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Three kinds of natural numbers

Among simple even numbers, some are superabundant, others
are deficient: these two classes are as two extremes opposed one
to the other; as for those that occupy the middle point between
the two, they are said to be perfect.

– Nicomachus (ca. 100 AD), Introductio Arithmetica

Let s(n) =
∑

d |n,d<n d be the sum of the proper divisors of n.

Abundant: s(n) > n, e.g., n = 12.
Deficient: s(n) < n, e.g., n = 5.
Perfect: s(n) = n, e.g., n = 6.
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The superabundant number is . . . as if an adult animal was
formed from too many parts or members, having “ten tongues”,
as the poet says, and ten mouths, or nine lips, and provided
with three lines of teeth; or with a hundred arms, or having too
many fingers on one of its hands. . . . The deficient number is
. . . as if an animal lacked members or natural parts . . . if he does
not have a tongue or something like that.

. . . In the case of those that are found between the too much
and the too little, that is in equality, is produced virtue, just
measure, propriety, beauty and things of that sort — of which
the most exemplary form is that type of number which is called
perfect.

3 of 29



Is this mathematics?

Abundants: 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72,
78, 80, 84, 88, 90, 96, 100, 102, . . . .

Deficients: 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21,
22, 23, 25, 26, 27, . . . .

Perfects: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, 2658455991569831744654692615953842176,
. . . .

Questions: Is there a rule to generate the terms in each sequence?
Barring that, can we estimate the number of terms up to a given
point x?
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Nicomachus: No rule needed to generate abundants or deficients.

Just as . . . ugly and vile things abound, so superabundant and
deficient numbers are plentiful and can be found without a
rule. . .

What about perfect numbers?

Theorem (Euclid)

If 2n − 1 is a prime number, then

N := 2n−1(2n − 1)

is a perfect number.
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Theorem (Euler)

If N is an even perfect number, then N can be
written in the form

N = 2n−1(2n − 1),

where 2n − 1 is a prime number.

But what about odd perfect numbers?
We don’t know of a single example.
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Dickson’s finiteness theorem

Is there a simple formula for odd perfect numbers, like for even
perfect numbers? Probably not.

Theorem (Dickson, 1913)

For each positive integer k, there are only
finitely many odd perfect numbers n with
precisely k distinct prime factors.
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Theorem (Pomerance, 1977)

If n is an odd perfect number with k distinct prime factors, then

n < (4k)(4k)
2k

2

.

This was refined by Heath-Brown (’94), Cook, and Nielsen:

Theorem
If n is an odd perfect number with k distinct prime factors, then

n < 22
2k
.

Theorem (P., 2010)

The number of odd perfect n with k distinct prime factors is at most

2(2k)
2
.
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The web of conditions

. . . a prolonged meditation has satisfied me that the existence of
[an odd perfect number] - its escape, so to say, from the
complex web of conditions which hem it in on all sides - would
be little short of a miracle.

– J. J. Sylvester

If N is an odd perfect number, then:

1. N has the form peM2, where p ≡ e ≡ 1 (mod 4),

2. N has at least 9 distinct prime factors and at least 75 prime factors
counted with multiplicity,

3. N > 10300.

Conjecture

There are no odd perfect numbers.
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Densities

If A is a subset of N = {1, 2, 3, . . . }, define the density of A as

lim
x→∞

#A ∩ [1, x ]

x
.

For example, the even numbers have density 1/2, and the prime
numbers have density 0. But the set of natural numbers with first
digit 1 does not have a density.

Question: Does the set of abundant numbers have a density? What
about the deficient numbers? The perfect numbers?
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A theorem of Davenport

Theorem (Davenport, 1933)

For each real u ≥ 0, consider the set

Ds(u) = {n : s(n)/n ≤ u}.

This set always possesses an asymptotic
density Ds(u). Considered as a function of u,
the function Ds is continuous and strictly
increasing, with Ds(0) = 0 and Ds(∞) = 1.

Corollary

The perfect numbers have density 0, the deficient numbers have
density Ds(1), and the abundant numbers have density 1− Ds(1).
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Numerics

The following theorem improves on earlier work of Behrend, Salié,
and Wall:

Theorem (Deléglise, 1998)

For the density of abundant numbers, we have

0.2476 < 1− Ds(1) < 0.2480.

So just under 1 in every 4 natural numbers is abundant, and just over
3 in 4 are deficient.

Recently Deléglise’s results have been improved by Kobayashi.
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More on perfect numbers

Let V (x) denote the number of perfect numbers n ≤ x .
Davenport’s theorem says that V (x)/x → 0 as x →∞.
Can we say anything more precise?

Even perfect numbers correspond to primes of the form 2n − 1. We
know 47 such values of n, the largest being

n = 42643801.

Conjecture

The number of n ≤ x for which 2n − 1 is prime is asymptotic to

eγ

log 2
log x .
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Conjecture

The number of perfect numbers up to x is asymptotic to

eγ

log 2
log log x .

Theorem
We have the following estimates for V (x):

Volkmann, 1955 V (x) = O(x5/6)

Hornfeck, 1955 V (x) = O(x1/2)

Kanold, 1956 V (x) = o(x1/2)

Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)
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Erdős, 1956 V (x) = O(x1/2−δ)

Kanold, 1957 V (x) = O(x1/4 log x

log log x
)

Hornfeck & Wirsing, 1957 V (x) = O(xε)
14 of 29



The sharpest result to date is due to Wirsing
(1959): For all x > 3,

V (x) ≤ xW / log log x

for a certain absolute constant W . This is no
doubt still very far from the truth.

In the opposite direction, the following conjecture is wide open:

Conjecture

There are infinitely many perfect numbers, i.e., V (x)→∞ as
x →∞.
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Almost perfect?

If n is perfect, then n | s(n), and so gcd(n, s(n)) is as large as possible.

Theorem (P., 2009)

Fix α with 0 ≤ α ≤ 1. The number of n ≤ x for which

gcd(n, s(n)) ≥ nα

is x1−α+o(1) as x →∞.

The proof uses Wirsing’s result and some ideas of Luca and
Pomerance used to study the Euler ϕ-function.
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Local distribution

How are deficients, abundants, and perfects distributed in intervals
[x , x + y ], where y is much smaller than x?

Theorem (I. M. Trivial)

For n > 6, the interval (n, n + 6] contains an abundant number.

Proof.
If n = 6k and k > 1, then s(n) ≥ 1 + k + 2k + 3k = 6k + 1 > n.

So there is no gap of length > 6 between abundant numbers.
(It can be shown that each gap of size ≤ 6 occurs infinitely often.)
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How large can the gap be between consecutive deficient numbers?
Alternatively, how long can a run of abundant numbers be?

Answer: Arbitrarily long, by the Chinese remainder theorem.
But we can be more precise:

Theorem (Erdős, 1934)

Let G (x) be the largest gap n′ − n between
two consecutive deficient numbers n < n′ ≤ x.
There are constants positive constants c1 and
c2 with

c1 log log log x < G (x) < c2 log log log x .
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Theorem (P., 2009)

Let G (x) be the largest gap n′ − n between two consecutive deficient
numbers n < n′ ≤ x. As x →∞, we have

G (x)

log log log x
→ C ,

where C ≈ 3.5. In fact,

C =

(∫ 1

0

Ds(u)

u + 1
du

)−1
.

The local distribution of perfect numbers seems much harder to
understand rigorously.

19 of 29



Higher order generalizations

Problem (Catalan, 1888)

Start with a natural number n. What is the
eventual behavior of the sequence of iterates
n, s(n), s(s(n)), s(s(s(n))), . . . (the aliquot
sequence at n)?

Example

n = 20 leads to the sequence 20, 22, 14, 10, 8, 7, 1, 0.

Example

n = 25 leads to the sequence 25, 6, 6, 6, 6, 6, . . . .
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Conjecture (Catalan)

Every starting n leads to a sequence terminating at 0, or hits a
perfect number.

As noticed almost immediately by Perrott, this conjecture is false:

Example

n = 220 leads to the sequence 220, 284, 220, 284, 220, 284, . . . .

Conjecture (Catalan–Dickson, 1913)

Every starting n leads to a bounded sequence, i.e., either a sequence
terminating in 0 or reaching a cycle.

This conjecture is true for every n < 276, but no one knows if it holds
for n = 276.
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Definition
We call n a sociable number if the aliquot sequence at n is purely
periodic; in this case, the length of the period is called the order of
sociability.

Definition
An amicable number is a sociable number of order 2. In this case, the
pair {n, s(n)} is an amicable pair.

Ibn Khaldun (ca. 600 years ago):

Persons who have concerned themselves
with talismans affirm that the amicable
numbers 220 and 284 have an influence
to establish a union or close friendship
between two individuals.
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Abraham Azulai (ca. 500 years ago):

Our ancestor Jacob prepared his present in a wise way. This
number 220 is a hidden secret, being one of a pair of numbers
such that the parts of it are equal to the other one 284, and
conversely. And Jacob had this in mind; this has been tried by
the ancients in securing the love of kings and dignitaries.

Al-Majriti (ca. 1050 years) claims to have tested the erotic effect of

giving any one the smaller number 220 to eat, and himself
eating the larger number 284.
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The (global) distribution of sociable numbers

Let Vk(x) denote the number of sociable numbers of order k not
exceeding x . (So V (x) = V1(x).)

Conjecture (Bratley, Lunnon, and McKay)

V2(x)/x1/2 → 0 as x →∞.

Conjecture (Erdős)

For each ε > 0, we have V2(x) > x1−ε once x > x0(ε).

Though we know > 12 million amicable pairs, the following is still
open:

Conjecture

There are infinitely many amicable numbers.

24 of 29



The (global) distribution of sociable numbers

Let Vk(x) denote the number of sociable numbers of order k not
exceeding x . (So V (x) = V1(x).)

Conjecture (Bratley, Lunnon, and McKay)

V2(x)/x1/2 → 0 as x →∞.

Conjecture (Erdős)
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Theorem (Erdős 1955, Erdős and Rieger 1975)

The set of amicable numbers has density zero. In fact,

V2(x)� x

log log log x
.

Theorem (Pomerance, 1981)

For all large x,

V2(x) ≤ x

exp((log x)1/3)
.

As a consequence, the sum of the reciprocals
of the amicable numbers converges.

25 of 29
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Sociable numbers of order > 2 have a more recent pedigree.

Example

Here is a sociable cycle of order 5 (found by Poulet in 1918):

12496→ 14288→ 15472→ 14536→ 14264→ 12496→ . . .

order of the cycle number of known examples

1 47
2 > 12 million
4 165
5 1
6 5
8 2
9 1

28 1

26 of 29



Theorem (Erdős, 1976)

For each fixed k, the set of sociable numbers of order k has density
zero.

Erdős’s bounds for Vk(x) were very weak. How weak? His method
proves:

Vk(x)� x

log log log log · · · log x
,

where the denominator is a (3k)-fold iterated log.

With Kobayashi and Pomerance, we improved this. A recent result is:

Theorem (P., 2009)

For each fixed odd value of k,

Vk(x) ≤ x

(log x)1+o(1)
.
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All together now

Put
V ∗(x) = V1(x) + V2(x) + V3(x) + . . . ,

so that V ∗(x) is the counting function of all the sociable numbers.

Conjecture

As x →∞, we have V ∗(x)/x → 0. In other words, the set of sociable
numbers has density zero.

Theorem (Kobayashi, Pomerance, P., 2009)

The set of deficient sociable numbers has density zero. The set of
even abundant sociable numbers has density zero. Finally, the set of
odd abundant numbers has density ≈ 1/500.
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Thank you for your attention!
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