuous distribution
functions (e.g., by the Erdős–Wintner theorem again). It follows that 1−Ds/sφ(u)→ 0 as
u→∞, and hence Ds/sφ(u)→ 1 as u→∞, as desired.

Now we show continuity of Ds/sφ(u). It is certainly sufficient to consider values of u ≥ 1.
Given such a u, we will prove that the set of solutions n to

u− δ < s(n)

sφ(n)
< u+ δ

comprise a set of upper density tending to 0 as δ ↓ 0. Therefore s/sφ is nonclustering
(provided one extends this quotient to be defined at n = 1). Rearranging these inequalities
for s(n)/sφ(n) yields

σ(n)

n
+ u

φ(n)

n
≤ 1 + u+ δ

(
1− φ(n)

n

)
≤ 1 + u+ δ

as well as
σ(n)

n
+ u

φ(n)

n
≥ 1 + u− δ

(
1− φ(n)

n

)
≥ 1 + u− δ.
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Now the desired result follows from the continuity of the distribution function D1,u.
So far we have shown that s/sφ has a continuous distribution function Ds/sφ . It remains

(only) to prove that Ds/sφ(u) is strictly increasing for u ≥ 1.
We let a, b ≥ 1 with a < b and aim to show that Ds/sφ(a) < Ds/sφ(b). By [10], the image

of s/sφ is dense in [1,∞), and so we may fix an n0 such that

c := s(n0)/sφ(n0) ∈ (a, b).

We now argue that a positive proportion of the multiples n of n0 also satisfy s(n)/sφ(n) ∈
(a, b). It is easy to prove (see the start of [10, §3]) that

s(n0m)/sφ(n0m) ≥ s(n0)/sφ(n0) > a

for all m, and so it suffices to show that s(n0m)/sφ(n0m) < b holds a positive proportion
of the time.

Let y be a large, fixed real parameter be specified more precisely below. To begin with,
we assume y is so large that

∏
p≤y(1− 1/p) > 1/(2 log y). (This is true for all large y by

Mertens’ theorem, since eγ < 2.) Let Py be the product of the primes not exceeding y.
Then for all sufficiently large x (depending on y),

(4) #{m ≤ x : gcd(m,Py) = 1} > 1

2
x
∏
p≤y

(1− 1/p) >
1

4 log y
x.

Moreover, recalling that σ(m)
m

=
∑

d|m
1
d
, we have that∑

m≤x
gcd(m,Py)=1

(
σ(m)

m
− 1

)
=

∑
m≤x

gcd(m,Py)=1

∑
d|m
d>1

1

d
≤

∑
d: p|d =⇒ p>y

d>1

1

d

∑
m≤x
d|m

1

≤ x
∑

d: p|d =⇒ p>y
d>1

1

d2
= x

(∏
p>y

(
1 +

1

p2
+

1

p4
+ . . .

)
− 1

)
.

The prime number theorem together with partial summation implies that∏
p>y

(
1 +

1

p2
+

1

p4
+ . . .

)
< exp

(∑
p>y

2

p2

)

≤ exp

(
O

(
1

y log y

))
= 1 +O

(
1

y log y

)
.

Hence, ∑
m≤x

gcd(m,Py)=1

(
σ(m)

m
− 1

)
� 1

y log y
x,

so that the number of m ≤ x with gcd(m,Py) = 1 and σ(m)
m
− 1 ≥ 1

log y
is O(x/y).

Comparing with (4), we see that if y is fixed sufficiently large, then for all large x,

(5) #
{
m ≤ x : gcd(m,Py) = 1,

σ(m)

m
− 1 <

1

log y

}
>

1

8 log y
x.
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Increasing y if necessary, we may assume that y exceeds the largest prime factor of n0.
Then for any m counted on the left-hand side of (5),

σ(n0m)

n0m
− 1 =

σ(n0)

n0

σ(m)

m
− 1 ≤ σ(n0)

n0

(
1 +

1

log y

)
− 1 =

σ(n0)

n0

− 1 +
σ(n0)/n0

log y
.

Since also

1− φ(n0m)

n0m
≥ 1− φ(n0)

n0

,

we find that

s(n0m)

sφ(n0m)
=

σ(n0m)
n0m

− 1

1− φ(n0m)
n0m

≤
σ(n0)
n0
− 1

1− φ(n0)
n0

+
σ(n0)/n0

(1− φ(n0)
n0

)

1

log y

= c+
σ(n0)/n0

(1− φ(n0)
n0

)

1

log y
.

Increasing y if necessary, we can ensure that this last expression is smaller than b.
With y fixed as above, (5) implies that the set of m with s(n0m)/sφ(n0m) < b has

positive lower density. It follows that the corresponding values n = n0m also comprise
a set of positive lower density. Together with our earlier remarks, we conclude that
Ds/sφ(a) < Ds/sφ(b), as desired. This completes the proof that Ds/sφ is increasing as well
as the proof of Theorem 2. �

4. Concluding remarks on positive-valued multiplicative functions

Theorem 1 is well-suited to proving the continuity of a distribution function when it exists.
It is therefore natural to ask for a general condition guaranteeing that F = c1f1 + · · ·+ckfk
possesses a distribution function. We conclude by sketching a proof of the following partial
result in this direction. The argument is due essentially to Shapiro [13] (see especially
p. 63), but as the case we work in is much simpler than his general set-up, it seems a
relatively self-contained discussion is warranted.

Proposition 5. Let f1, . . . , fk be positive-valued multiplicative functions each possessing
a distribution function. Then for any c1, . . . , ck ∈ R, the function c1f1 + · · · + ckfk also
has a distribution function.

Note that this result applies, for instance, to the example considered in Proposition 3, but
not immediately to the one considered in Remark 4.

Let Y > 0. We keep the notation of §2, where n denotes a positive integer and s denotes
the Y -smooth part of n. (There will be no confusion with the sum-of-proper-divisors
function.) We say that an arithmetic function F is essentially determined by small primes
if for all ε > 0,

lim
Y→∞

d̄{n : |F (n)− F (s)| > ε} = 0.

If F is an arithmetic function essentially determined by small primes, then F has a
distribution function; this is contained in [13, Theorem 2.1], and also follows from [14,
Theorem 2.3, p. 427]. Moreover, the converse holds for all additive functions F (see the
theorem stretching from pp. 719–720 in [4]).
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To relate this back to Proposition 5, we recall that when a positive-valued multiplicative
function possesses a limit law, either its distribution function is that of the degenerate
distribution at 0, or the additive function log f has a distribution function. (See [1,
Theorem 4], and note that the convergence of the three series in eq. (3) there is exactly the
Erdős–Wintner condition for log f to have a distribution function.) Now given f1, . . . , fk
as in Proposition 5, we may reorder the list so that f1, . . . , f` have distributions degenerate
at 0, and f`+1, . . . , fk do not. It is then easy to see that if c`+1f`+1 + · · · + ckfk has a
distribution function, then c1f1 + · · ·+ ckfk has the same distribution function. Thus, we
can (and do) assume that each of the log fi has a distribution function. As discussed in
the previous paragraph, this means that each log fi is esssentially determined by small
primes. We claim that each fi is also so-determined. Indeed, suppose that

|fi(n)− fi(s)| > ε.

Then, with η > 0 a parameter at our disposal, either fi(n) > η, or

|fi(s)/fi(n)− 1| > ε/η.

This last inequality implies that

| log fi(n)− log fi(s)| �ε,η 1;

since log fi is essentially determined by small primes, this estimate holds on a set of upper
density tending to 0 as Y →∞. On the other hand, if fi(n) > η, then log fi(n) > log η.
That occurs on a set of upper density tending to 0 as η tends to infinity, since log fi has a
(proper) distribution function. Letting Y →∞ and then letting η →∞ proves our claim.

Since the fi are essentially by determined by small primes, so is any R-linear combination
of the fi; thus, all such combinations possess distribution functions.
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