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Abstract. Consider the Laplacian operator on a bounded open do-
main in Euclidean space with Dirichlet boundary conditions. We show
that for each number D with 1 < D < 2, there are two bounded open do-
mains in R2 of the same area, with their boundaries having Minkowski
dimension D, and having the same content, yet the secondary terms
for the eigenvalue counts are not the same. This was shown earlier
by Lapidus and the second author, but a possible countable set of ex-
ceptional dimensions D were excluded. Here we show that the earlier
construction has no exceptions.

1. Introduction

Let Ω be a nonempty, bounded open set in R2. We consider eigenvalues
for the Laplacian operator ∆ = ∂2/∂x2 + ∂2/∂y2 for the closure in the
Sobolev space of smooth functions with compact support, which are 0 on ∂Ω.
It is well-known that the nonzero eigenvalues are negative, forming a discrete
multiset, with each multiplicity bounded. By convention we consider the
absolute value of these eigenvalues and label them 0 < λ1 ≤ λ2 ≤ . . . . Let

N(λ; Ω) =
∑
m≥1
λm≤λ

1

denote the counting function of the λm’s.
Weyl’s classical asymptotic formula for N(λ; Ω),

(1) N(λ; Ω) ∼ |Ω|2
4π

λ, λ→∞,
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is now known for arbitrary Ω, see [1], [12]. Weyl conjectured that if ∂Ω
is sufficiently regular then there is a secondary term in (1) that is asymp-
totically a constant depending on the one-dimensional measure of ∂Ω times
λ1/2. Ivrii (see [7]) essentially proved this conjecture.

There remains the issue of when ∂Ω is not sufficiently regular, in partic-
ular if the boundary has a fractal dimension larger than 1. In 1979, Berry
suggested a modified Weyl conjecture with a secondary term for N(λ; Ω)

proportional to a constant times λd/2, where d is the Hausdorff dimension
of ∂Ω.

However, the Hausdorff measure of ∂Ω depends on the relative placement
of the connected components of Ω in the ambient space, yet the eigenvalues
do not care about this placement, so the Berry conjecture cannot strictly be
true, see Lapidus [8]. Brossard and Carmona [2] had earlier demonstrated a
specific counterexample to the Berry conjecture, and suggested instead that
the Minkowski dimension D of ∂Ω is the more appropriate parameter. In
fact, it was shown in [8] (also see [9]) that if ∂Ω has Minkowski dimension
D with 1 < D < 2 and finite upper Minkowski content in this dimension,
then the error in (1) is O(λD/2). This led Lapidus [8] to conjecture that if
in addition it was assumed that ∂Ω is Minkowski measurable in dimension
D, then there would be a secondary term in (1) of the form cλD/2, with c a
positive constant depending on the Minkowski content of ∂Ω.

The analogue of this modified Weyl–Berry conjecture for regions in R1

was subsequently proved in [10], with a simplified proof given in [5]. How-
ever, for dimension 2 the conjecture is false in general. If a set of New-
tonian capacity zero is removed from a given domain, the eigenvalues are
not changed, yet the Minkowski dimension and content can be altered by
strategically choosing which set of capacity zero to remove. This idea was
developed in [6] and [11]. However, this behavior seems to be simple to
bar with a further modification of the Weyl–Berry conjecture by stating it
in terms of the “intrinsic” Minkowski dimension of the boundary, where we
take the infimum of Minkowski dimensions of the boundaries of domains
that agree up to a set of Newtonian capacity 0, and also the “intrinsic”
Minkowski content, defined in the same way.

A more compelling counterexample was given in [11], involving sprays
of the 1× 1 unit square and of the 1× 2 rectangle. (A “spray” is a disjoint
union of similar copies of some given simple region with bounded total area.)
However, the argument in [11] was not sufficient to give a counterexample
for all Minkowski dimensions D with 1 < D < 2, but rather for all but a
possible countable set. In this note we show that the construction in [11]
actually works for every D with 1 < D < 2: there are no exceptions.

As in [11], the counterexample extends in a natural way to higher-
dimensional ambient spaces Rn for n ≥ 2.

Our argument involves getting precise formulations of the coefficient of
the secondary terms for N(λ; Ω) for our two domains Ω in terms of the
Riemann zeta-function and the Dedekind zeta-function for the quadratic
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field Q(i). We then show that these two functions are different for all D with
1 < D < 2. Along the way we prove some results of perhaps independent
interest about the zeta-functions involved. For example, we show that (s−
1)ζ(s) is monotone for real s ≥ 1/2. We show the same for L(s, χ), where χ
is the quadratic Dirichlet character mod 4.

2. Our domains

Fix an arbitrary number D with 1 < D < 2. Our first domain, denoted
Ω1, is the disjoint union of the j−1/D × j−1/D open squares for j = 1, 2, . . .
arranged in the plane so that they don’t overlap and sit inside a large disc.
(It is routine to show that such an arrangement is possible; for a particularly
efficient packing, see Moon and Moser [13].)

Let a be the positive real number (2/(D+ 2))1/D and let Ω′2 be the dis-

joint union of the aj−1/D×2aj−1/D rectangles for j = 1, 2, . . . also arranged
in the plane so that they don’t overlap and sit inside a large disc.

The area of Ω1 is ζ(2/D), where ζ is the Riemann zeta-function. The
area of Ω′2 is 2a2ζ(2/D). Note that since 1 < D < 2, we have 2a2 < 1, so
that the area of Ω′2 is smaller than the area of Ω1. Let Ω2 be the disjoint
union of Ω′2 and a square of area (1 − 2a2)ζ(2/D). Thus, Ω1 and Ω2 have
the same area.

As in [11], we have that the boundaries of Ω1 and Ω2 both have Minkowski
dimension D with Minkowski content in dimension D of 23−D(2−D)−1(D−
1)−1.

Let ζ1(s) be the spectral zeta-function for the 1× 1 square and let ζ2(s)
be the spectral zeta-function for the a × 2a rectangle. Also let N(λ; Ωi)
denote the counting function of the eigenvalues for the Dirichlet Laplacian
on Ωi, for i = 1, 2. From [11, Theorem 3.2] we have

(2) N(λ; Ωi) =
1

4π
ζ(2/D)λ+ (ζi(D/2) + o(1))λD/2, λ→∞,

for i = 1, 2. Note that the eigenvalues for the additional square tacked on to
Ω′2 affect the main term for N(λ; Ω2) (and is taken into account in (2)) and

create an error of O(λ1/2), which is negligible. That is, these eigenvalues are
invisible to the secondary term.

The argument in [11] depended on ζ1, ζ2 being non-identical analytic
functions, and so the secondary term coefficients in (2) could agree for at
most countably many D in (1, 2). Our goal in this paper is to show that
they actually are unequal for all D in (1, 2). Towards this end, we obtain
explicit descriptions of the spectral zeta-functions ζ1, ζ2.
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3. Our spectral zeta-functions

The eigenvalues for the 1×1 square are the numbers π2(m2 +n2) where
m,n run over positive integers. Thus,

ζ1(s) =
∑
m,n>0

1

π2s(m2 + n2)s
.

This function resembles the Dedekind zeta-function for the Gaussian field
Q(i), namely

ζQ(i)(s) =
∑
I6=0

1

N(I)s
=

1

4

∑
(m,n) 6=(0,0)

1

(m2 + n2)s
,

where I runs over the nonzero ideals of Z[i]. For a pair m,n > 0 that we see
in ζ1(s), there are 4 corresponding terms (±m,±n) giving the same value to
m2 + n2, and this 4-fold appearance in the last sum is compensated by the
1
4 in front of it. In addition, ζQ(i)(s) has terms coming from pairs (±m, 0)
and (0,±n) that have no counterpart in ζ1(s). These extra terms contribute
ζ(2s) to ζQ(i)(s). Thus,

(3) π2sζ1(s) = ζQ(i)(s)− ζ(2s).

Let χ be the Dirichlet character mod 4; that is χ is defined on all integers
n, with χ(n) = 0, 1,−1 depending, respectively, on whether n is even, n ≡ 1
(mod 4), n ≡ −1 (mod 4). Consider the L-function

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

We know that L(s, χ) is an entire function, and the series for it converges
uniformly on compact subsets of <s > 0. It is of interest to us via the
formula

(4) ζQ(i)(s) = ζ(s)L(s, χ).

Now we look at ζ2(s). We take a as in the last section. We have the
eigenvalues a−2π2(m2 +n2/4), where m,n > 0 are integers. We find it more
convenient to work with 4−sa−2sπ2sζ2(s), giving us

4−sa−2sπ2sζ2(s) =
∑
m,n>0

1

(4m2 + n2)s
.

Let r2(k) be the number of representations of k as 4m2 + n2 with m,n > 0.
Further, let r(k) denote the number of representations of k as m2+n2, where
m,n are any integers. We have∑

m,n>0

1

(4m2 + n2)s
=
∞∑
k=1

r2(k)

ks
,

∑
(m,n)6=(0,0)

1

(m2 + n2)s
=
∞∑
k=1

r(k)

ks
.

Here are some observations on r2(k). First note that for k ≡ 2 (mod 4),
we have r2(k) = 0, since squares are never 2 (mod 4). Next note that for
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k odd, a representation of k as a sum of two squares must have one of the
squares even and one odd. From this we see that

r2(k) =

{
1
8r(k), k not a square,
1
8r(k)− 1

2 , k is a square.

Indeed, if m,n > 0 and k = 4m2 + n2 with n odd, then there are 8 corre-
sponding representations of k as a sum of two squares, namely (±2m,±n), (±n,±2m).
The expression 1

8r(k) also counts an additional 1
2 if k is a square, so the for-

mula holds for odd k.
Now consider even values of k, so as we have seen, we may assume that

4 | k. We claim in this case that we have

r2(k) =

{
1
4r(k/4), k not a square,
1
4r(k/4)− 1, k is a square.

Indeed, a representation of k as 4m2 + n2 has n even, so that k/4 =
m2 + (n/2)2. Further, a pair m,n with m,n > 0 gives rise to 4 signed
representations of k/4. In addition, there are 4 additional representations
of k/4 as a sum of two squares when k is a square. So 1

4r(k) needs to be
decreased by 1 in this case.

Putting these thoughts together, we have

4−sa−2sπ2sζ2(s) =

∞∑
k=1

r2(k)

ks

=
∑
k>0
k odd

(
r(k)/8

ks
− 1/2

k2s

)
+
∑
k>0
4|k

(
r(k/4)/4

ks
− 1

(k/2)2s

)

=
1

2

∑
k>0
k odd

r(k)/4

ks
+ 4−sζQ(i)(s)−

1

2
ζ(2s)− 1

2
2−2sζ(2s).

Now, r(k)/4 is multiplicative, and the local factor corresponding to the
prime 2 in the Euler product for ζQ(i)(s) is (1− 2−s)−1, so that

1

2

∑
k>0
k odd

r(k)/4

ks
=

1

2
(1− 2−s)ζQ(i)(s).

Thus, with the above calculation, we have

4−sa−2sπ2sζ2(s) =

(
1

2
− 2−1−s + 4−s

)
ζQ(i)(s)−

1

2
(1 + 4−s)ζ(2s),

so

a−2sπ2sζ2(s) =
(
22s−1 − 2s−1 + 1

)
ζQ(i)(s)−

1

2
(4s + 1)ζ(2s).

We have proved the following result.
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Figure 1. Mathematica plot of the right-hand side of (5) on (1/2, 1).

Proposition 3.1. With the notation defined earlier, we have

π2sζ1(s) = ζQ(i)(s)− ζ(2s),

a−2sπ2sζ2(s) = (22s−1 − 2s−1 + 1)ζQ(i)(s)−
1

2
(4s + 1)ζ(2s).

4. Are they equal?

Our task is to show that ζ1(D/2) 6= ζ2(D/2) for 1 < D < 2. With
s = D/2 we have a−2s = D/2 + 1 = s + 1. So, from Proposition 3.1, we
would like to show that
(5)

(s+1)π2s(ζ1(s)−ζ2(s)) = (s−22s−1 +2s−1)ζQ(i)(s)−
(
s+

1

2
− 22s−1

)
ζ(2s)

is nonzero for 1
2 < s < 1. In Figure 1 we present a Mathematica plot of the

expression in (5), and though it is close to 0, one can plainly see that it is
not 0. Is this a proof? Not quite, since there may conceivably be some wild
gyrations of the functions between the discrete points used by Mathematica

to form the plot. In this section we give the details necessary to prove that
the expression in (5) is negative for s in (1/2, 1).

We begin with the following result.

Proposition 4.1. The function (s− 1)ζ(s) is increasing on [1/2,∞).

Proof. For <s > 0, s 6= 1, we have

(6) ζ(s) =
s

s− 1
− s

∫ ∞
1

x−1−s{x} dx,

where {x} = x−bxc is the fractional part of x. For <s > 1, this well-known
formula follows from the definition of ζ(s) as a Dirichlet series and partial
summation; for <s > 0, s 6= 1, it follows by analytic continuation. The same
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argument applied to

ζ ′(s) =

∞∑
n=1

−n−s log n,

gives us

ζ ′(s) =
−1

(s− 1)2
−
∫ ∞

1
(−sx−1−s log x+ x−1−s){x} dx

for <s > 0, s 6= 1. Thus,

((s−1)ζ(s))′ = ζ(s)+(s−1)ζ ′(s) = 1−
∫ ∞

1
(−s(s−1)x−1−s log x+(2s−1)x−1−s){x} dx.

(This identity can also be obtained by differentiating s−1 times the equation
in (6).) The integrand is positive for s ∈ (1/2, 1), so replacing {x} with 1
gives a lower bound on this interval. That is,

((s− 1)ζ(s))′ > 1−
∫ ∞

1
−s(s− 1)x−1−s log x+ (2s− 1)x−1−s dx = 0,

and the proposition is proved for the interval [1/2, 1].
We now deal with the range s ≥ 1. We have, as is easy to see,

(1− 21−s)ζ(s) =
∞∑
n=1

(−1)n−1n−s.

Let h(s) be the sum of the first 5 terms of this series, and let hk(s) =
−k−s + (k + 1)−s, so that

(1− 21−s)ζ(s) = h(s) +
∞∑
k=3

h2k(s).

It is easy to see that for k ≥ 3, the function hk(s) is increasing for s ≥ 1.
(The derivative is k−s log k−(k+1)−s log(k+1) and this is positive on s ≥ 1
when (k + 1)/k > log(k + 1)/ log k, which holds for k ≥ 3.) We now show
that h(s) is also increasing for s ≥ 1.

We have

3sh′(s) =

(
3

2

)s
log 2− log 3 +

(
3

4

)s
log 4−

(
3

5

)s
log 5.

Call this function g(s). Then

g′(s) =

(
3

2

)s
log

3

2
log 2−

(
3

4

)s
log

4

3
log 4 +

(
3

5

)s
log

5

3
log 5.

It is easy to check that the sum of the first two terms here is positive for
s ≥ 1, it only involves checking that (log 4

3 log 4)/(log 3
2 log 2) < 2. So,

g′(s) > 0 for s ≥ 1, which in turn implies that g(s) is increasing for s ≥ 1.
But g(1) > 0, so we have g(s) > 0 for s ≥ 1, which in turn implies that h(s)
is increasing for s ≥ 1. Thus, (1− 21−s)ζ(s) is increasing for s ≥ 1.



8 PAUL POLLACK AND CARL POMERANCE

It suffices now to show that (s− 1)/(1− 21−s) is increasing and positive
for s > 1. It is clearly positive. Letting x = s− 1 and taking the derivative,
we get

1− 2−x − x2−x log 2

(1− 2−x)2
=

2x − 1− x log 2

2x(1− 2−x)2
,

which is seen to be positive by using the Taylor expansion for 2x in the
numerator. This completes the proof. �

We also need a monotonicity result for L(s, χ).

Proposition 4.2. The function L(s, χ) is increasing on [1/2,∞).

Proof. Write L(s, χ) = −f1(s) + f2(s) + f3(s), where f1(s) = −(1 +
1/5s + 1/9s + · · ·+ 1/49s), f2(s) = −(1/3s + 1/7s + · · ·+ 1/47s), and

f3(s) =

∞∑
j=13

(
−1

(4j − 1)s
+

1

(4j + 1)s

)
.

Let s ≥ 1/2. We have

f ′3(s) =
∞∑
j=13

(
log(4j − 1)

(4j − 1)s
− log(4j + 1)

(4j + 1)s

)
.

The function x 7→ (log x)x−s is decreasing for x > e1/s, and thus for all x ≥
8. Hence, each summand in f ′3(s) is positive, and so f ′3(s) > 0. Therefore,
the proposition will follow if f ′2(s)− f ′1(s) > 0 for all s ∈ [1/2, 1].

We give a computer-assisted proof of this last inequality. Observe that

f ′2(s) = log(3)/3s + log(7)/7s + · · ·+ log(47)/47s

while

f ′1(s) = log(5)/5s + log(9)/9s + · · ·+ log(49)/49s.

In particular, both f ′1(s) and f ′2(s) are decreasing on [1/2, 1]. To verify
that f ′2(s) − f ′1(s) > 0 on all of [1/2, 1], partition [1/2, 1] into N := 104

equal-length subintervals [xi, xi+1] for i = 0, . . . , N − 1, where each xi =
1/2 + i/(2N). The minimum of f ′2(s)− f ′1(s) on [xi, xi+1] is bounded below
by f ′2(xi+1) − f ′1(xi). Using gp/pari, one can easily check that f ′2(xi+1) −
f ′1(xi) > 0.004 for all i = 0, . . . , N − 1.

This shows that L(1, χ) is increasing on [1/2, 1]. To complete the proof,
fix s ≥ 1 and note that since log(x)/xs is decreasing for x ≥ 3, it follows
that L′(s, χ) is positive. Hence L(s, χ) is increasing on [1/2,∞). �

Remark. There is an alternative approach to Propositions 4.1 and 4.2
based on the Hadamard product decompositions of ζ(s) and L(s, χ). We
discuss how this goes for L(s, χ) first, since the argument is slightly more
involved than for (s− 1)ζ(s).
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We start from the formula for L′

L found as equation (17) on p. 83 of [4].
This gives that for all real s,

(7)
L′(s, χ)

L(s, χ)
− L′(0, χ)

L(0, χ)
=

1

2

Γ′(1/2)

Γ(1/2)
− 1

2

Γ′( s2 + 1
2)

Γ( s2 + 1
2)

+
∑
ρ

<
(

1

s− ρ
+

1

ρ

)
,

where ρ runs over the zeros of L(s, χ) in the critical strip 0 ≤ <(s) ≤ 1. (If
we did not take real parts in the last summand, then (7) would hold for all
complex s.) When s > 0, we have <( 1

s−ρ + 1
ρ) ≥ 0 as long as

(8) <(ρ)(s−<(ρ)) + =(ρ)2 > 0.

Restrict now to real s > 0. Then <(ρ)(s−<(ρ)) ≥ −1. To get a handle on
=(ρ), we compare eq. (17) of [4, p. 83], taken at s = 0, with eq. (18) from
the same page; this yields

L′(0, χ)

L(0, χ)
+

1

2
log

4

π
+

1

2

Γ′(1/2)

Γ(1/2)
= −

∑
ρ

<1

ρ
.

From [3, Corollary 10.3.2, p. 188 and Proposition 10.3.5, pp. 189–190], we

have L′(0, χ) = log Γ(1/4)
2·Γ(3/4) and L(0, χ) = 1

2 . It follows that

(9)
∑
ρ

<1

ρ
= 0.0777839 . . . .

Note that each term in this sum is nonnegative. We now take the subsum
of (9) where <ρ ≥ 1

2 . If ρ is any zero in the critical strip, then 1− ρ is also
a zero with the same imaginary part. So our subsum consists of all zeros on
the critical line and for each zero in the critical strip not on the critical line,
we take the member of the pair ρ, 1− ρ with the larger real part. Now

<1

ρ
+ <1

ρ
=

2 · <ρ
(<ρ)2 + (=ρ)2

≥ 1

1 + (=ρ)2
.

Since ρ and ρ are both nontrivial zeros of L(s, χ), (9) implies that |=ρ| > 3.4.
Thus, (8) holds for s > 0 (for every ρ). Consequently, the sum on ρ in (7)
is nonnegative for these values of s. Turning to the digamma terms, recall
that

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
k=1

(
1

z + k
− 1

k

)
;

this follows, e.g., by logarithmically differentiating equation (2) on p. 73 of

[4]. Hence, −Γ′(z)
Γ(z) is a decreasing function of z for real z > 0. Therefore,

when 0 < s ≤ 1,

1

2

Γ′(1/2)

Γ(1/2)
− 1

2

Γ′( s2 + 1
2)

Γ( s2 + 1
2)
≥ 1

2

(
Γ′(1/2)

Γ(1/2)
− Γ′(1)

Γ(1)

)
= log

1

2
.

(Here the final equality can be obtained from the partial fraction expansion
of digamma given above.) Plugging back into (7), we deduce that for 0 <
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s ≤ 1,

L′(s, χ)

L(s, χ)
≥ 2 log

Γ(1/4)

2 · Γ(3/4)
+ log

1

2
.

This last expression is larger than 0.09, and in particular is positive. Since
L(s, χ) > 0 for s > 0, it follows that L′(s, χ) > 0 on (0, 1]. Thus, with
the final step in the proof of Proposition 4.2 we have L(s, χ) increasing on
[0,∞).

A similar method will show that (s − 1)ζ(s) is increasing on (0,∞).

Notice that for s > 0, we have ((s−1)ζ(s))′ > 0 exactly when ζ′(s)
ζ(s) + 1

s−1 > 0

. Eq (7) on p. 80 of [4], combined with the expression for B on p. 81, shows
that for all real s,

ζ ′(s)

ζ(s)
+

1

s− 1
= −1

2
γ − 1 + log(2π)− 1

2

Γ′( s2 + 1)

Γ( s2 + 1)
+
∑
ρ

<
(

1

s− ρ
+

1

ρ

)
,

where ρ now runs over the nontrivial Riemann zeta zeros. As remarked on
p. 82 of [4], |=ρ| > 6 for all ρ. (It is known in fact that |=ρ| > 14.) It
follows from our earlier arguments that the the sum on ρ is nonnegative

for all s > 0. Since −Γ′(z)
Γ(z) is decreasing for real z > 0, we deduce that for

0 < s ≤ 4,

ζ ′(s)

ζ(s)
+

1

s− 1
≥ −1

2
γ − 1 + log(2π)− 1

2

Γ′(3)

Γ(3)
> 0.08.

It remains to show that (s − 1)ζ(s) is increasing for s > 4. Using the
idea at the end of the proof of Proposition 4.1, it suffices to show that
(1 − 21−s)ζ(s) is increasing in this range of s. Now ((1 − 21−s)ζ(s))′ =
log(2)/2s− log(3)/3s+ . . . . When s > 4, the terms log(x)/xs are decreasing
for x ≥ 2. Hence, ((1− 21−s)ζ(s))′ > 0.

Remark. Concerning specifically Proposition 4.1, Harold Diamond has
shown us a proof by somewhat different methods that (s−1)ζ(s) is monotone
for s ≥ −2.5, which is nearly best possible.

Referring back to (5), we see that

(s+ 1)π2s(ζ1(s)− ζ2(s)) = (s− 22s−1 + 2s−1)ζQ(i)(s)−
(
s+

1

2
− 22s−1

)
ζ(2s)

=
22s−1 − s− 1

2

s− 1
2

· 1

2
(2s− 1)ζ(2s)− (s− 22s−1 + 2s−1)

1− s
· (s− 1)ζ(s) · L(s, χ).

(10)

Each of 1
2(2s − 1)ζ(2s), (s − 1)ζ(s), and L(s, χ) is positive on [1/2, 1], and

our work above shows that these functions are increasing there. The next
proposition supplies the corresponding results for the remaining factors in
(10).
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Proposition 4.3. Both of the functions

s− 22s−1 + 2s−1

1− s
and

22s−1 − s− 1
2

s− 1
2

are positive and increasing on (0,∞). (We assume here that the disconti-
nuities have been filled in to make the functions continuous.)

Proof. We first prove that both functions are increasing on the entire
real line. We begin by recalling a fact from calculus about convex functions:
Suppose that g is a C2 function on an open interval I. For each x, y ∈ I,
put

S(x, y) =

{
g(x)−g(y)
x−y if x 6= y,

g′(x) if x = y.

If g′′ > 0 on I, then S(x, y) is increasing separately in both x, y. Applying
this with g(x) = 22x−1 − x − 2x−1 and x = 1, y = s shows that the first
function is increasing. To handle the second function, take g(x) = 22x−1 −
x − 1/2, and look at x = s, y = 1/2. Since both functions vanish at 0,
their positivity on (0,∞) is now immediate. We remark that this calculus
fact could also have been used for the last step in the proof of Proposition
4.1. �

We can now prove our main result.

Proof that ζ1(s) 6= ζ2(s) for 1/2 < s < 1. Let F (s) denote the first
term on the right-hand side of (10), and let G(s) denote the second, sub-
tracted term. Then F and G are positive, increasing functions on [1/2, 1].
We will prove that F −G < 0 on [1/2, 1] by the same method employed in
the proof of Proposition 4.2. We partition [1/2, 1] into N := 50 equal length
intervals [xi, xi+1] for i = 0, 1, . . . , N − 1, with each xi = 1/2 + i/(2N).
The maximum of F − G on [xi, xi+1] is at most F (xi+1) − G(xi). Using
Mathematica, one easily computes that each of these differences is smaller
than −0.001. �
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