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1. Introduction

A natural number n is called perfect if σ(n) = 2n and multiply perfect whenever σ(n) is a
multiple of n. In 1956, Erdős published improved upper bounds on the counting functions
of the perfect and multiply perfect numbers [2]. These estimates were soon superseded by
a theorem of Wirsing [15] (Theorem B below), but Erdős’s methods remain of interest as
they are applicable to more general questions concerning the distribution of gcd(n, σ(n)).
Erdős describes some applications of this type (op. cit.) but omits the proofs. In this paper
we prove corrected versions of his results, and we establish some new results in the same
direction.

For real numbers x ≥ 1 and A ≥ 1, put

G(x,A) := #{n ≤ x : gcd(n, σ(n)) > A}.
Theorem 1.1. Let β > 0. If x > x0(β) and A > exp((log log x)β), then G(x,A) ≤ x/Ac,
where c = c(β) > 0.

This is (more or less) Theorem 3 of [2], except that Erdős assumes instead that A >
(log x)β. After stating Theorem 3, Erdős claims that his result is best possible, in that if
A grows slower than any power of log x, then one does not save a fixed power of A in the
estimate for G(x,A). Theorem 1.1 shows that this assertion is incorrect. Our next result
shows that Theorem 1.1 is best possible in the sense Erdős intended:

Theorem 1.2. Let β = β(x) be a positive real-valued function of x satisfying β(x) → 0 as
x → ∞. Let ε > 0. If x is sufficiently large (depending on ε and the choice of function β)
and 2 ≤ A ≤ exp((log log x)β), then G(x,A) ≥ x/Aε.

For large values of A, one may deduce a stronger upper bound on G(x,A) than that of
Theorem 1.1 from the following estimate for the mean of gcd(n, σ(n)):

Theorem 1.3. For each x ≥ 3, we have∑
n≤x

gcd(n, σ(n)) ≤ x1+c1/
√
log log x,

where c1 is an absolute positive constant.

For example, it follows immediately from Theorem 1.3 that if A ≥ xδ (for a fixed δ > 0),
then G(x,A) ≤ x/A1+o(1) as x→∞. Our next result asserts that the analogous lower bound
holds in a wide range of A:

Theorem 1.4. Fix ε > 0. Then G(x,A) ≥ x/A1+o(1) as x→∞, uniformly for 2 ≤ A ≤ x1−ε.
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Theorems 1.3 and 1.4 have the following immediate consequence:

Corollary 1.5. For each fixed δ ∈ (0, 1), we have G(x, xδ) = x1−δ+o(1) as x→∞.

Notation. For the most part we use standard notation of analytic number theory. For
example, we write ω(n) for the number of distinct prime factors of n and rad(n) for the
product of the distinct primes dividing n. We put log1 x := max{log x, 1}, and we define
inductively logk x = max{1, log(logk−1 x)}. We emphasize that when ‘c’ is used with a
subscript, it always refers to an absolute positive constant.

2. Proof of Theorem 1.1

We require several preliminaries. Theorem A below assembles results due to Kátai &
Subbarao (see [9, Theorem 1]) and Erdős, Luca, and Pomerance (cf. [3, Theorem 8, Corollary
10]). See also [2, Theorem 4].

Theorem A. For all n outside of a set of asymptotic density zero, gcd(n, σ(n)) is the largest
divisor of n supported on the primes not exceeding log log n.

For each real u, the set of n with gcd(n, σ(n)) > (log log n)u possesses an asymptotic
density g(u). The function g(u) is continuous everywhere, strictly decreasing on [0,∞) and
satisfies g(0) = 1 and limu→∞ g(u) = 0. Explicitly we have

g(u) := e−γ
∫ ∞
u

ρ(t) dt

for all u > 0, where γ is the Euler–Mascheroni constant and ρ is the Dickman-de Bruijn
function.

The next lemma is proved by Erdős and Nicolas as [4, Théorème 2], except for the state-
ment concerning uniformity, which however is clear from their proof.

Lemma 2.1. For each fixed c ∈ (0, 1], the number of n ≤ x with

ω(n) > c
log x

log2 x

is x1−c+o(1) as x→∞. Moreover, the convergence of the o(1) term to zero is uniform if c is
restricted to a compact subset of (0, 1].

The next result is implicit in the proof of [2, Theorem 1]; for the convenience of the reader
we repeat the argument here.

Lemma 2.2. Let ε > 0. If m > m0(ε) is squarefree, then there is some divisor d of m with
gcd(d, σ(d)) = 1 and d ≥ m1/2−ε.

Proof. By replacing m by m/2 if necessary, we may assume that m is odd. We now run the
following algorithm: Put d0 = 1 and d′0 = m. Having defined di and d′i so that did

′
i = m

and gcd(di, σ(di)) = 1, we proceed as follows: If there is a prime dividing d′i which does not
divide σ(di), then let p be the largest such prime and set di+1 = dip and d′i+1 = d′i/p. (If
there is no such prime, terminate the algorithm.) Then di+1d

′
i+1 = m and

gcd(di+1, σ(di+1)) = gcd(dip, σ(di)(p+ 1))

= gcd(di, p+ 1),
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since p - σ(di) and gcd(di, σ(di)) = 1. Since p is odd (by our assumption that m is odd),
every prime factor q of p + 1 is smaller than p. None of these q can divide di: Indeed, if
q divides di, then there must be some j < i for which q is the largest prime divisor of d′j
not dividing σ(dj). But this is absurd: q < p, p is a divisor of d′j (since d′i divides d′j) and
p - σ(dj) (since dj | di and p - σ(di)). Thus gcd(di, p+ 1) = 1 and so gcd(di+1, σ(di+1)) = 1.

At the end of this algorithm we have numbers dk, d
′
k with dkd

′
k = m and gcd(dk, σ(dk)) = 1.

Moreover, d′k must divide σ(dk), otherwise we could continue the algorithm. Recalling the
maximal order of the sum of divisors function (see [6, Theorem 323]), we find that

dk log2 dk � σ(dk) ≥ d′k, whence d2k log2 dk � dkd
′
k = m.

Hence dk � (m/ log2m)1/2, so in particular dk ≥ m1/2−ε for large m. So if we choose d = dk,
then we have the lemma. �

The next lemma is an easy consequence of the Brun–Titchmarsh inequality; for a proof
see, e.g., [8, Lemma 6].

Lemma 2.3. Let m be a positive integer. For all x ≥ 1, we have∑
p≤x

p≡−1 (mod m)

1

p
� log2 x

ϕ(m)
.

Here the implied constant is absolute.

Lemma 2.4. Let d be a squarefree integer. For x ≥ 1, the number of squarefree n ≤ x for
which for which d divides σ(n) is at most

ω(d)ω(d)
x

ϕ(d)
(C log2 x)ω(d),

where C is an absolute positive constant.

Lemma 2.4 is similar to the case k = 1 of [1, Lemma 2]; however, the dependence on ω(d)
is more explicit in our bound.

Proof. Since d divides σ(n) =
∏

p|n (p+ 1), we can write d =
∏

p|n ap, where each ap divides

p + 1. Throwing away those ap = 1, we see that n induces a (not necessarily unique)
factorization of d, where by a factorization of d we mean a decomposition of d as a product
of factors strictly larger than 1, where the order of the factors is not taken into account. For
each possible factorization of d, we estimate the number of n ≤ x as in the lemma statement
which induce this factorization.

Let d = a1a2 · · · ak be a factorization of d. If n induces this factorization, then there are
distinct primes p1, . . . , pk dividing n with pi ≡ −1 (mod ai) for each 1 ≤ i ≤ k. So by
Lemma 2.3, with C an appropriate absolute positive constant, the number of such n ≤ x is

≤
∑

p1≡−1 (mod a1)

· · ·
∑

pk≡−1 (mod ak)

x

p1 · · · pk

≤ x

k∏
i=1

C log2 x

ϕ(ai)
=

x

ϕ(d)
(C log2 x)k ≤ x

ϕ(d)
(C log2 x)ω(d).
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(The last inequality uses the observation that each factorization of d involves at most ω(d)
factors.) Since d is squarefree, the number of factorizations of d is given by Bω(d), where Bl

(the lth Bell number) stands for the number of set-partitions of an l-element set.
Since any partition of an l-element set involves at most l components, we have always

have Bl ≤ ll. Taking l = ω(d) completes the proof of Lemma 2.4. �

The last part of our preparation consists in reducing the proof of Theorem 1.1 to that of
the following squarefree version:

Proposition 2.5. Let β > 0. If x > x1(β) and A > exp((log2 x)β), then the number of
squarefree n ≤ x with gcd(n, σ(n)) > A is at most x/Ac

′
, where c′ = c′(β).

Lemma 2.6. Theorem 1.1 follows from Proposition 2.5.

Proof. Let β > 0. Suppose that n ≤ x and gcd(n, σ(n)) > A where A > exp((log2 x)β).
Write n = n0n1, where n0 is squarefree, n1 is squarefull, and gcd(n0, n1) = 1. If n1 > A1/4,
then n belongs to a set of size at most x

∑
m>A1/4

m squarefull

m−1 � x/A1/8. (Here we use that the

counting function of the squarefull integers is O(
√
x).) Otherwise, since

A < gcd(n0n1, σ(n0)σ(n1))

≤ gcd(n0, σ(n0)) gcd(n0, σ(n1)) gcd(n1, σ(n0)σ(n1))

≤ gcd(n0, σ(n0))n1σ(n1) ≤ gcd(n0, σ(n0))n
3
1,

it follows that
gcd(n0, σ(n0)) ≥ A/n3

1 ≥ A1/4.

The number of such n ≤ x is therefore at most

(1)
∑
n0≤x

n0 squarefree
gcd(n0,σ(n0))>A1/4

∑
n1≤x/n0

n1 squarefull
gcd(n0,n1)=1

1�
√
x

∑
n0≤x

n0 squarefree
gcd(n0,σ(n0))>A1/4

1
√
n0

.

Define
B(u) :=

∑
m≤u

m squarefree
gcd(m,σ(m))>A1/4

1.

Since A1/4 > exp(1
4
(log2 x)β) > exp((log2 x)β/2) for large x, we can apply Proposition 2.5

with β replaced by β/2 to find that B(u) ≤ u/Ac
′/4, where c′ = c′(β/2) and the inequality

holds for all u ≤ x which are large enough (depending just on β). Partial summation now
shows that for sufficiently large x (depending just on β), the final sum in (1) is� x1/2/Ac

′/4,
so that the double sum in (1) is � x/Ac

′/4.
It follows that Theorem 1.1 holds if c = c(β) is chosen as any constant smaller than

min
{

1
8
, c
′

4

}
. �

We now prove Proposition 2.5 (and so also Theorem 1.1). Assume that β > 0, A >
exp((log2 x)β), and n is a squarefree integer with gcd(n, σ(n)) > A. Write D for gcd(n, σ(n)).

If there is a prime p > A1/2 dividing D, then n has the form pr, where p | σ(r). By Lemma
2.4, the number of possible r is

� x/p

ϕ(p)
log2 x�

x log2 x

p2
,
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so that the number of n that can arise this way is

� x log2 x
∑

p>A1/2

1

p2
� x log2 x

A1/2
.

This number is smaller than x/A1/3 for large x (depending on β).
We may therefore assume that the largest prime dividing D is at most A1/2. Since D > A,

successively stripping primes from D, we must eventually discover a divisor of D in the
interval (A1/2, A]. If x (and hence A) is large, we can apply Lemma 2.2 (with ε = 1/6)
to this divisor to obtain a divisor d of D with d ∈ (A1/6, A] having the property that
gcd(d, σ(d)) = 1.

Write n = de. Since d | σ(n) and gcd(d, σ(d)) = 1, it follows that e ≤ x/d and d | σ(e).
By Lemma 2.4, the number of such e is at most

(2)
x

dϕ(d)
(Cω(d) log2 x)ω(d).

The strategy for the remainder of the proof is as follows: First, if ω(d) is not too large, then
(2) is manageable, and summing over such d yields an acceptable bound on the number of
corresponding n. Otherwise, n is divisible by some d ∈ (A1/6, A] with an abnormally large
number of prime divisors, and Lemma 2.1 implies that such n are rare.

Let c be a small constant (depending just on β) whose value will be chosen momentarily.
Suppose that

ω(d) < c
logA

log logA
.

Then (for large x)

(Cω(d) log2 x)ω(d) ≤ exp

(
c

logA

log2A
(log2A+ log3 x)

)
.

Since A > exp((log2 x)β), we have log2A > β log3 x, so this upper bound is at most

exp(c(1 + β−1) logA) = Ac(1+β
−1).

We now assume c > 0 is small enough that c(1 +β−1) ≤ 1/12. Then summing (2) over these
values of d, we obtain an upper bound on the number of corresponding n which is at most

xA1/12
∑

d>A1/6

1

dϕ(d)
� x/A1/12,

using Landau’s result that
∑

d≥t
1

dϕ(d)
� 1

t
.

The remaining n have a divisor d ∈ (A1/6, A] for which ω(d) > c logA/ log logA, and the
number of such n is at most x

∑
1
d

where the sum is extended over all such d. Let

B(u) :=
∑
m≤u

ω(m)>c logA/ log2 A

1.

For A1/6 ≤ u ≤ A, define du so that

du
log u

log2 u
=

logA

log2A
, so that as u→∞, du = (1 + o(1))

logA

log u
.
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By Lemma 2.1, for these u we have

B(u) = u1−cdu+o(1) = u1−c logA/ log uAo(1) = (u/Ac)Ao(1) ≤ u/Ac/2,

say. (Note that for large x, the real number cdu belongs to the compact subinterval [c/2, 12c]
of (0, 1].) Thus ∑

d∈(A1/6,A]
ω(d)>c logA/ log2 A

1

d
=
B(A)

A
− B(A1/6)

A1/6
+

∫ A

A1/6

B(t)

t2
dt

� A−c/2 + (logA)A−c/2 � A−c/3,

say.
Piecing everything together, it follows that the number of n ≤ x with gcd(n, σ(n)) > A is

at most x/Ac
′(β) for large x, if we choose c′(β) < min

{
1
3
c, 1

12

}
.

3. Proof of Theorem 1.2

We begin by recalling some results from the theory of smooth numbers. Let Ψ(x, y) denote
the number of y-smooth positive integers n ≤ x, where n is called y-smooth if each prime p
dividing n satisfies p ≤ y. Let Ψ2(x, y) denote the number of squarefree y-smooth numbers
n ≤ x. The following estimate of de Brujin appears as [14, Theorem 2, p. 359]:

Lemma 3.1. Uniformly for x ≥ y ≥ 2,

log Ψ(x, y) = Z

(
1 +O

(
1

log y
+

1

log2 2x

))
,

where

Z :=
log x

log y
log

(
1 +

y

log x

)
+

y

log y
log

(
1 +

log x

y

)
.

The following result is due to Ivić and Tenenbaum [7] and Naimi [12] (independently):

Lemma 3.2. Whenever x, y → ∞, and log y/ log2 x → ∞, we have Ψ2(x, y) = (6/π2 +
o(1))Ψ(x, y).

The next lemma is due to Pomerance (cf. [13, Theorem 2]).

Lemma 3.3. Let x ≥ 3 and let m be a positive integer. The number of n ≤ x for which
m - σ(n) is � x/(log x)1/ϕ(m), where the implied constant is absolute.

We now have all the tools at our disposal necessary to prove Theorem 1.2. By Theorem
A we may assume that

(3) log2 x < A < exp((log2 x)β(x)).

Put y := (log2 x)1−
√
β(x).

Lemma 3.4. If x is sufficiently large (depending on the choice of the function β), then all
but at most x/A numbers n ≤ x are such that σ(n) is divisible by every prime p ≤ y.
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Proof. By Lemma 3.3, the number of exceptional n is

� y
x

(log x)1/y
≤ (log2 x)

x

exp((log2 x)
√
β)
.

To see that this is at most x/A, note that by the upper bound on A in (3) and a short
computation, it is enough to prove that

log3 x− (log2 x)
√
β < −(log2 x)β.

From (3), we have that that (log2 x)β > log3 x, so that for large x,

(log2 x)
√
β − (log2 x)β = ((log2 x)β)1/

√
β − (log2 x)β

> ((log2 x)β)2 − (log2 x)β

> (log3 x)2 − log3 x > log3 x,

which gives the lemma. �

Lemma 3.5. If x is sufficiently large (depending on β and ε), then the number of positive
integers n ≤ x which have a squarefree, y-smooth divisor in the interval (A,A2] is at least
x/Aε/2.

Proof. Let Py :=
∏

p≤y p be the product of the primes not exceeding y. The number of n ≤ x

with a squarefree, y-smooth divisor d ∈ (A,A2] is at least

(4)
∑
d|Py

A<d≤A2

∑
n≤x

d|n,(n/d,Py)=1

1.

By inclusion-exclusion and Mertens’s theorem, for each d in the outer sum, the inner sum is

(x/d)
e−γ

log y
+O(2log2 x) = (e−γ + o(1))

x

d log3 x
(as x→∞),

and so the double-sum (4) is

(5) � x

log3 x

∑
d|Py

A<d≤A2

1

d
≥ x

log3 x

1

A2
(Ψ2(A

2, y)− A).

As x→∞, we have

log y/ log2(A
2) ≥ (1 + o(1)) log3 x/(β(x) log3 x+ log 2),

and this lower bound tends to infinity with x since β(x) tends to zero. So by Lemma 3.2, we
have that Ψ2(A

2, y) ∼ (6/π2)Ψ(A2, y). Since log(A2) = yo(1), Lemma 3.1 implies that (for
x→∞)

Ψ(A2, y) ≥ exp
(
(1 + o(1)) log (A2)

)
= A2+o(1).

Referring back to (5), we find that the double sum (4) is bounded below by (x/ log3 x)Ao(1),
which is at least xAo(1) since A ≥ log2 x. �

Theorem 1.2 follows immediately from Lemmas 3.4 and 3.5: Indeed, with at most x/A ex-
ceptions, any n with a divisor of the form prescribed in Lemma 3.5 will satisfy gcd(n, σ(n)) >
A. Since there are at least

x/Aε/2 − x/A > x/Aε

such n, we have Theorem 1.2.
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4. Proof of Theorem 1.3

For each natural number n, write σ(n)/n = a(n)/b(n), where a(n) and b(n) are coprime
natural numbers. Thus a(n) = σ(n)/ gcd(n, σ(n)) and b(n) = n/ gcd(n, σ(n)). The proof of
Theorem 1.3 rests on the following theorem of Wirsing [15]:

Theorem B. For each x ≥ 1 and every pair of positive integers a and b, the number of
n ≤ x for which a(n) = a and b(n) = b is at most

xc2/ log2 x.

Here c2 denotes an absolute positive constant.

For our purposes, we require a variant of Theorem A where only the denominator is
specified. It is perhaps surprising that a useful result of this kind can be derived from
Theorem A by a simple inductive argument:

Theorem 4.1. For each x ≥ 1 and each positive integer b, the number of n ≤ x for which
b(n) = b is at most

xc3/
√

log2 x.

Here c3 is an absolute positive constant.

Let us suppose temporarily that Theorem 4.1 has been established. Then we can quickly
dispense with Theorem 1.3 following a method of Erdős, Luca, and Pomerance (cf. the proof
of the upper bound in [3, Theorem 11]). Indeed, for x ≥ 1,

1

x

∑
n≤x

gcd(n, σ(n)) ≤
∑
n≤x

gcd(n, σ(n))

n
=
∑
b≤x

1

b

∑
n≤x
b(n)=b

1

≤ (1 + log x)xc3/
√

log2 x ≤ xc1/
√

log2 x

for an appropriate constant c1. So it is enough to prove Theorem 4.1.

Lemma 4.2. Suppose that x ≥ 1. For each positive integer b ≤ x, the number of n ≤ x with
rad(n) | b is at most xc4/ log2 x.

We remark that Lemma 4.2 is implicit in the proof of [3, Theorem 11].

Proof of Lemma 4.2. For a given x, the number of such n is maximized when b is the largest
product of consecutive primes (starting at 2) not exceeding x. In this case the number of
such n is precisely Ψ(x, p), where p is the largest prime divisor of b. By the prime number
theorem, p ∼ log x, and by Lemma 3.1, Ψ(x, p) = x(log 4+o(1))/ log2 x as x→∞. �

Proof of Theorem 4.1. By [6, Theorem 323], we can fix a real number x0 > e2e with the
property that for all x ≥ x0, we have

σ(n)/n ≤ 2 log2 x

whenever n ≤ x. We prove that for each integer N ≥ 2, each x > x
N/2
0 and each positive

integer b, the number of n ≤ x for which b(n) = b is bounded by

(6) x1/N+c5N/ log2 x.

Theorem 4.1 follows for large x upon choosing N = b
√

log2 xc. This implies the same
theorem for all x ≥ 3 with a possibly different constant in the exponent.
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We proceed by induction on N . Suppose first that N = 2. If b(n) = b, then b divides n,
and so we can assume b ≤ x1/2 (since otherwise we obtain a bound x1/2 on the number of
possible n, which is sharper than (6) for N = 2). Since x > x0 by hypothesis, every n ≤ x
with b(n) = b has

a(n) ≤ 2b log2 x ≤ 2x1/2 log2 x.

So by Wirsing’s theorem (Theorem B), we know that the number of such n is at most

2x1/2(log2 x)xc2/ log2 x ≤ x1/2x2c5/ log2 x

if c5 is chosen appropriately (depending on x0 and c2). This proves the upper bound (6) for
N = 2.

Suppose the bound (6) is known for N ; we prove it holds also for N + 1. If b ≤ x1/(N+1),
then we can apply Wirsing’s theorem as above to obtain that the number of n ≤ x with
b(n) = b is bounded by

2x1/(N+1)(log2 x)xc2/ log2 x ≤ x1/(N+1)x2c5/ log2 x

< x1/(N+1)x(N+1)c5/ log2 x,

yielding (6). So we may suppose b > x1/(N+1). We can also assume b ≤ x, since otherwise
there are no solutions n ≤ x to b(n) = b. Supposing n is a solution to b(n) = b, let d denote
the largest divisor of n supported on the primes dividing b. Since b | n, we have b | d.
Moreover, defining n′ by the equation n = dn′, we have

n′ = n/d ≤ x/b ≤ xN/(N+1)

and (since gcd(d, n′) = 1)
σ(n′)

n′
=

d

σ(d)

σ(n)

n
=

d

σ(d)

a

b
,

where a = a(n). It follows that b(n′) divides σ(d)b. Let b′ be an arbitrary divisor of σ(d)b.

Since x > x
(N+1)/2
0 by hypothesis,

xN/(N+1) ≥ (x
(N+1)/2
0 )N/(N+1) = x

N/2
0 .

Hence, by the induction hypothesis, for each choice of b′, there are at most

(xN/(N+1))1/Nxc5N/ log2 x = x1/(N+1)xc5N/ log2 x

possibilities for n′ ≤ xN/(N+1) with b(n′) = b′. (We have also used here that xN/(N+1) > ee,
and that the function t1/ log2 t is increasing for t > ee.) The maximal order of the divisor
function (see, e.g., [6, Theorem 317]) guarantees that the number of choices for b′, given d,
is bounded by xc6/ log2 x, while by Lemma 4.2, the number of choices for d is bounded by
xc4/ log2 x. It follows that the number of choices for n = dn′ is at most

x1/(N+1)x(c5N+(c6+c4))/ log2 x ≤ x1/(N+1)xc5(N+1)/ log2 x,

if we choose c5 so that c5 ≥ c6 + c4. �

Remark. Suppose f : N→ N is a multiplicative function. Say that f has property W if the
following holds (for each ε > 0):

For x > x0(ε), the number of n ≤ x with f(n)/n = a/b is bounded by xε,
uniformly in the choice of positive integers a and b.

Say that f has property W ′ if the following holds (for each ε > 0):
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For x > x1(ε), the number of n ≤ x for which n divides bf(n) is bounded by
xε, uniformly for positive integers b ≤ x.

Wirsing’s argument establishes that property W holds for a large class of multiplicative
functions (see, e.g., [11] for a general statement as well an extension to certain compositions
of multiplicative functions). The proof of Theorem 4.1 shows that if f has property W and
f(n)�ρ n

1+ρ for each ρ > 0, then f also has property W ′.

5. Proof of Theorem 1.4

It is convenient to divide the proof of Theorem 1.4 into two parts depending on the size
of A. Clearly the theorem will follow from the following two propositions:

Proposition 5.1. There is an absolute constant c7 > 0 for which the following holds: For
each fixed ε > 0 and each A ∈ [2, xc7 ],

G(x,A) > x/A1+ε

if x is sufficiently large (depending only on ε).

Proposition 5.2. Fix ε > 0. We have G(x,A) ≥ x/A1+o(1) as x → ∞, uniformly for
xε ≤ A ≤ x1−ε.

5.1. Proof of Proposition 5.1.

Lemma 5.3. For an absolute constant c7 > 0, the following holds: For each fixed ε > 0, all
large enough x (depending on ε), and all A with

log2 x ≤ A ≤ xc7 ,

there are at least x/A1+2ε positive integers m ≤ x/A1+ε possessing both of the following
properties:

(1) there is a prime q ‖ m for which q + 1 has a prime divisor in (A,A1+ε],
(2) the least prime divisor of m exceeds A1+ε.

Proof of Proposition 5.1 assuming Lemma 5.3. We can assume A ≥ log2 x, since for smaller
values of A the result of Proposition 5.1 follows from Theorem A.

We now apply Lemma 5.3. For each m ≤ x/A1+ε satisfying (1) and (2), choose a prime
q ‖ m for which q+ 1 has a prime divisor p ∈ (A,A1+ε] and form the number n = mp. Then
n ≤ x,

p | n and p | q + 1 | σ(n), so that gcd(n, σ(n)) ≥ p > A.

Moreover, condition (2) guarantees that the numbers n formed in this way are all distinct.
Thus, there are at least x/A1+2ε values of n ≤ x for which gcd(n, σ(n)) > A. Replacing ε by
ε/2 we have the proposition. �

Proof of Lemma 5.3. The proof proceeds in several stages. We can (and do) assume 0 < ε <
1. Put

Q := {q prime : q + 1 has a prime divisor in (A,A1+ε]},
and let Q(y) := #(Q ∩ [1, y]). We estimate the number of q ≤ y which are not in Q. The
fundamental lemma of the sieve (see, e.g., [5, Theorem 2.5′]) provides an estimate of this
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quantity if we assume y exceeds a large fixed power of A. Indeed, supposing that y ≥ AM ,
where M is large but fixed, we obtain that the number of such q is (for x sufficiently large)

≤ (1 + δM)

 ∏
A<p≤A1+ε

p− 2

p− 1

Li(y).

Here δM is a constant which tends to zero as M →∞.
Since ε is fixed, the product here tends to a constant B(ε) < 1 as x (and hence A) tends to

infinity. We now fix an M > 2 with (1 + δM)B(ε) < 1. For this choice of M , the proportion
of primes ≤ y not in Q is strictly less than 1. We have thus arranged that Q(y) � Li(y)
whenever y ≥ AM and x is sufficiently large.

We use this lower bound to estimate the number of m ≤ x/A1+ε having properties (1) and
(2) above. By the fundamental lemma of the sieve (this time see, e.g., [5, Theorem 2.5]), if
A ≤ xc7 where c7 is a sufficiently small absolute constant, then the number of m ≤ x/A1+ε

having property (2) above is at least

(7)
1

2

x

A1+ε

∏
p≤A1+ε

(1− 1/p)

for large x.
If we require that m not only have property (2) but also have no prime divisors in Q

exceeding AM , then the number of such m ≤ x/A1+ε is (by [5, Theorem 2.2])

� x

A1+ε

∏
p≤A1+ε

(1− 1/p)
∏

AM≤q≤x/A1+ε

q∈Q

(1− 1/q),

where the implied constant is absolute. (The assumption M > 2 made above ensures that
the products here are over disjoint sets of primes.) Here the product over the primes in Q is

≤ exp

(
−

∑
AM≤q≤x/A1+ε

q∈Q

1

q

)
.

Since Q(y)� Li(y) for y ≥ AM , partial summation shows that the sum inside the exponen-
tial can be made arbitrarily large by choosing c7 sufficiently small (perhaps depending on
M). So for a suitable choice of c7, we obtain a bound of

1

4

x

A1+ε

∏
p≤A1+ε

(1− 1/p)

on the number of such m.
Comparing this with (7), we see that there are at least

(8)
1

4

x

A1+ε

∏
p≤A1+ε

(1− 1/p)� x

A1+ε logA

positive integers m ≤ x/A1+ε with property (2) and which have some prime divisor in Q
exceeding AM . But such an m has property (1) of the lemma unless m is divisible by q2 for
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some q ∈ Q exceeding AM , and the number of such m is

� x

A1+ε

∑
q>AM

1

q2
� x

A1+ε+M
,

which is negligible compared to the lower bound (8).
So, there are � x/(A1+ε logA) values of m ≤ x/A1+ε with both properties (1) and (2),

which suffices to yield the claim. �

5.2. Proof of Proposition 5.2. The proof of Proposition 5.2 is based on entirely different
principles from that of Proposition 5.1.

Let ψ denote the Dedekind ψ-function, which is the arithmetic function defined by ψ(n) :=
n
∏

p|n(1 + 1/p). (Thus ψ ≤ σ pointwise, and ψ and σ agree on squarefree arguments.) For
each integer K ≥ 0, define

FK(n) :=
∏

0≤k≤K

ψk(n),

where ψk denotes the kth iterate of ψ. We need the following lemma:

Lemma 5.4. Let K be a fixed nonnegative integer. For each positive integer n, write

FK(n) = MN, where M :=
∏

pe‖FK(n)

p≤log3 x

pe and N :=
∏

pe‖FK(n)

p>log3 x

pe.

Then as x→∞, for all but o(x) values of n ≤ x, we have that N is squarefree and

M ≤ exp(2(5 log2 x)K+2) = xo(1).

Luca and Pomerance (see [10, §3.2]) have shown the analogous result with the Euler ϕ-
function replacing ψ. Since the proof of Lemma 5.4 is essentially identical to their arguments,
we omit it.

Put RK(n) := rad(FK(n)).

Lemma 5.5. Let K be a fixed positive integer. As x → ∞, for all but o(x) values of
n ∈ [x/2, x], we have

RK(n) = xK+1+o(1)

and
gcd(RK(n), ψ(RK(n))) > xK+o(1).

Proof. For all but o(x) values of n ∈ [x/2, x], the conclusion of Lemma 5.4 holds. For these
typical n, we have

RK(n) ≥ FK(n)

M
≥ nK+1

M
≥ 1

2K+1M
xK+1 = xK+1+o(1),

and
RK(n) ≤ FK(n) ≤ xK+1(2 log2 x)1+2+···+K ≤ xK+1+o(1).

(Here we use once again the maximal order of the sigma function.) This gives the first
assertion of the lemma.

Moreover, in the notation of Lemma 5.4, N divides RK(n) for these n, so that ψ(N)
divides ψ(RK(n)) and hence gcd(RK(n), ψ(RK(n))) ≥ gcd(N,ψ(N)). Thus it is enough to
show that for these n, we have gcd(N,ψ(N)) ≥ xK+o(1).
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For a positive integer m, define rad′(m) to be the product of the distinct primes dividing
m that exceed log3 x. Since N is squarefree, it follows that

N = rad′(FK(n)) =
K∏
k=0

rad′(ψk(n)).

Since the K + 1 factors in the right-hand product are pairwise coprime,

gcd(N,ψ(N)) =
K∏
k=0

gcd(rad′(ψk(n)), ψ(N))

≥
K∏
k=1

gcd(rad′(ψk(n)), ψ(rad′(ψk−1(n)))).

Now we observe that
rad′(ψk(n)) | ψ(rad′(ψk−1(n))).

Indeed, suppose p divides ψk(n) and p > log3 x. Then either p2 divides ψk−1(n) or q | ψk−1(n)
for some prime q ≡ −1 (mod p). Since N is squarefree, only the latter is possible. Then q
divides rad′(ψk−1(n)) and so

p | q + 1 = ψ(q) | ψ(rad′(ψk−1(n))).

Hence,

gcd(N,ψ(N)) ≥
K∏
k=1

rad′(ψk(n)) = N/rad′(ψ0(n))

≥ N

n
=
FK(n)

Mn
≥ nK

M
≥ 1

2KM
xK = xK+o(1).

This completes the proof of Lemma 5.5. �

Proof of Proposition 5.2. Fix a positive integer K large enough that 1/K < ε/2, and let δ
denote a fixed real number with

(9) 0 < δ <
ε

2
(K + 1)−1.

Put

I :=

[
1

2
A1/K+δ, A1/K+δ

]
.

Then, by Lemma 5.5, for almost all n ∈ I, we have (as x→∞)

(10) RK(n) ≤ A1+1/K+(K+1)δ+o(1)

and

gcd(RK(n), σ(RK(n))) ≥
(
A1/K+δ0

)K+o(1)
> A.

Note that from our choice of K and the inequalities (9) and (10), for these typical n we have

(11) RK(n) ≤ A1+ε+o(1) ≤ (x1−ε)1+ε+o(1) ≤ x1−
1
2
ε2 .

We now let R be the set of values RK(n) that arise from these typical n ∈ I. Since
rad(n) | RK(n), each element of R arises from at most xo(1) values of n (by Lemma 4.2), and
hence

#R ≥ A1/K+δxo(1) = A1/K+δ+o(1).
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(We have xo(1) = Ao(1), since by hypothesis log x � logA.) For each r ∈ R, define

A(r) := {br : 1 ≤ b ≤ x/r and gcd(b, r) = 1} and A :=
⋃
r∈R

A(r).

Note that every element br of A(r) satisfies

gcd(br, σ(br)) = gcd(br, σ(b)σ(r)) ≥ gcd(r, σ(r)) > A.

So the proof will be complete if we establish a suitable lower bound on #A. Using (11)
together with inclusion-exclusion, we see that

#A(r) =
x

r

ϕ(r)

r
+O(2ω(r)) ≥ x

r
xo(1),

since 2ω(r) = d(r) � xε
2/4, say. Moreover, each element a ∈ A is contained in at most

d(a) = xo(1) of the sets A(r). It follows that

#A ≥ xo(1)#R
(

min
r∈R

#A(r)

)
≥ xo(1)

(
A1/K+δ+o(1)

) x

A1+1/K+(K+1)δ+o(1)
= x/A1+Kδ+o(1).

Since we can take δ arbitrarily small, the proposition follows. �
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