LONG GAPS BETWEEN DEFICIENT NUMBERS

PAUL POLLACK

Abstract. Let \(n \) be a natural number. If the sum of the proper divisors of \(n \) is less than \(n \), then \(n \) is said to be deficient. Let \(G(x) \) be the largest gap between consecutive deficient numbers belonging to the interval \([1, x]\). In 1935, Erdős proved that there are positive constants \(c_1 \) and \(c_2 \) with
\[
c_1 \log \log \log x \leq G(x) \leq c_2 \log \log \log x
\]
for all large \(x \). We prove that \(G(x)/\log \log \log x \) tends to a limit as \(x \to \infty \), and we describe the limit explicitly in terms of the distribution function of \(\sigma(n)/n \). We also prove that long runs of nondeficient numbers are scarce, in that the proportion of \(n \) for which \(n+1, \ldots, n+A \) are all nondeficient decays triply exponentially in \(A \).

1. Introduction

The ancient Greeks called the positive integer \(n \) deficient, perfect, or abundant, according to whether \(\sigma(n) < 2n \), \(\sigma(n) = 2n \), or \(\sigma(n) > 2n \), respectively. Here \(\sigma(n) := \sum_{d|n} d \) is the usual sum of divisors function. Denoting these sets \(D \), \(A \), and \(P \), we have
\[
D = \{1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, \ldots \},
\]
\[
A = \{12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, \ldots \},
\]
\[
P = \{6, 28, 496, 8128, 33550336, 8589869056, 137438691328, \ldots \}.
\]

From the analytic standpoint, it is natural to ask what proportion of the natural numbers fall into each of these three classes. From the limited evidence presented above, we might conjecture that the perfect numbers have density zero, while the abundant and deficient numbers each make up a positive proportion of the integers.

Actually our innocent question requires some care to make precise, as it is not clear a priori that these proportions are well-defined. That this is the case follows from a result discovered independently by each of Behrend, Chowla [Cho34], and Davenport [Dav33]:

Theorem A. For each real number \(u \), define
\[
D(u) := \lim_{x \to \infty} \frac{\# \{n \leq x : \sigma(n)/n \leq u \}}{x}.
\]

Then \(D(u) \) exists for all \(u \). Moreover, \(D(u) \) is a continuous function of \(u \) and is strictly increasing for \(u \geq 1 \). Finally, \(D(1) = 0 \) and \(\lim_{u \to \infty} D(u) = 1 \).
The continuity of $D(u)$ implies immediately that the perfect numbers make up a set of asymptotic density zero. We then deduce that the deficient numbers make up a set of asymptotic density $D(2)$ and that the abundant numbers make up a set of asymptotic density $1 - D(2)$. Delégise [Del98] has shown that

$$0.2474 < 1 - D(2) < 0.2480.$$

Thus just under 1 in 4 natural numbers are abundant.

These results adequately describe the global distribution of the deficient and abundant numbers, but it is reasonable to ask also about the local distribution. Often problems of this type prove very hard; for example, is the largest gap between consecutive primes in $[1, x]$ bounded by $O(x^{\epsilon})$ for each $\epsilon > 0$? This, and in fact much more, is believed to be true, but proving this statement seems out of reach even if one replaces the primes with their much denser cousins, the squarefree integers.

For deficient numbers the situation is much better. For $x \geq 2$, define $G(x)$ as the largest gap $n' - n$ between consecutive deficient numbers $n < n' \leq x$. In 1935, Erdős [Erd35] showed the existence of positive constants c_1 and c_2 with

$$c_1 \log \log \log x \leq G(x) \leq c_2 \log \log \log x$$

for large x. The results of [Erd35], sometimes in slightly weaker form, have been rediscovered multiple times; see, e.g., [Gal86], [GK87], [Sán91], [DKK02]. Other results on the local distribution of $\sigma(n)/n$ are considered in [Erd58].

Our primary objective is to fill the gap implicit in (1) by proving an asymptotic formula for $G(x)$ as $x \to \infty$.

Theorem 1. We have $G(x)/\log \log \log x \to \frac{1}{C}$ as $x \to \infty$, where

$$C := \int_1^2 \frac{D(u)}{u} \, du.$$

Remark. Calculations carried out by M. Kobayashi show that

$$0.28209 \leq C \leq 0.28724,$$

so that

$$3.481 \leq \frac{1}{C} \leq 3.545.$$

Erdős originally phrased his theorem in terms of long runs of abundant numbers. We now turn our attention to the question of how often such long runs occur. If $x \geq 2$ is real and A is a positive integer, we let $N(x, A)$ denote the number of $n \leq x$ for which $n + 1, \ldots, n + A$ are all nondeficient (perfect or abundant). A theorem of Erdős and Schinzel [ES61, Theorem 3] implies that for any fixed A, the ratio $N(x, A)/x$ tends to a limit as $x \to \infty$. Our second result shows that this ratio decays triply exponentially with A.

Theorem 2. With C as defined in (2), we have

$$N(x, A) \ll \exp \exp \exp \left((1 + o(1))A \right).$$

Here "$o(1)$" indicates a term that tends to zero as $A \to \infty$ (uniformly in $x \geq 2$), and the constant implied by \ll is absolute.

Theorem 2 implies half of Theorem 1, namely that $\limsup G(x)/\log \log \log x \leq 1/C$. The plan for the rest of the paper is as follows: In §2, we prove some lemmas which are useful in the proofs of both theorems. In §3 we prove Theorem 2, and in §4 we complete the proof of Theorem 1 by proving that $\liminf G(x)/\log \log \log x \geq 1/C$.
2. Preparation

We begin by recording the following lemma, which is a special case of [Sch28, Satz I]. Let \(D^*(t) \) denote the density of \(n \) with \(n/\sigma(n) \leq t \), so that \(D^*(t) = 1 - D(1/t) \) in the notation of Theorem A.

Lemma 1. Suppose that \(f \) is a function of bounded variation on \([0, 1]\). Then as \(A \to \infty \),

\[
\frac{1}{A} \sum_{n \leq A} f \left(\frac{n}{\sigma(n)} \right) \to \int_0^1 f(t) \, dD^*(t).
\]

Given a natural number \(B \), define \(F_B \) as the arithmetic function which returns the \(B \)-smooth part of its argument, so that \(F_B(n) := \prod_{p \leq B} p^{v_p(n)} \). (Here we write \(v_p(n) \) for the exponent with the property that \(p^{v_p(n)} \mid n \).) Put

\[
H(n) := \log \frac{\sigma(n)}{n} \quad \text{and} \quad H_B(n) := \log \frac{\sigma(F_B(n))}{F_B(n)},
\]

so that \(H_B = H \circ F_B \). Note that both \(H \) and \(H_B \) are additive functions and that \(H \geq H_B \) pointwise. \(H_B \) has an important near-periodicity property, which we state precisely in the following lemma:

Lemma 2. Suppose that \(m \) and \(m' \) are natural numbers with \(m \equiv m' \, (\text{mod} \, M) \), where \(M := (\prod_{p \leq B} p)^B \). Then \(H_B(m) - H_B(m') \to 0 \) as \(B \to \infty \), uniformly in \(m \) and \(m' \).

Proof. Let \(p \leq B \) be prime. Since \(v_p(M) = B \) and \(M \mid m - m' \), either \(v_p(m) = v_p(m') \) or both \(v_p(m) \geq B \) and \(v_p(m') \geq B \). Consequently,

\[
H_B(m) - H_B(m') = \sum_{p \leq B} \log \frac{\sigma(p^{v_p(m)})}{p^{v_p(m)}} - \sum_{p \leq B} \log \frac{\sigma(p^{v_p(m')})}{p^{v_p(m')}}
\]

\[
= \sum_{\substack{p \leq B \mid m-p \mid m'}} \log \left(\frac{p^{v_p(m)+1} - 1}{p^{v_p(m)}} \cdot \frac{p^{v_p(m') + 1} - 1}{p^{v_p(m')}} \right) \ll \sum_{p} \frac{1}{p^{B+1}},
\]

which tends to zero as \(B \to \infty \) (by dominated convergence). \(\square \)

Lemma 3. When \(B \to \infty \), we have

\[
\frac{1}{M} \sum_{m=1}^M \max \{ \log 2 - H_B(m), 0 \} \to \int_1^2 \frac{D(u)}{u} \, du,
\]

where \(M = (\prod_{p \leq B} p)^B \), as above.

Proof. By Lemma 1 with \(f(x) := \max \{ \log 2 - \log \frac{1}{x}, 0 \} \) (interpreted so that \(f(0) = 0 \), we have

\[
\frac{1}{M} \sum_{m=1}^M \max \{ \log 2 - H(m), 0 \} \to \int_{1/2}^1 (\log 2 + \log u) \, dD^*(u)
\]

\[
= \log 2 - \int_{1/2}^1 \frac{D^*(u)}{u} \, du = \int_{1/2}^1 \frac{1 - D^*(u)}{u} \, du = \int_1^2 \frac{D(u)}{u} \, du
\]

(3)
as B, and hence M, tends to infinity. Now notice that

$$0 \leq \frac{1}{M} \sum_{m \leq M} \left(\max\{\log 2 - H_B(m), 0\} - \max\{\log 2 - H(m), 0\} \right)$$

$$\leq \frac{1}{M} \sum_{m \leq M} (H(m) - H_B(m)) = \frac{1}{M} \sum_{m \leq M} \sum_{p|m} \frac{\log \sigma(p^{v_p(m)})}{p^{v_p(m)}}.$$

Since

$$\log \frac{\sigma(p^{v_p(m)})}{p^{v_p(m)}} = \log \left(1 + \frac{1}{p} + \cdots + \frac{1}{p^{v_p(m)}}\right) < \log \left(1 + \frac{1}{p-1}\right) < \frac{1}{p-1},$$

the above difference is bounded above by

$$\frac{1}{M} \sum_{m \leq M} \sum_{p|m} \frac{1}{p-1} = \frac{1}{M} \sum_{p>B} \frac{1}{p-1} \sum_{m \leq M} \frac{1}{p^{v_p(m)}} \leq \frac{1}{B}.$$

Since $B \to \infty$, the result follows from (3).

Combining Lemmas 2 and 3 yields the key estimate for the proofs of both Theorems 1 and 2.

Lemma 4. For each $A > 1$, put $B := \lfloor (\log A)^{1/3} \rfloor$. As $A \to \infty$, we have

$$\frac{1}{A} \sum_{n+1}^{n+A} \max\{\log 2 - H_B(m), 0\} \to \int_1^2 \frac{D(u)}{u} \, du,$$

uniformly for nonnegative integers n.

Proof. Put $M = (\prod_{p \leq B} p)^B$, and notice that by the prime number theorem (or a more elementary estimate), $M \leq \exp(O((\log A)^{2/3}))$. In particular, $M = o(A)$. We split the sum in the lemma into a sum over blocks of the form $Mk + 1, Mk + 2, \ldots, M(k+1)$, excluding $O(M)$ terms at the beginning and end of the original range of summation. By Lemma 3 and the near-periodicity established in Lemma 2, we find that

$$\sum_{m=Mk+1}^{M(k+1)} \max\{\log 2 - H_B(m), 0\} = (C + o(1))M,$$

where $C = \int_1^2 D(u)u^{-1} \, du$. Since there are $A/M + O(1)$ blocks, the total contribution from all the blocks is $(C + o(1))A$. Finally, notice that the contribution from the $O(M)$ excluded initial and final terms is $O(M) = o(A)$, since each summand is bounded by $\log 2$. \qed

3. **Proof of Theorem 2**

By adjusting the implied constant, we can assume that A is large. We can also assume that $A \leq x$, since otherwise $N(x,A) = 0$. To see this last claim, notice that when $A > x > n$, the interval $n + 1, \ldots, n + A$ contains not merely a deficient number but in fact a prime number. This follows from Bertrand’s postulate, which asserts the existence of a prime in every interval of the form $(n,2n)$.

So suppose that \(n \) is counted by \(N(x, A) \) where \(A \) is large but \(A \leq x \). Put \(B = \lceil (\log A)^{1/3} \rceil \). Then by (4) and Lemma 4,

\[
(5) \quad \sum_{m=n+1}^{n+A} \sum_{p>B \atop p|m} \frac{1}{p-1} \geq \sum_{m=n+1}^{n+A} \sum_{p>B \atop p|m} \log \frac{\sigma(p^m)}{p^m} = \sum_{m=n+1}^{n+A} (H(m) - H_B(m))
\]

\[
\geq \sum_{m=n+1}^{n+A} \max\{\log 2 - H_B(m), 0\} \geq (C + o(1))A,
\]

where \(C \) is given by (2). To proceed we need a lower bound on \(\sum_{p \mid N} \frac{1}{p-1} \), where

\[
(6) \quad N := (n + 1)(n + 2) \cdots (n + A).
\]

To obtain our bound, we remove the overlap from (5), corresponding to primes \(p \) which divide more than one of \(n + 1, \ldots, n + A \). Clearly any such \(p \) satisfies \(p < A \), and so the contribution of such primes to the sum in (5) is bounded by

\[
\sum_{B < p < A} \frac{1}{p-1} \sum_{n+1 \leq m \leq n+A \atop p|m} 1 \leq 2A \sum_{p>B} \frac{1}{p(p-1)} \leq \frac{2A}{B},
\]

which is \(o(A) \) as \(A \to \infty \). It follows that we can choose a function \(r(A) \), depending only on \(A \), with \(r(A) = o(1) \) as \(A \to \infty \) and

\[
\sum_{p \mid N} \frac{1}{p-1} \geq (C - r(A))A.
\]

Let \(Z = Z(A) \) be the smallest positive integer for which

\[
\sum_{p \leq Z} \frac{1}{p-1} \geq (C - r(A))A, \quad \text{so that} \quad Z = \exp(\exp((C + o(1))A)) \quad \text{as} \quad A \to \infty.
\]

(Here we use the well-known estimate \(\sum_{p \leq Z} \frac{1}{p} = \log \log Z + O(1). \)) We now split the \(n \) counted by \(N(x, A) \) into two classes:

(i) In the first class, we consider those \(n \) for which \(N \), as defined in (6), has at least \(\frac{Z}{2 \log Z} \)
distinct prime divisors not exceeding \(4Z \).

(ii) In the second class we put all the remaining values of \(n \).

If \(n \) belongs to the first class, then for some \(1 \leq i \leq A \), the number \(n + i \) has at least \((2A)^{-1}Z/\log Z \) prime divisors not exceeding \(4Z \). Since \(n + i \leq 2x \), the number of possible \(n \) that arise this way is at most

\[
A \cdot \frac{2x}{k!} \left(\sum_{p \leq 4Z} \frac{1}{p} \right)^k, \quad \text{where} \quad k := \left\lceil \frac{Z}{2A \log Z} \right\rceil,
\]

by the multinomial theorem. A short calculation shows that for large \(A \), this bound is

\[
\ll xA \frac{\exp \left(O \left(Z \frac{\log \log \log Z}{\log Z \log \log Z} \right) \right)}{\exp \left(\frac{Z}{4A} \right)} \ll \exp \exp \exp ((C + o(1))A).
\]

(To verify this, it is helpful to keep in mind that \(A \asymp \log \log Z \) for large \(A \).)
It remains to show that we have a similar estimate for the n belonging to the second class. Note that for large Z, the first $Z/(2 \log Z)$ primes all belong to the interval $[1, 2Z/3]$. Consequently, for n in the second class,

$$
\sum_{\substack{p \mid N \\ p \leq 4Z}} \frac{1}{p-1} \leq \sum_{\substack{p \leq 2Z/3}} \frac{1}{p-1},
$$

once A is sufficiently large. Hence,

$$
\sum_{\substack{p \mid N \\ p > 4Z}} \frac{1}{p-1} \geq \sum_{\substack{p \mid N}} \frac{1}{p-1} - \sum_{\substack{p \leq 2Z/3}} \frac{1}{p-1} \geq (C - r(A))A - \sum_{\substack{p \leq 2Z/3}} \frac{1}{p-1} \geq \sum_{\substack{2Z/3 < p < Z}} \frac{1}{p-1},
$$

where for the last inequality we use the minimality of Z. Now

$$
\sum_{\substack{2Z/3 < p < Z}} \frac{1}{p-1} \geq \frac{1}{Z} (\pi(Z - 1) - \pi(2Z/3)) > \frac{1}{4 \log Z}
$$

when A, and hence Z, is large. It follows from (7) and (8) that there is some $j \geq 1$ for which

$$
\sum_{\substack{p \mid N \\ 4^jZ < p \leq 4^{j+1}Z}} \frac{1}{p-1} \geq \frac{1}{2^j 4 \log Z}.
$$

For this j, the number N is divisible by at least $\frac{2^jZ}{4 \log Z}$ primes from the interval $(4^jZ, 4^{j+1}Z]$, and so one of the numbers $n+1, \ldots, n+A$ is divisible by at least $W_j := \lceil \frac{2^jZ}{4A \log Z} \rceil$ of these primes. By another application of the multinomial theorem, we have that the number of such n is at most

$$
A \frac{2x}{W_j!} \left(\sum_{4^jZ < p \leq 4^{j+1}Z} \frac{1}{p} \right)^W_j.
$$

Now we sum this expression over j, noting that for large A the inner sum here is bounded by $1/2$. This gives (for large A) an upper bound on the number n in the second class which is

$$
\ll Ax \sum_{j=1}^{\infty} \frac{1}{2^j W_j!}.
$$

For large A, the sum here is dominated by its first term, and we obtain a final bound of

$$
\ll \frac{Ax}{2^{W_1} W_1!} = \frac{Ax}{\exp((1 + o(1))W_1 \log W_1)} \leq \frac{Ax}{\exp(Z/(4A))} \ll \frac{X}{\exp\exp((C + o(1))A)},
$$

as desired.

Remark. This proof uses a method introduced by Erdős [Erd46] and applied by him to estimate $D(u)$ as $u \to \infty$.

4. Proof of Theorem 1

Fix $\epsilon > 0$, which we assume to be small. For all large x, we will construct a positive integer $n \leq x/2$ with $n+1, n+2, \ldots, n+A$ all nondeficient, where

$$
A := [(C + 8\epsilon)^{-1} \log \log \log x].
$$
If \(n' \) denotes the first deficient number after \(n \), then (for example, by Bertrand’s postulate) \(n' \leq 2n \leq x \), and \(n' - n > (n + A) - n = A \). Thus \(G(x) > A \). Since \(\epsilon > 0 \) is arbitrary, this implies the lower bound implicit in Theorem 1. (Recall that the upper bound follows from Theorem 2.)

With \(B := \lfloor (\log A)^{1/3} \rfloor \), we let \(p_0 < p_1 < \ldots \) be the sequence of consecutive primes exceeding \(B \). Put \(i_0 := 0 \). If \(i_0, i_1, \ldots, i_{l-1} \) have been defined, choose \(i_l \) as small as possible so that

\[
H(P_l) \geq \epsilon + \max\{\log 2 - H_B(l), 0\} \quad \text{where} \quad P_l := \prod_{i_{l-1} \leq p < i_l} p_j.
\]

Suppose now that \(n \) is chosen so that \(M := \left(\prod_{p \leq B} p \right)^B \mid n \) and \(P_l \mid n + l \) for all \(1 \leq l \leq A \). Such a choice is possible by the Chinese remainder theorem; indeed, the \(n \) which satisfy these conditions make up a nonzero residue class modulo \(M \prod_{l=1}^A P_l \). For any such \(n \), and any \(1 \leq l \leq A \), we have

\[
H(n + l) \geq H(P_l) + H_B(n + l) \geq H(P_l) + H_B(l) - \epsilon \geq \log 2,
\]

once \(x \) is sufficiently large. (Here we use the near-periodicity property established in Lemma 2 to obtain the last inequality.) Thus all of \(n + 1, \ldots, n + A \) are nondeficient.

To show that such a choice is possible with \(n \leq \frac{x}{2} \), it is enough to show that

\[
M \prod_{l=1}^A P_l \leq \frac{x}{2},
\]

once \(x \) is sufficiently large. Write \(\prod_{l=1}^A P_l \) in the form \(\prod_{B < p \leq Z} p \), where \(Z \) is chosen as small as possible. Then for large \(A \),

\[
\sum_{B < p \leq Z} \log \frac{\sigma(p)}{p} = \sum_{l=1}^A H(P_l) \leq \sum_{l=1}^A \left(\max\{\log 2 - H_B(l), 0\} + \epsilon + \frac{1}{B} \right) \leq AC + 2A\epsilon + \frac{A}{B} = A(C + 3\epsilon).
\]

(Here the last inequality of the first line follows from our choosing \(i_l \) minimally at each stage.) Since \(\log \frac{\sigma(p)}{p} = \frac{1}{p} + O\left(\frac{1}{p^2}\right) \), it follows that

\[
\sum_{p \leq Z} \frac{1}{p} \leq A(C + 3\epsilon) + O(1) + \log \log B \leq A(C + 4\epsilon),
\]

and hence

\[
Z \leq \exp \exp(A(C + 5\epsilon)).
\]

Consequently,

\[
M \prod_{1 \leq l \leq A} P_l \leq \exp(O(\log A)^{2/3})) \prod_{p \leq Z} p \leq \exp(O(\log A)^{2/3})) \exp \exp(A(C + 6\epsilon)) \leq \exp \exp \exp(A(C + 7\epsilon)) \leq \frac{1}{2} x
\]
by our definition (9) of A.

Remark. The above argument shows that for each $\epsilon > 0$ and all large x, we have

\begin{equation}
N(x, A) \geq \left\lfloor \frac{x}{M \prod_{1 \leq l \leq A} P_l} \right\rfloor \geq x/\exp \exp \exp(A(C + 7\epsilon))
\end{equation}

as $x \to \infty$, if A is defined by (9). In fact, our proof shows that if A tends to infinity with x and if A is bounded above by the expression on the right of (9), then the inequality (10) holds. This can be viewed as a lower-bound counterpart of Theorem 2.

Acknowledgements

I would like to thank Carl Pomerance for suggesting the problem of determining an asymptotic formula for $G(x)$. I am also grateful to Mitsuo Kobayashi for estimating the value of C, supplying the reference for Lemma 1, and for giving nice talks that influenced the writing of the introduction.

References

Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61802

Current address: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540

URL: http://www.math.uiuc.edu/~pppollac/

E-mail address: pppollac@illinois.edu