CLUSTERING OF LINEAR COMBINATIONS OF MULTIPLICATIVE FUNCTIONS

NOAH LEBOWITZ-LOCKARD AND PAUL POLLACK

Abstract

A real-valued arithmetic function F is said to cluster about the point $u \in \mathbb{R}$ if the upper density of n with $u-\delta<F(n)<u+\delta$ is bounded away from 0 , uniformly for all $\delta>0$. We establish a simple-to-check sufficient condition for a linear combination of multiplicative functions to be nonclustering, meaning not clustering anywhere. This provides a means of generating new families of arithmetic functions possessing continuous distribution functions. As a specific application, we resolve a problem posed recently by Luca and Pomerance.

1. Introduction

Let F be a real-valued arithmetic function. We say that F clusters around the real number u if there is some $\epsilon>0$ such that, for every $\delta>0$, the solutions n to

$$
u-\delta<F(n)<u+\delta
$$

form a set of upper density at least ϵ. If F does not cluster around any u, we say that F is nonclustering. The main result of this note is the following criterion for a linear combination of multiplicative functions to be nonclustering.

Theorem 1. Let f_{1}, \ldots, f_{k} be multiplicative arithmetic functions taking values in the nonzero real numbers and satisfying the following conditions:
(i) f_{1} is nonclustering,
(ii) none of f_{1}, \ldots, f_{k} cluster around 0 ,
(iii) for all $i<j$ with $i, j \in\{1,2, \ldots, k\}$, the function f_{i} / f_{j} is nonclustering.

Then for all nonzero $c_{1}, \ldots, c_{k} \in \mathbb{R}$, the arithmetic function $F:=c_{1} f_{1}+\cdots+c_{k} f_{k}$ is nonclustering.

Theorem 1 has consequences for the study of limit laws of arithmetic functions (for background, see, e.g., [14, Chapters III. 2 and III.4] and [12, Chapter 4]). It is easy to see that for an arithmetic function F possessing a limit law (i.e., possessing a distribution function), the distribution function is continuous precisely when F is nonclustering. Now it is often the case that one can prove a distribution function exists by some general principle, but that the proof does not offer any insight into whether that function is continuous. Theorem 1 sometimes provides a convenient way of establishing continuity.

We illustrate by proving a recent conjecture of Luca and Pomerance. Let $s(n)$ be the sum-of-proper-divisors function, so that $s(n)=\sigma(n)-n$. Let $s_{\phi}(n)=n-\phi(n)$ denote the

[^0]cototient function. In [10], Luca and Pomerance noted that $s(n) / s_{\phi}(n) \geq 1$ for all $n \geq 2$ and showed that the sequence $\left\{s(n) / s_{\phi}(n)\right\}_{n=2}^{\infty}$ is dense in $[1, \infty)$. We prove:

Theorem 2. The arithmetic function $s(n) / s_{\phi}(n)$ possesses a continuous distribution function $D_{s / s_{\phi}}$. Moreover, $D_{s / s_{\phi}}(u)$ is strictly increasing for $u \geq 1$.

Theorem 2 was conjectured at the end of $[10, \S 1]$.

2. Nonclustering of $c_{1} f_{1}+\cdots+c_{k} f_{k}$: Proof of Theorem 1

Our argument is modeled on work of Galambos and Kátai [6] concerning pairs of additive functions (generalizing an earlier result of Fein and Shapiro [5]).
2.1. Setup. Since f_{1} is nonclustering and c_{1} is nonzero, the theorem is obvious when $k=1$. Proceeding inductively, we may assume that $k \geq 2$ and that the theorem is already known to hold for all smaller values of k.

Let $u \in \mathbb{R}$. We will show that by making a judicious choice of δ, the upper density of the set of n satisfying

$$
\begin{equation*}
u-\delta<F(n)<u+\delta \tag{1}
\end{equation*}
$$

can be made arbitrarily small.
Let $\epsilon>0$. We let Y and Z be large, fixed real numbers (independent of n); their values will be specified more precisely in the course of the proof. To begin with, we assume that $Y, Z \geq 2$.

For each solution n to (1), we split off the Y-smooth part of n, writing

$$
n=s t, \quad \text { where } \quad p \mid s \Longrightarrow p \leq Y, \quad \text { and } \quad p \mid t \Longrightarrow p>Y
$$

(Here and below, p always refers to a prime.) We refer to this way of writing n as the 'basic decomposition', and we reserve the letters s and t for this purpose. We sometimes make use of obvious modifications of this notation, e.g., using s^{\prime} and t^{\prime} for the components in the decomposition of n^{\prime}.

For a set \mathcal{S} of positive integers, we write $\overline{\mathbf{d}} \mathcal{S}$ for its upper density.
2.2. Those n with large smooth part. It is known that the upper density of n with Y-smooth part larger than Y^{Z} is

$$
\ll \exp (-c Z)
$$

where $c>0$ is an absolute constant, and the implied constant is also absolute (see [8, Theorem 07, p. 4]). Hence, this same expression bounds the upper density of solutions n to (1) with $s>Y^{Z}$.
2.3. Splitting the set of remaining n. Let \mathcal{S} be the set of n satisfying (1) with $s \leq Y^{Z}$. We split \mathcal{S} into two pieces, \mathcal{S}_{1} and \mathcal{S}_{2}, where

$$
\begin{aligned}
& \mathcal{S}_{1}=\left\{n \in \mathcal{S}: \text { there is an } n^{\prime} \in \mathcal{S} \text { with } t=t^{\prime} \text { and with } f_{i}(s) \neq f_{i}\left(s^{\prime}\right) \text { for some } i\right\}, \\
& \qquad \mathcal{S}_{2}=\mathcal{S} \backslash \mathcal{S}_{1} .
\end{aligned}
$$

We proceed to bound the upper densities of \mathcal{S}_{1} and \mathcal{S}_{2}.
2.4. Bounding $\overline{\mathrm{d}} \mathcal{S}_{1}$. Let $n \in \mathcal{S}_{1}$, and choose n^{\prime} as in the definition of \mathcal{S}_{1}. Since n and n^{\prime} both satisfy (1),

$$
\left|F(n)-F\left(n^{\prime}\right)\right|=\left|\sum_{i=1}^{k} c_{i} f_{i}(n)-\sum_{i=1}^{k} c_{i} f_{i}\left(n^{\prime}\right)\right|<2 \delta
$$

Writing $f_{i}(n)=f_{i}(s) f_{i}(t), f_{i}\left(n^{\prime}\right)=f_{i}\left(s^{\prime}\right) f_{i}\left(t^{\prime}\right)$ and keeping in mind that $t=t^{\prime}$, the preceding inequality becomes

$$
\left|\sum_{i=1}^{k} c_{i}\left(f_{i}(s)-f_{i}\left(s^{\prime}\right)\right) f_{i}(t)\right|<2 \delta
$$

Let $r=r(n)$ be the largest index in $\{1,2, \ldots, k\}$ with $f_{r}(s) \neq f_{r}\left(s^{\prime}\right)$. Then

$$
\left|\sum_{i=1}^{r-1} c_{i}\left(f_{i}(s)-f_{i}\left(s^{\prime}\right)\right) \frac{f_{i}}{f_{r}}(t)+c_{r}\left(f_{r}(s)-f_{r}\left(s^{\prime}\right)\right)\right|<\frac{2}{\left|f_{r}(t)\right|} \delta .
$$

Since none of f_{1}, \ldots, f_{k} cluster around 0 , we may select $\rho>0$ (depending on the f_{i}, ϵ, Y, and Z) in such a way that the set \mathcal{T} of positive integers m satisfying $\left|f_{i}(m)\right|<\rho$ for some i has upper density less than ϵY^{-Z}. If $\left|f_{r}(t)\right|<\rho$, then $t=n / s \in \mathcal{T}$, and so $n \in s \mathcal{T}$. For each s,

$$
\overline{\mathbf{d}}(s \mathcal{T})=\frac{1}{s} \overline{\mathbf{d}}(\mathcal{T}) \leq \overline{\mathbf{d}}(\mathcal{T})<\epsilon Y^{-Z}
$$

But the number of possibilities for s is at most Y^{Z}. Thus, the set of $n \in \mathcal{S}_{1}$ with $\left|f_{r}(t)\right|<\rho$ has upper density at most ϵ.

Suppose now that $n \in \mathcal{S}_{1}$ and that $\left|f_{r}(t)\right| \geq \rho$. Then continuing the above calculation,

$$
\begin{equation*}
\left|\sum_{i=1}^{r-1} c_{i}\left(f_{i}(s)-f_{i}\left(s^{\prime}\right)\right) \frac{f_{i}}{f_{r}}(t)+c_{r}\left(f_{r}(s)-f_{r}\left(s^{\prime}\right)\right)\right|<\frac{2}{\rho} \delta . \tag{2}
\end{equation*}
$$

We enforce the condition that $\delta>0$ is small enough that

$$
\frac{2}{\rho} \delta<\min _{1 \leq i \leq k} \min _{\substack{S, S^{\prime} \leq Y^{Z} \\ f_{i}(S) \neq f_{i}\left(S^{\prime}\right)}}\left|c_{i}\left(f_{i}(S)-f_{i}\left(S^{\prime}\right)\right)\right|
$$

Then (2) implies that there is at least one value of $i \in\{1,2, \ldots, r-1\}$ with $f_{i}(s) \neq f_{i}\left(s^{\prime}\right)$. We now apply the induction hypothesis to the list of functions f_{i} / f_{r}, where i runs over those indices not exceeding $r-1$ for which $f_{i}(s) \neq f_{i}\left(s^{\prime}\right)$. (It is easy to see that condition (iii) for the original list f_{1}, \ldots, f_{k} implies all of conditions (i)-(iii) for the new list of functions f_{i} / f_{r}.) This induction hypothesis implies that

$$
\sum_{i=1}^{r-1} c_{i}\left(f_{i}(s)-f_{i}\left(s^{\prime}\right)\right) \frac{f_{i}}{f_{r}}
$$

does not cluster around $-c_{r}\left(f_{r}(s)-f_{r}\left(s^{\prime}\right)\right)$. We may thus fix $\delta_{r, s, s^{\prime}}>0$ small enough to guarantee that the set $\mathcal{U}_{r, s, s^{\prime}}$ of positive integers m satisfying

$$
\left|\sum_{i=1}^{r-1} c_{i}\left(f_{i}(s)-f_{i}\left(s^{\prime}\right)\right) \frac{f_{i}}{f_{r}}(m)+c_{r}\left(f_{r}(s)-f_{r}\left(s^{\prime}\right)\right)\right|<\frac{2}{\rho} \delta_{r, s, s^{\prime}}
$$

has upper density smaller than $\epsilon Y^{-2 Z} k^{-1}$. We make the further stipulation that our choice of $\delta>0$ satisfies

$$
\delta<\min \delta_{r, s, s^{\prime}}
$$

where the minimum runs over all of the (finitely many!) possible triples r, s, s^{\prime} that arise in this way.

With δ so restricted, whenever (2) holds, $n \in s \mathcal{U}_{r, s, s^{\prime}}$. Each set $s \mathcal{U}_{r, s, s^{\prime}}$ has upper density smaller than $\epsilon Y^{-2 Z} k^{-1}$, while the number of possibilities for the triple r, s, s^{\prime} is at most $k Y^{2 Z}$. Hence, the set of $n \in \mathcal{S}_{1}$ with $\left|f_{r}(t)\right| \geq \rho$ has upper density smaller than ϵ.

We conclude that \mathcal{S}_{1} has upper density smaller than 2ϵ.
2.5. Bounding $\overline{\mathbf{d}} \mathcal{S}_{2}$. For each large real number x, we partition $\mathcal{S}_{2} \cap[1, x]$ as follows. Given a pair of nonnegative integers U, V, we let $\mathcal{S}_{2}(U, V)$ be the subset of $\mathcal{S}_{2} \cap[1, x]$ consisting of those n with

$$
x / 2^{U+1}<n \leq x / 2^{U} \quad \text { and } \quad x / 2^{(U+1)+V}<t \leq x / 2^{U+V} .
$$

Thus,

$$
\mathcal{S}_{2} \cap[1, x]=\bigcup_{U, V \geq 0} \mathcal{S}_{2}(U, V)
$$

If $n \in \mathcal{S}_{2}(U, V)$, then

$$
2^{V-1}<s=n / t<2^{V+1}
$$

Since each $n \in \mathcal{S}_{2}$ has $s \leq Y^{Z}$, the set $\mathcal{S}_{2}(U, V)$ is empty unless $2^{V-1}<Y^{Z}$, and so we will assume this condition on V. To bound $\# \mathcal{S}_{2}(U, V)$, we first fix the large-primes component t and count the number of corresponding n. List these as

$$
n_{1}=s_{1} t, \quad n_{2}=s_{2} t, \quad \ldots, \quad n_{J}=s_{J} t .
$$

Then for each $1 \leq i \leq k$,

$$
f_{i}\left(s_{1}\right)=f_{i}\left(s_{2}\right)=\cdots=f_{i}\left(s_{J}\right) ;
$$

otherwise, some of n_{1}, \ldots, n_{J} would belong to \mathcal{S}_{1}. In particular, every $n \in \mathcal{S}_{2}(U, V)$ corresponding to this particular t has

$$
f_{1}(s)=d
$$

for a fixed d. By a theorem of Halász, the number of positive integers $S<2^{V+1}$ with $f_{1}(S)=d$ is

$$
\begin{equation*}
\ll 2^{V+1} / \sqrt{E\left(2^{V+1}\right)} \tag{3}
\end{equation*}
$$

with an absolute implied constant, where $E(T)$ is defined for real values of T by

$$
E(T)=\sum_{\substack{p \leq T \\ f_{1}(p) \neq \pm 1}} \frac{1}{p}
$$

(To deduce this from the main theorem of [7], apply that result to the additive function $\log \left|f_{1}(n)\right|$.) Our hypothesis that f_{1} is nonclustering implies that the unrestricted sum
$\sum_{p: f_{1}(p) \neq \pm 1} \frac{1}{p}$ diverges: Otherwise, the set of squarefree n divisible only by primes p with $f_{1}(p)= \pm 1$ has density

$$
\prod_{p: f_{1}(p) \neq \pm 1}\left(1-\frac{1}{p}\right) \prod_{p: f_{1}(p)= \pm 1}\left(1-\frac{1}{p^{2}}\right)>0
$$

which forces f_{1} to cluster around one of ± 1. Hence, the denominator in (3) tends to infinity with V. Thus, there is a positive integer $V_{0}=V_{0}(\epsilon)$ such that whenever $V \geq V_{0}$, the number of $S<2^{V+1}$ satisfying $f_{1}(S)=d$ is at most $\epsilon \cdot 2^{V+1}$. (We could also have reached this conclusion by applying [3, Theorem IV] instead of [7].) We conclude that, for each fixed t, the number of corresponding $n=s t \in \mathcal{S}_{2}(U, V)$ is

$$
\leq \begin{cases}2^{V+1} & \text { always, } \\ \epsilon \cdot 2^{V+1} & \text { when } V \geq V_{0}\end{cases}
$$

On the other hand, since $t \leq x / 2^{U+V}$ and has no prime factors in [2, Y], inclusion-exclusion shows that the number of possibilities for t is

$$
\leq \frac{x}{2^{U+V}} \prod_{p \leq Y}\left(1-\frac{1}{p}\right)+O\left(2^{Y}\right) \leq \frac{x}{2^{U+V} \log Y}+O\left(2^{Y}\right)
$$

Combining these upper bounds, we deduce that

$$
\# \mathcal{S}_{2}(U, V) \leq \begin{cases}\frac{2 x}{2^{U} \log Y}+O\left(2^{V+Y}\right) & \text { always, } \\ \frac{2 \epsilon x}{2^{U} \log Y}+O\left(2^{V+Y}\right) & \text { for } V \geq V_{0}\end{cases}
$$

Finally we sum over U and V. Let $\mathcal{S}_{2}(U)=\bigcup_{V} \mathcal{S}_{2}(U, V)$. Since we need only consider V with $2^{V-1}<Y^{Z}$, we have

$$
\begin{aligned}
\# \mathcal{S}_{2}(U) & \leq \sum_{\substack{0 \leq V<V_{0} \\
V<\frac{\log \left(Y^{2}\right)}{\log 2}+1}}\left(\frac{2 x}{2^{U} \log Y}+O\left(2^{V+Y}\right)\right)+\sum_{\substack{V \geq V_{0} \\
V<\frac{\left.\log Y^{Z}\right)}{\log 2}+1}}\left(\frac{2 \epsilon x}{2^{U} \log Y}+O\left(2^{V+Y}\right)\right) \\
& \leq \frac{2 V_{0}}{\log Y} \frac{x}{2^{U}}+4 \epsilon Z \frac{x}{2^{U}}+O\left(2^{Y} \cdot Y^{Z}\right) .
\end{aligned}
$$

Now we sum on all nonnegative U with $2^{U} \leq x$ to find that

$$
\# \mathcal{S}_{2} \cap[1, x] \leq \frac{4 V_{0}}{\log Y} \cdot x+8 \epsilon Z \cdot x+O\left(2^{Y} \cdot Y^{Z} \cdot \log x\right)
$$

It follows that \mathcal{S}_{2} has upper density at most

$$
\frac{4 V_{0}}{\log Y}+8 \epsilon Z
$$

2.6. Denouement. Putting everything together, we see that the upper density of solutions to (1) is at most

$$
C \exp (-c Z)+2 \epsilon+\frac{4 V_{0}}{\log Y}+8 \epsilon Z
$$

where C and c are absolute positive constants. We now fix our choices of parameters ϵ, Y, Z. Given any $\eta>0$, we first fix Z large enough to make $C \exp (-c Z)<\eta / 3$, then fix
$\epsilon>0$ small enough to make $2 \epsilon+8 \epsilon Z<\eta / 3$, and then finally fix Y large enough to make $4 V_{0} / \log Y<\eta / 3$. Our arguments then show that for a suitable of choice of $\delta>0$, the set of n satisfying (1) has upper density $<\eta$.

3. s Vs s_{ϕ} : Proof of Theorem 2

We begin with a result of independent interest.
Proposition 3. Fix a nonzero real number R. Then $F(n)=\frac{\sigma(n)}{n}+R \frac{\phi(n)}{n}$ possesses a continuous distribution function.

Proof that a (possibly discontinuous) distribution function exists. We argue via the method of moments. The argument is very similar to one described in detail in [11, §4], and so we only sketch the proof. For each positive integer k, define

$$
\mu_{k}=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leq x}\left(\frac{\sigma(n)}{n}+R \frac{\phi(n)}{n}\right)^{k} .
$$

To see that μ_{k} exists, it suffices to note that

$$
(\sigma(n) / n+R \phi(n) / n)^{k}=\sum_{j=0}^{k}\binom{k}{j} R^{k-j} \sigma(n)^{j} \phi(n)^{k-j} / n^{k}
$$

and that each of the functions $\sigma(n)^{j} \phi(n)^{k-j} / n^{k}$ possesses a finite mean value, by a straightforward application of Wintner's mean value theorem [12, Theorem 1, p. 138]. Since

$$
\binom{k}{j} \leq 2^{k} \quad \text { and } \quad \sigma(n)^{j} \phi(n)^{k-j} / n^{k} \leq(\sigma(n) / n)^{k} \leq(n / \phi(n))^{k}
$$

we can use the estimation of the moments of $n / \phi(n)$ appearing in the proof of [11, Proposition 4.3] to deduce that

$$
\mu_{k} \ll \exp (O(k \log \log (3 k))) .
$$

(Here we allow implied constants to depend on R.) In particular, the condition

$$
\limsup _{k \rightarrow \infty} \mu_{2 k}^{1 / 2 k} / k<\infty
$$

that is required for application of [2, Theorem 3.3.12, p. 123] is satisfied, and so $F(n)$ possesses a distribution function.

Proof of continuity. We apply Theorem 1 with $f_{1}(n)=\sigma(n) / n$ and $f_{2}(n)=\phi(n) / n$. The Erdős-Wintner theorem [4] (see also [12, §4.7]), applied to $\log f_{1}, \log f_{2}$, and $\log \left(f_{1} / f_{2}\right)$ shows that all of $f_{1}, f_{2}, f_{1} / f_{2}$ have continuous distribution functions, which immediately implies conditions (i)-(iii).

Remark 4. Results closely related to Proposition 3 can already be found in the literature. For example, [9] contains a proof of the continuity of the distribution function of $\frac{\sigma(n)}{n}+\frac{\phi(n)}{n}$ in a strong form (a sharp estimate for the modulus of continuity). The strength of Theorem

1 is its ease of applicability and wide generality. To illustrate with a random example, an argument analogous to the above will prove that

$$
c_{1} \frac{\phi(n)}{\sigma(n)}+c_{2} \exp \left(\sum_{p \mid n} \frac{1}{\log p}\right)+c_{3} \frac{\sigma(n) \lambda(n)}{n}
$$

has a continuous distribution function for any nonzero c_{1}, c_{2}, c_{3}. Here σ, ϕ are as usual, and λ is the Liouville function, the completely multiplicative function with $\lambda(p)=-1$ for every prime p. (To estimate the moments in this case one should appeal to [15, Sätze I, II] in place of Wintner's theorem.)
Proof of Theorem 2. Let $u>0$. Writing $s(n)=\sigma(n)-n$ and $s_{\phi}(n)=n-\phi(n)$, the inequality $s(n) / s_{\phi}(n) \leq u$ can be put in the form

$$
\frac{\sigma(n)}{n}+u \frac{\phi(n)}{n} \leq 1+u
$$

By Proposition 3, $\frac{\sigma(n)}{n}+u \frac{\phi(n)}{n}$ possesses a continuous distribution function, say $D_{1, u}$. It follows that, for each $u>0$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{2 \leq n \leq x: s(n) / s_{\phi}(n) \leq u\right\}
$$

exists and equals $D_{1, u}(1+u)$. Since $s(n) / s_{\phi}(n) \geq 1$, the same limit also exists for $u \leq 0$, where it vanishes. We denote the value of this limit by $D_{s / s_{\phi}}(u)$.

We now check the boundary conditions necessary for $D_{s / s_{\phi}}$ to qualify as a distribution function. It is trivial that $\lim _{u \rightarrow-\infty} D_{s / s_{\phi}}(u)=0$. To see that $\lim _{u \rightarrow \infty} D_{s / s_{\phi}}(u)=1$, suppose that $s(n) / s_{\phi}(n)>u$, where u is large and positive. We can write this inequality in the form

$$
\frac{\frac{\sigma(n)}{n}-1}{1-\frac{\phi(n)}{n}}>u
$$

So either $\frac{\sigma(n)}{n}>1+\sqrt{u}$ or $\frac{\phi(n)}{n}>1-\frac{1}{\sqrt{u}}$. Each of these inequalities holds on a set of density tending to 0 as $u \rightarrow \infty$, since $\frac{\sigma(n)}{n}$ and $\frac{\phi(n)}{n}$ each have continuous distribution functions (e.g., by the Erdős-Wintner theorem again). It follows that $1-D_{s / s_{\phi}}(u) \rightarrow 0$ as $u \rightarrow \infty$, and hence $D_{s / s_{\phi}}(u) \rightarrow 1$ as $u \rightarrow \infty$, as desired.

Now we show continuity of $D_{s / s_{\phi}}(u)$. It is certainly sufficient to consider values of $u \geq 1$. Given such a u, we will prove that the set of solutions n to

$$
u-\delta<\frac{s(n)}{s_{\phi}(n)}<u+\delta
$$

comprise a set of upper density tending to 0 as $\delta \downarrow 0$. Therefore s / s_{ϕ} is nonclustering (provided one extends this quotient to be defined at $n=1$). Rearranging these inequalities for $s(n) / s_{\phi}(n)$ yields

$$
\frac{\sigma(n)}{n}+u \frac{\phi(n)}{n} \leq 1+u+\delta\left(1-\frac{\phi(n)}{n}\right) \leq 1+u+\delta
$$

as well as

$$
\frac{\sigma(n)}{n}+u \frac{\phi(n)}{n} \geq 1+u-\delta\left(1-\frac{\phi(n)}{n}\right) \geq 1+u-\delta
$$

Now the desired result follows from the continuity of the distribution function $D_{1, u}$.
So far we have shown that s / s_{ϕ} has a continuous distribution function $D_{s / s_{\phi}}$. It remains (only) to prove that $D_{s / s_{\phi}}(u)$ is strictly increasing for $u \geq 1$.

We let $a, b \geq 1$ with $a<b$ and aim to show that $D_{s / s_{\phi}}(a)<D_{s / s_{\phi}}(b)$. By [10], the image of s / s_{ϕ} is dense in $[1, \infty)$, and so we may fix an n_{0} such that

$$
c:=s\left(n_{0}\right) / s_{\phi}\left(n_{0}\right) \in(a, b) .
$$

We now argue that a positive proportion of the multiples n of n_{0} also satisfy $s(n) / s_{\phi}(n) \in$ (a, b). It is easy to prove (see the start of $[10, \S 3]$) that

$$
s\left(n_{0} m\right) / s_{\phi}\left(n_{0} m\right) \geq s\left(n_{0}\right) / s_{\phi}\left(n_{0}\right)>a
$$

for all m, and so it suffices to show that $s\left(n_{0} m\right) / s_{\phi}\left(n_{0} m\right)<b$ holds a positive proportion of the time.

Let y be a large, fixed real parameter be specified more precisely below. To begin with, we assume y is so large that $\prod_{p \leq y}(1-1 / p)>1 /(2 \log y)$. (This is true for all large y by Mertens' theorem, since $e^{\gamma}<2$.) Let P_{y} be the product of the primes not exceeding y. Then for all sufficiently large x (depending on y),

$$
\begin{equation*}
\#\left\{m \leq x: \operatorname{gcd}\left(m, P_{y}\right)=1\right\}>\frac{1}{2} x \prod_{p \leq y}(1-1 / p)>\frac{1}{4 \log y} x \tag{4}
\end{equation*}
$$

Moreover, recalling that $\frac{\sigma(m)}{m}=\sum_{d \mid m} \frac{1}{d}$, we have that

$$
\begin{aligned}
\sum_{\substack{m \leq x \\
\operatorname{gcd}\left(m, P_{y}\right)=1}}\left(\frac{\sigma(m)}{m}-1\right) & =\sum_{\substack{m \leq x \\
\operatorname{gcd}\left(m, P_{y}\right)=1}} \sum_{\substack{d \mid m \\
d>1}} \frac{1}{d} \leq \sum_{\substack{d: p \mid d \underset{d>1}{\Longrightarrow} p>y \\
d>1}} \frac{1}{d} \sum_{\substack{m \leq x \\
d \mid m}} 1 \\
& \leq x \sum_{\substack{d: p \mid d \underset{d>1}{\Longrightarrow}}} \frac{1}{d^{2}}=x\left(\prod_{p>y}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\ldots\right)-1\right) .
\end{aligned}
$$

The prime number theorem together with partial summation implies that

$$
\begin{aligned}
\prod_{p>y}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\ldots\right) & <\exp \left(\sum_{p>y} \frac{2}{p^{2}}\right) \\
& \leq \exp \left(O\left(\frac{1}{y \log y}\right)\right)=1+O\left(\frac{1}{y \log y}\right)
\end{aligned}
$$

Hence,

$$
\sum_{\substack{m \leq x \\ \operatorname{gcd}\left(m, P_{y}\right)=1}}\left(\frac{\sigma(m)}{m}-1\right) \ll \frac{1}{y \log y} x
$$

so that the number of $m \leq x$ with $\operatorname{gcd}\left(m, P_{y}\right)=1$ and $\frac{\sigma(m)}{m}-1 \geq \frac{1}{\log y}$ is $O(x / y)$. Comparing with (4), we see that if y is fixed sufficiently large, then for all large x,

$$
\begin{equation*}
\#\left\{m \leq x: \operatorname{gcd}\left(m, P_{y}\right)=1, \frac{\sigma(m)}{m}-1<\frac{1}{\log y}\right\}>\frac{1}{8 \log y} x . \tag{5}
\end{equation*}
$$

Increasing y if necessary, we may assume that y exceeds the largest prime factor of n_{0}. Then for any m counted on the left-hand side of (5),

$$
\frac{\sigma\left(n_{0} m\right)}{n_{0} m}-1=\frac{\sigma\left(n_{0}\right)}{n_{0}} \frac{\sigma(m)}{m}-1 \leq \frac{\sigma\left(n_{0}\right)}{n_{0}}\left(1+\frac{1}{\log y}\right)-1=\frac{\sigma\left(n_{0}\right)}{n_{0}}-1+\frac{\sigma\left(n_{0}\right) / n_{0}}{\log y} .
$$

Since also

$$
1-\frac{\phi\left(n_{0} m\right)}{n_{0} m} \geq 1-\frac{\phi\left(n_{0}\right)}{n_{0}}
$$

we find that

$$
\begin{aligned}
\frac{s\left(n_{0} m\right)}{s_{\phi}\left(n_{0} m\right)}=\frac{\frac{\sigma\left(n_{0} m\right)}{n_{0} m}-1}{1-\frac{\phi\left(n_{0} m\right)}{n_{0} m}} & \leq \frac{\frac{\sigma\left(n_{0}\right)}{n_{0}}-1}{1-\frac{\phi\left(n_{0}\right)}{n_{0}}}+\frac{\sigma\left(n_{0}\right) / n_{0}}{\left(1-\frac{\phi\left(n_{0}\right)}{n_{0}}\right)} \frac{1}{\log y} \\
& =c+\frac{\sigma\left(n_{0}\right) / n_{0}}{\left(1-\frac{\phi\left(n_{0}\right)}{n_{0}}\right)} \frac{1}{\log y}
\end{aligned}
$$

Increasing y if necessary, we can ensure that this last expression is smaller than b.
With y fixed as above, (5) implies that the set of m with $s\left(n_{0} m\right) / s_{\phi}\left(n_{0} m\right)<b$ has positive lower density. It follows that the corresponding values $n=n_{0} m$ also comprise a set of positive lower density. Together with our earlier remarks, we conclude that $D_{s / s_{\phi}}(a)<D_{s / s_{\phi}}(b)$, as desired. This completes the proof that $D_{s / s_{\phi}}$ is increasing as well as the proof of Theorem 2.

4. CONCLUDING REMARKS ON POSITIVE-VALUED MULTIPLICATIVE FUNCTIONS

Theorem 1 is well-suited to proving the continuity of a distribution function when it exists. It is therefore natural to ask for a general condition guaranteeing that $F=c_{1} f_{1}+\cdots+c_{k} f_{k}$ possesses a distribution function. We conclude by sketching a proof of the following partial result in this direction. The argument is due essentially to Shapiro [13] (see especially p. 63), but as the case we work in is much simpler than his general set-up, it seems a relatively self-contained discussion is warranted.

Proposition 5. Let f_{1}, \ldots, f_{k} be positive-valued multiplicative functions each possessing a distribution function. Then for any $c_{1}, \ldots, c_{k} \in \mathbb{R}$, the function $c_{1} f_{1}+\cdots+c_{k} f_{k}$ also has a distribution function.

Note that this result applies, for instance, to the example considered in Proposition 3, but not immediately to the one considered in Remark 4.

Let $Y>0$. We keep the notation of $\S 2$, where n denotes a positive integer and s denotes the Y-smooth part of n. (There will be no confusion with the sum-of-proper-divisors function.) We say that an arithmetic function F is essentially determined by small primes if for all $\epsilon>0$,

$$
\lim _{Y \rightarrow \infty} \overline{\mathbf{d}}\{n:|F(n)-F(s)|>\epsilon\}=0
$$

If F is an arithmetic function essentially determined by small primes, then F has a distribution function; this is contained in [13, Theorem 2.1], and also follows from [14, Theorem 2.3, p. 427]. Moreover, the converse holds for all additive functions F (see the theorem stretching from pp. 719-720 in [4]).

To relate this back to Proposition 5, we recall that when a positive-valued multiplicative function possesses a limit law, either its distribution function is that of the degenerate distribution at 0 , or the additive function $\log f$ has a distribution function. (See [1, Theorem 4], and note that the convergence of the three series in eq. (3) there is exactly the Erdős-Wintner condition for $\log f$ to have a distribution function.) Now given f_{1}, \ldots, f_{k} as in Proposition 5, we may reorder the list so that f_{1}, \ldots, f_{ℓ} have distributions degenerate at 0 , and $f_{\ell+1}, \ldots, f_{k}$ do not. It is then easy to see that if $c_{\ell+1} f_{\ell+1}+\cdots+c_{k} f_{k}$ has a distribution function, then $c_{1} f_{1}+\cdots+c_{k} f_{k}$ has the same distribution function. Thus, we can (and do) assume that each of the $\log f_{i}$ has a distribution function. As discussed in the previous paragraph, this means that each $\log f_{i}$ is esssentially determined by small primes. We claim that each f_{i} is also so-determined. Indeed, suppose that

$$
\left|f_{i}(n)-f_{i}(s)\right|>\epsilon
$$

Then, with $\eta>0$ a parameter at our disposal, either $f_{i}(n)>\eta$, or

$$
\left|f_{i}(s) / f_{i}(n)-1\right|>\epsilon / \eta .
$$

This last inequality implies that

$$
\left|\log f_{i}(n)-\log f_{i}(s)\right| \gg_{\epsilon, \eta} 1
$$

since $\log f_{i}$ is essentially determined by small primes, this estimate holds on a set of upper density tending to 0 as $Y \rightarrow \infty$. On the other hand, if $f_{i}(n)>\eta$, then $\log f_{i}(n)>\log \eta$. That occurs on a set of upper density tending to 0 as η tends to infinity, since $\log f_{i}$ has a (proper) distribution function. Letting $Y \rightarrow \infty$ and then letting $\eta \rightarrow \infty$ proves our claim.

Since the f_{i} are essentially by determined by small primes, so is any \mathbb{R}-linear combination of the f_{i}; thus, all such combinations possess distribution functions.

ACKNOWLEDGEMENTS

The second author is supported by NSF award DMS-1402268. We are grateful to the referee for a careful reading of the manuscript. We also thank Mits Kobayashi for helpful correspondence.

References

[1] G. J. Babu, On the distributions of multiplicative functions, Acta Arith. 36 (1980), 331-340.
[2] R. Durrett, Probability: theory and examples, fourth ed., Cambridge Series in Statistical and Probabilistic Mathematics, vol. 31, Cambridge University Press, Cambridge, 2010.
[3] P. Erdős, On the distribution function of additive functions, Ann. of Math. (2) 47 (1946), 1-20.
[4] P. Erdős and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math. 61 (1939), 713-721.
[5] M. B. Fein and H. N. Shapiro, Continuity of the distribution function of the sum of an additive and a multiplicative arithmetic function, Comm. Pure Appl. Math. 40 (1987), 779-801.
[6] J. Galambos and I. Kátai, The continuity of the limiting distribution of a function of two additive functions, Math. Z. 204 (1990), 247-252.
[7] G. Halász, On the distribution of additive arithmetic functions, Acta Arith. 27 (1975), 143-152.
[8] R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University Press, Cambridge, 1988.
[9] K.-H. Indlekofer and I. Kátai, On the modulus of continuity of the distribution of some arithmetical functions, New trends in probability and statistics, Vol. 2 (Palanga, 1991), VSP, Utrecht, 1992, pp. 223-234.
[10] F. Luca and C. Pomerance, Local behavior of the composition of the aliquot and co-totient functions, Number theory - in honor of Krishna Alladi's 60th birthday (G. Andrews and F. Garvan, eds.), Springer, 2017, to appear.
[11] G. Martin, P. Pollack, and E. Smith, Averages of the number of points on elliptic curves, Algebra Number Theory 8 (2014), 813-836.
[12] A. G. Postnikov, Introduction to analytic number theory, Translations of Mathematical Monographs, vol. 68, American Mathematical Society, Providence, RI, 1988.
[13] H. N. Shapiro, Addition of functions in probabilistic number theory, Comm. Pure Appl. Math. 26 (1973), 55-84.
[14] G. Tenenbaum, Introduction to analytic and probabilistic number theory, third ed., Graduate Studies in Mathematics, vol. 163, 2015.
[15] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961), 75-102.

Department of Mathematics, University of Georgia, Athens, Georgia 30602
E-mail address: noah.lebowitzl25@uga.edu
E-mail address: pollack@uga.edu

[^0]: 2010 Mathematics Subject Classification. Primary 11N64, Secondary 11N60.
 Key words and phrases. concentration, multiplicative function, distribution function, probabilistic number theory.

