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THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD

OF PRIME DEGREE

Paul Pollack

Abstract. Fix an odd prime `. For each cyclic extension K/Q of degree `, let nK

denote the least rational prime which is inert in K, and let rK be the least rational

prime which splits completely in K. We show that nK possesses a finite mean value,

where the average is taken over all such K ordered by conductor. As an example (` = 3),
the average least inert prime in a cyclic cubic field is approximately 2.870.

We conjecture that rK also has a finite mean value, and we prove this assuming the

Generalized Riemann Hypothesis. For the case ` = 3, we give an unconditional proof
that the average of rK exists and is about 6.862.

1. Introduction

For each odd prime p, let n2(p) denote the least quadratic nonresidue modulo p.
In 1961, Erdős [9] showed that n2(p) possesses a finite mean value. More precisely,
with pk denoting the kth prime in the usual increasing order, Erdős proved that

1

π(x)

∑
2<p≤x

n2(p)→
∞∑
k=1

pk
2k
, as x→∞.

The infinite series on the right-hand side converges rapidly to about 3.675. Erdős’s
result was generalized by Elliott: For each prime p ≡ 1 (mod k), let nk(p) denote the
least kth power nonresidue modulo p; for p 6≡ 1 (mod k), set nk(p) = 0. Answering
a question of Erdős, Elliott showed [6] that nk(p) possesses a finite mean value for
every k. If one is interested in power residues instead of nonresidues, the corresponding
object of study is the function rk(p), defined for p ≡ 1 (mod k) as the least prime
kth power residue modulo p. (Again, we set rk(p) = 0 if p 6≡ 1 (mod k).) Elliott also
proved [8] that rk(p) has a finite mean value for each of k = 2, 3, and 4.

These results of Erdős and Elliott can be viewed as describing statistical properties
of number fields. This is simplest to see when k = 2. For each quadratic number field
K, let nK denote the least rational prime p which is inert in K, and let rK be the least
rational prime which is split in K. Then Erdős’s result gives the average value of nK
as K runs over quadratic fields of prime conductor, and Elliott’s result on r2(p) gives
the corresponding average of rK . (Recall that the conductor of an abelian extension
K/Q may be defined as the least f for which K ⊂ Q(ζf ).) This suggests the question
of whether analogous mean value theorems can be proved for other classes of number
fields.
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In [22], the present author determined the average of nK and rK over all quadratic
number fields K, ordered by conductor. Both averages have the same value, approx-
imately 4.981. For the class of cubic number fields (ordered by discriminant), the
average least prime with a given splitting type is investigated in recent work of the
author with Greg Martin [17]. While many of the results of that paper are conditional
on the Generalized Riemann Hypothesis, it is proved there without any assumption
that the average value of the smallest non-split-completely prime in a cubic field is
≈ 2.121.

The purpose of this paper is to study corresponding averages for cyclic number
fields of degree `, where ` is a fixed odd prime. In each such number field K, an
unramified rational prime is either inert or splits completely. We let nK denote the
least inert prime, and we let rK be the least split-completely prime. Our main theorem
is the following determination of the average value of nK .

Theorem 1.1. Fix a prime ` ≥ 3. Then nK has a finite mean value taken over all
cyclic extensions K/Q of degree `. We describe this average value explicitly: For each
rational prime q, set

(1.1) cni(q) =


2`−1
`2+`−1 if q = `,
1
` ·

q+`(`−1)
q+`−1 if q ≡ 1 (mod `),

1
` if q 6= ` and q 6≡ 1 (mod `).

Then as x→∞,

(1.2)

∑
fK≤x

1

−1∑
fK≤x

nK

→ Γ`,

where

(1.3) Γ` :=
∑
p

p(1− cni(p))
∏
q<p

cni(q).

In (1.2), as in the rest of this paper, the condition ‘fK ≤ x’ indicates a sum over
cyclic degree ` extensions K/Q with conductor fK ≤ x. In (1.3), p and q run over
rational primes.

Remark. By the conductor-discriminant formula [28, Theorem 3.11, p. 27], the

discriminant of a cyclic, degree ` number field K is f `−1K . So for average value results
such as Theorem 1.1, it makes no difference whether we order by conductor or by
discriminant.

We can also find the average value of rK , but this time we need to assume certain
generalizations of the Riemann Hypothesis.

Theorem 1.2. Fix a prime ` ≥ 3. Assume that the Riemann Hypothesis holds for
the Riemann zeta function ζ(s) as well as for all L-functions associated to Dirichlet
characters of order `. Then rK has a finite mean value taken over all cyclic extensions
K/Q of degree `. We describe this average value explicitly: For each rational prime
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Table 1. The first several odd primes ` together with the average
least inert prime Γ` and the conjectured average least split prime
∆`. Starting from the expressions in Theorems 1.2 and 1.3, one can
show (proof omitted) that Γ` = 2 + 1/` + O(1/`2) and that ∆` is
asymptotic to the `th prime p`, as `→∞.

3 5 7 11 13 17 19 23
inert 2.8698 2.3178 2.1925 2.1092 2.0898 2.0662 2.0585 2.0474
split 6.8616 13.2766 20.4056 37.5746 46.2243 65.1005 74.8968 96.5967

q, set

(1.4) cns(q) =


`2−1
`2+`−1 if q = `,
`−1
` ·

q+`
q+`−1 if q ≡ 1 (mod `),

`−1
` if q 6= ` and q 6≡ 1 (mod `).

Then as x→∞,

(1.5)

∑
fK≤x

1

−1∑
fK≤x

rK

→ ∆`,

where

∆` :=
∑
p

p(1− cns(p))
∏
q<p

cns(q).

In the case when ` = 3, we have succeeded in removing all unproved hypotheses:

Theorem 1.3. The conclusion of Theorem 1.2 holds unconditionally when ` = 3. In
other words, the average least split prime in a cyclic cubic field is ∆3.

Notation and conventions. All number fields are considered subfields of the com-
plex numbers. The symbol ζm stands for e2πi/m. In what follows, ` always denotes a
fixed odd prime. For the rest of this paper, every field denoted by K is understood
to be a cyclic, degree ` number field. The letters p and q are reserved for rational
primes. We define nK and rK as in the introduction. We write fK for the conductor
of K. If χ is a Dirichlet character, we write fχ for the conductor of χ. We also use nχ
to denote the least prime p with χ(p) 6∈ {0, 1} (sometimes called the least character
nonresidue), and we write rχ for the least prime p with χ(p) = 1.

We use ω(m) :=
∑
p|m 1 to denote the number of distinct prime factors of m

and Ω(m) :=
∑
pk|m 1 to denote its total number of prime factors, counted with

multiplicity.

We employ the Landau–Bachmann o and O notations, as well as the associated
Vinogradov symbols � and �, with their usual meaning. Implied constants may
depend on ` without further mention, but any additional dependence will be indicated
explicitly (for example, with subscripts).
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2. The least inert prime: Proof of Theorem 1.1

2.1. Outline. In this section, we prove that nK possesses a finite mean value, contin-
gent on certain auxiliary results to be established later. We adopt a strategy similar
to that of Erdős [9]. We start by showing that the average value Γ` claimed in Theo-
rem 1.1 is essentially accounted for by those fields K where nK is small. (The notion
of ‘small’ that will be convenient for us is that of lying below a fixed large number
z; the bound z will eventually be sent to infinity at the end of the proof.) It then
remains to argue that those K where nK is ‘large’ make a negligible contribution to
the average.

We require a series of lemmas to carry out this plan, some of which are drawn from
the literature and others of which are proved later in this paper. The first of these
gives an estimate for the size of the set over which the average in (1.2) is taken. This
result goes back to Urazbaev [27]; since the method is useful for us, we also include a
sketch of the proof in §2.2 below.

Lemma 2.1. The number of cyclic, degree `-number fields K with fK ≤ x is asymp-
totic to a nonzero constant multiple of x, as x→∞.

The next result, also discussed in §2.2, will be used to estimate the contribution
to the average from those fields K where nK is bounded. Recall the definition of the
constants cni(q) from (1.1).

Lemma 2.2. Let Q be a finite set of primes. The proportion of fields K in which no
q ∈ Q is inert is

∏
q∈Q cni(q). More precisely,( ∑

fK≤x

1

)−1( ∑
fK≤x

all q ∈ Q non-inert

1

)
→
∏
q∈Q

cni(q), as x→∞.

The remaining lemmas will be used to show that the contribution from those
K where nK is large is essentially nil. The statements of the subsequent lem-
mas are in terms of Dirichlet characters. We remind the reader that there is a
conductor-preserving correspondence between primitive Dirichlet characters of order
` and cyclic, degree ` number fields K. Here χ corresponds to the fixed field K of
kerχ ⊂ (Z/fχZ)× = Gal(Q(ζfχ)/Q). The correspondence is (`− 1)-to-1; in fact, two
such χ correspond to the same field K precisely when they generate the same group
of Dirichlet characters. Moreover, for any prime q,

χ(q) = 0⇐⇒ q ramifies in K, and χ(q) = 1⇐⇒ q splits in K.

(The details of this correspondence, in greater generality than needed here, are worked
out in [28, Chapter 3].) This correspondence allows us to go back and forth between
counting K with prescribed prime splitting behavior and counting characters with
specified values at certain primes.

Lemma 2.3, to be proved in §2.3, will be used to bound the contribution from
those fields K where nK is a medium-sized prime; here ‘medium-sized’ means that
nK exceeds a large, fixed parameter z but is bounded above by (log x)1000.

Lemma 2.3. Let 2 ≤ z ≤ 1
10`2 log x. The number of primitive, order ` Dirichlet

characters χ of conductor not exceeding x for which nχ ≥ z is

(2.1) � x exp(−cz/ log z),
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where c = c(`) is a positive constant depending on `.

The next two lemmas, taken from the literature, will be used in the remaining
range where nK > (log x)1000. The first of the lemmas below was proved by Norton
[19, Theorem 1.20, eq. (1.22)], using Burgess’s character sum bounds.

Lemma 2.4. Let χ be any nontrivial Dirichlet character mod m. For each ε > 0, we

have nχ �ε m
1

4
√
e
+ε

.

The next lemma is due to Duke and Kowalski [5, eq. (1)] and is proved using the
multiplicative large sieve (quoted as Lemma 3.7 below). For a detailed proof, see [22,
Lemma 5.3].

Lemma 2.5. Fix A > 2. The number of primitive characters χ of conductor not
exceeding x for which nχ > (log x)A is at most x

2
A+o(1), as x→∞.

Assuming all of these auxiliary results, we can now prove our main theorem.

Proof of Theorem 1.1. Let z be a large, fixed real parameter. Re-organizing the left-
hand side of (1.2) as a sum over nK = p, the contribution to the average from those
K with nK ≤ z assumes the form

(2.2)
∑
p≤z

p · #{K : fK ≤ x, nK = p}
#{K : fK ≤ x}

.

In order to have nK = p, it must be that p is inert in K but that every prime q < p is
not inert. Making two applications of Lemma 2.2, we see that the limiting proportion
of fields K with nK = p is (1− cni(p))

∏
q<p cni(q). Thus, as x → ∞, the right-hand

side of (2.2) is asymptotic to∑
p≤z

p(1− cni(p))
∏
q<p

cni(q).

This expression is almost the same as the definition (1.3) of Γ`, the only difference
being that the sum on p is truncated at the finite point z.

Now let us study the contribution to the average from those K with nK > z. We
first deal with the range where nK ≤ log x

10`2 . Using Lemmas 2.1 and 2.3, we find that∑
z<p≤ log x

10`2

p · #{K : fK ≤ x, nK = p}
#{K : fK ≤ x}

≤
∑

z<p≤ log x

10`2

p · #{K : fK ≤ x, nK ≥ p}
#{K : fK ≤ x}

�
∑
p>z

p · exp(−cp/ log p)� z−1.

(To see the final estimate, observe that p · exp(−cp/ log p)� p−2.) Next, consider the

range where log x
10`2 < nK ≤ (log x)1000. We apply Lemma 2.3 again to find that∑

log x

10`2
<p≤(log x)1000

p · #{K : fK ≤ x, nK = p}
#{K : fK ≤ x}

≤
#{K : fK ≤ x, nK > log x

10`2 }
#{K : fK ≤ x}

∑
p

p

� exp(−c′ log x/ log log x) · (log x)2000,

where c′ = c′(`) > 0. This final expression goes to zero. We conclude that those fields
K with z < nK ≤ (log x)1000 make a total contribution of O(1/z) + o(1).
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Finally, we deal with those K where nK > (log x)1000. Since 1
4
√
e
< 0.2, Lemma

2.4 shows that nK < x0.2 for all K with fK ≤ x, once x is large. Moreover, from
Lemma 2.5, the number of K with nK > (log x)1000 is smaller than x1/499 for large
x, and so is certainly smaller than x0.1. Hence,∑
fK≤x: nK>(log x)1000

nK ≤
(

max
fK≤x

nK

)( ∑
fK≤x: nK>(log x)1000

1

)
< x0.2 · x0.1 = x0.3.

To determine the contribution of these K to the average, we divide by the total
number of fields K with fK ≤ x, which was estimated in Lemma 2.1. We find that
the cases where nK > (log x)1000 contribute � x−0.7 = o(1) to our average (1.2).

Piecing everything together, we have shown that the average of nK , over those K
with fK ≤ x, has the form

∑
p≤z(1− cni(p))

∏
q<p cni(q) +O(1/z) + o(1), as x→∞.

Now let x→∞ and then let z →∞ to complete the proof of the theorem. �

2.2. Proof of Lemma 2.2. For use below, we quickly review how one establishes an
asymptotic formula for the number of cyclic, degree ` number fields K with bounded
conductor. As already mentioned above, this result goes back to Urazbaev [26] (but
the ` = 3 case is sometimes attributed to Cohn [4], who worked independently).

In view of the (` − 1)-to-1 correspondence between primitive Dirichlet characters
χ of order ` and fields K, it suffices to estimate the number of such χ with fχ ≤ x.
If χ is a primitive, order ` Dirichlet character, then f := fχ > 1, and f is either
a squarefree product of primes p ≡ 1 (mod `) or is `2 multiplied by such a product
(compare with [25]). Given an f of this form, the number of primitive characters χ
mod f of order ` is precisely (`− 1)ω(f) (cf. [27]). Now set

(2.3) U(x) :=
∑
f≤x

f squarefree
p|f⇒p≡1 (mod `)

(`− 1)ω(f).

Then the number of primitive, order ` characters χ with fχ ≤ x and (fχ, `) = 1 is

(2.4) U(x)− 1,

and the number of primitive, order ` characters χ where fχ ≤ x and `2 | fχ is

(2.5) (`− 1) · U(x/`2).

(The ‘−1’ in (2.4) is explained by the fact that there are no primitive, order ` char-
acters modulo 1.) This reduces the problem of counting K with fK ≤ x to that of
obtaining an asymptotic formula for U .

To get a handle on the growth rate of U , one introduces the Dirichlet series defined
by the Euler product

(2.6) F (s) =
∏

p≡1 (mod `)

(
1 +

`− 1

ps

)
,

noting that U(x) is the summatory function of the coefficients of F . Let L = Q(ζ`).
A prime-by-prime comparison of the Euler product defining F (s) with that of the
Dedekind zeta function ζL(s) reveals that ζL(s) = F (s)G(s), where G is analytic and
nonzero for <(s) > 1

2 . In particular, since ζL(s) is analytic for <(s) > 1
2 but for a
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simple pole at s = 1, the same is true for F (s). So we may apply the Tauberian
theorem of Wiener–Ikehara [18, Corollary 8.8, p. 261] to find that∑

f≤x
p|f⇒p≡1 (mod `)
f squarefree

(`− 1)ω(f) ∼ κ`x as x→∞, where κ` := Ress=1F (s).

It follows that our count (2.4) of χ with (fχ, `) = 1 is ∼ κ`x (as x → ∞), while the

corresponding count of χ where `2 | fχ is ∼ `−1
`2 κ`x. Adding these estimates and

dividing by `− 1, we find that the total number of K with fK ≤ x is asymptotic to

(2.7) κ`

(
1

`− 1
+

1

`2

)
x.

This vindicates the claim of Lemma 2.1. As shown in [3, Corollary 2], one can express
the coefficient of x in (2.7) rather more explicitly; however, we will not need this.

We now return to the proof of Lemma 2.2. It is enlightening to reformulate that
lemma in probabilistic terms. If P is a property which a cyclic, degree ` field K might
have, we define the probability of P by the expression

Prob(P) := lim
x→∞

( ∑
fK≤x

1

)−1( ∑
fK≤x
K has P

1

)
.

(The term ‘probability’ is used loosely here, since not all of the usual axioms are
satisfied.) In this notation, Lemma 2.2 is an assertion about the probability that
all primes in a given finite set Q are non-inert. As a prelude, we determine the
probability that a given rational prime q ramifies in a random K.

Lemma 2.6. For each rational prime q,

Prob(q ramifies) =


`−1

`2+`−1 if q = `,
`−1
q+`−1 if q ≡ 1 (mod `),

0 if q 6= ` and q 6≡ 1 (mod `).

Proof. We make use of the field-counting argument given at the start of this section.
That argument shows (cf. (2.5)) that the number of K for which fK is a multiple of
` belonging to [1, x] is asymptotically κ`x/`

2, as x → ∞. Comparing with (2.7), we
see that the probability that ` ramifies in a random K is

1/`2

1/(`− 1) + 1/`2
=

`− 1

`2 + `− 1
,

which establishes the first case of the lemma.

Suppose next that q ≡ 1 (mod `). Then q ramifies precisely when fK = qf ′, where
f ′ ≤ x/q and f ′ is prime to q. So the number of K with fK ≤ x where q is ramified
is

(2.8)
1

`− 1

∑
f ′

(`− 1)ω(qf
′) =

∑
f ′

(`− 1)ω(f
′) = U ′

(
x

q

)
+ (`− 1)U ′

(
x

`2q

)
,
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where

U ′(t) :=
∑
f ′≤t

f ′ squarefree, prime to q
p|f ′⇒p≡1 (mod `)

(`− 1)ω(f
′).

The function U ′ has the same form as the function U defined in (2.3), except for
the extra restriction that q - f ′. So to study the asymptotic behavior of U ′(t), we
remove the factor 1+(`−1)/qs from the generating function F (s) appearing in (2.6).
This changes the residue at s = 1 from κ` to κ`(1 + (`− 1)/q)−1. Now following our
previous argument, we find that as t→∞,

U ′(t) ∼ κ`
(

1 +
`− 1

q

)−1
t.

Inserting this estimate back into (2.8) and simplifying, we find that the number of K
where q is ramified and fK ≤ x is asymptotic, as x→∞, to(

κ`

(
1

`− 1
+

1

`2

)
x

)
· `− 1

q + `− 1
.

Comparing this estimate with (2.7) gives the second case of the lemma.
Finally, if q 6= ` and q 6≡ 1 (mod `), then q never divides any conductor fK , and so

q is always unramified. �

We are now in a position to prove Lemma 2.2. In addition to Lemma 2.6, we make
use of some powerful, recent theorems of Wood [29].

Proof of Lemma 2.2. The following two results are special cases of Wood’s theorems
on random G-extensions, in the special case when G = Z/`Z and the base field is Q:

(i) Let Q be a finite set of rational primes. For each q ∈ Q, choose a splitting
condition on q (for example, ‘split completely’, ‘non-inert’, etc.), viewed as
an event occurring with some probability in a randomly chosen K. Then the
events corresponding to different q ∈ Q are independent (see [29, Theorem
1.3]).

(ii) Fix a rational prime q. The probability that q splits completely in a randomly
chosen K, given that q is unramified, is the same as the probability that a
randomly chosen rational prime splits completely in a fixed (Z/`Z)-extension
of Q (see [29, Corollary 1.2], or Taylor [24, Theorem 2]). Note that by the
Chebotarev density theorem, the latter probability is 1/`.

By (i), it suffices to prove Lemma 2.2 in the case when Q consists of a single prime
q. Now applying (ii), we see that

Prob(q non-inert) = Prob(q splits) + Prob(q ramifies)

=
1

`
·Prob(q unramified) + Prob(q ramifies)

=
1

`
+

(
1− 1

`

)
·Prob(q ramifies).

To complete the proof, we substitute the ramification probabilities given in Lemma
2.6 and check that the result coincides with the value cni(q) specified in (1.1). �
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2.3. Proof of Lemma 2.3. The proof of Lemma 2.3 has two components. First,
we exhibit a bijection between certain primitive Dirichlet characters of order ` and
certain power-residue symbols associated with ideals of Z[ζ`]. This paves the way for
an application of higher reciprocity laws. These laws reduce the proof of Lemma 2.3
to the problem of quantitatively understanding the equidistribution of ideals in strict
ray class groups, for which we can appeal to known results.

We begin by reviewing the definition of the `th power residue symbol. (For com-
plete details, see [12, Chapter 14, §2].) Suppose that p is a prime ideal of Z[ζ`] prime
to `, and let α be an element of Z[ζ`]. Then the `th power residue symbol

(
α
p

)
`

is

either 0 or an `th root of unity, and is uniquely specified by the congruence(
α

p

)
`

≡ α
Nm(p)−1

` (mod p).

It is customary to extend this definition to allow non-prime ideals in the ‘denominator’:
If m is any ideal of Z[ζ`] prime to `, we write m =

∏
i pi, and we set

(
α
m

)
`

=
∏(

α
pi

)
`
.

The next lemma should be compared with the results discussed on [7, pp. 71–72].

Lemma 2.7. Suppose that f is a squarefree product of primes p ≡ 1 (mod `). There
is a one-to-one correspondence between primitive, order ` characters χ of conductor
f and ideals m of Z[ζ`] with norm f . More precisely: Given any m of norm f , the
map χ : Z→ C given by

(2.9) χ(a) =

(
a

m

)
`

is a primitive Dirichlet character of order ` and conductor f ; conversely, every such
Dirichlet character arises in this way from a unique m.

Proof. We start by showing that (2.9) defines a character of conductor f and order `.
Factor m = p1 · · · pk, and put pi = Nm(pi). Then the pi are distinct rational primes,
each pi ≡ 1 (mod `), and

∏
i pi = f . Define χpi : Z → C by setting χpi(a) =

(
a
pi

)
`
.

With χ defined by (2.9), we see that χ =
∏
i χpi . So if we show that each χpi is a

character of order ` modulo pi, it will follow (for example, from [18, Lemma 9.3]) that
χ is a primitive character of order ` and conductor

∏
i pi = f , as desired.

Each χpi is totally multiplicative in a, is periodic modulo pi, and vanishes precisely
when pi | a; thus, χpi is a Dirichlet character modulo pi. Clearly, the order of χpi
divides `. To see that the order of χpi is ` and not 1, choose a rational integer η
which is not an `th power modulo pi. Reduction modulo pi induces an isomorphism
Z/piZ ∼= Z[ζ`]/pi, implying that η is not an `th power modulo pi. Thus, χpi(η) 6= 1.
So χpi is nontrivial and therefore has order `.

It remains to show that each primitive Dirichlet character of order ` and conductor
f arises in this way from a unique m. Write f = p1 · · · pk, with the pi distinct and
each pi ≡ 1 (mod `). If χ is a primitive Dirichlet character modulo f , then χ has a
unique decomposition as a product

∏
i χpi , where each χpi is a Dirichlet character

modulo pi of order `. So we may assume that f = p is prime, where p ≡ 1 (mod `).
Let p be a prime above p, and let χp be the order `Dirichlet character corresponding

to p, so that χp(a) =
(
a
p

)
`
. The group of characters mod p is cyclic, and so every

Dirichlet character modulo p of order ` can be written uniquely in the form χjp, where
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1 ≤ j < `. If σj is the automorphism of Q(ζ`) sending ζ` → ζj` , then (see [12,
Proposition 14.2.4])

χjp(a) = σj(χp(a)) = σj

((
a

p

)
`

)
=

(
a

σj(p)

)
`

;

thus, χjp is the order ` Dirichlet character corresponding to the prime σj(p). Now
the distinct primes above p are precisely the ideals σj(p), for 1 ≤ j < `. Thus, every
character mod p of order ` arises, in a unique way, from the construction detailed in
the first half of the proof. �

We now take a brief detour to recall some terminology and results about ray class
groups. We let L denote a fixed number field. We also let Cl = IL/PL denote the
class group of L, and for each (nonzero) ideal f of L, we write Cl(f) = IL(f)/P+

L,f for
the strict ray class group modulo f. When we speak of ideal classes modulo f below,
we always mean classes of the strict ray class group mod f. Let h := #Cl denote the
class number of L and write h(f) := #Cl(f) for the strict ray class number modulo f.
It is known that if r1 denotes the number of real embeddings of L, then

h(f) | h · 2r1 ·#(OL/f)×.
(See, for example, [2, Proposition 2.1, p. 50].) In particular, since h and r1 depend
only on L,

(2.10) h(f)�L Nm(f).

The next lemma, due to Rieger [23, Hauptsatz and p. 465], is a precise form of the
elementary result that integral ideals prime to f equidistribute mod f.

Lemma 2.8. Let L be a fixed number field, and let f be a nonzero ideal of OL. For
x ≥ 1, every element of the strict ray class group modulo f contains

(2.11) C(f)x+OL(Nm(f)2−1/[L:Q]x1−1/[L:Q])

ideals of norm not exceeding x. Here C(f) is a constant depending only on f.

As shown by Dedekind, the total number of integral ideals of norm not exceeding
x is asymptotic to Ress=1ζL(s) · x, as x → ∞. Comparing this with the result of
summing (2.11) over all h(f) classes, we find that h(f)C(f) ≤ Ress=1ζL(s). So Lemma
2.8 implies the following crude upper bound:

Corollary 2.9. Let L be a fixed number field, and let f be a nonzero ideal of OL. For
x ≥ 1, every element of the strict ray class group modulo f contains

�L
1

h(f)
x+ Nm(f)2x1−1/[L:Q].

ideals of norm not exceeding x.

The next two lemmas bring higher reciprocity laws into the picture. The first of
these is a special case of [7, Lemma 28].

Lemma 2.10. Let q1, q2, . . . , qk be distinct rational primes. Let f be the principal
ideal of Z[ζ`] generated by `2q1q2 · · · qk. For integral ideals m of Z[ζ`] prime to f, the
sequence of values (

qi
m

)
`

, i = 1, 2, 3, . . . , k,
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depends only on the ideal class modulo f to which m belongs.

Lemma 2.11. In the notation of Lemma 2.10, the proportion of ideal classes of m
modulo f which make each

(
qi
m

)
`

= 1 is precisely `−k.

Proof. We begin by determining the density of prime ideals p of Z[ζ`] for which each(
qi
p

)
`

= 1. For each 1 ≤ i ≤ k, let Fi = Q(ζ`,
√̀
qi). Let F = Q(ζ`,

√̀
q1, . . . ,

√̀
qk) be

the compositum of the Fi. By [6, Lemma 3], the Fi are linearly disjoint over Q(ζ`),
and [F : Q(ζ`)] = `k. We now apply the splitting criterion of Dedekind–Kummer to
see that (apart from finitely many exceptional p)(

qi
p

)
`

= 1⇐⇒ p splits in Fi ⇐⇒
(
Fi/Q(ζ`)

p

)
is the identity of Gal(Fi/Q(ζ`)).

So all
(
qi

p

)
`

= 1 precisely when p splits in F (again, with finitely many exceptions).

By the Chebotarev density theorem (see, for instance, [11]), the set of such p has
density

1

[F : Q(ζ`)]
=

1

`k
.

It is now simple to conclude: Since prime ideals are equidistributed in ray class
groups (a result of Landau [16]), the proportion of allowable classes mod f in the
lemma statement must also be `−k. This argument is essentially due to Elliott [6, p.
144]. �

We can now prove Lemma 2.3.

Proof of Lemma 2.3. Let q1, . . . , qk be a list of the primes smaller than z belonging to
the congruence class −1 (mod `2). Rather than use the full strength of the condition
that nχ ≥ z, we will deduce the upper bound (2.1) using only that each χ(qi) ∈ {0, 1}.

For any primitive character χ of order `, we have seen already that the conductor fχ
is composed only of primes from the congruence classes 0, 1 (mod `). So automatically,
χ(qi) 6= 0. Thus, it suffices to prove the upper bound (2.1) for the count of primitive,
order ` characters χ of conductor not exceeding x with χ(qi) = 1 for all 1 ≤ i ≤ k.

We start by counting the χ of this type for which ` - fχ. By Lemmas 2.7, 2.10,
and 2.11, the count of such χ does not exceed the number of ideals of norm ≤ x from
a certain collection of `−kh(f) ideal classes modulo f, where f = (`2q1q2 · · · qk). By
Corollary 2.9, this last count is

(2.12) � x

`k
+

1

`k
h(f) ·Nm(f)2x1−1/` � x

`k

(
1 + Nm(f)3x−1/`

)
,

using the upper bound (2.10) for h(f) in the last step. Since the product of all of the
primes in [2, z] is bounded by 4z [10, Theorem 415, p. 453], we have (crudely)

Nm(f)3 = `6`(q1 · · · qk)3` � 43`z ≤ 4
3

10` log x < x
1
2` ,

and so our upper bound (2.12) is O(x/`k). Now if z is large (as we may assume),
then k � z/ log z, and so

x/`k ≤ x/ exp(cz/ log z)

for a certain c = c(`) > 0. This is precisely our claimed upper bound (2.1).
Suppose next that the conductor of χ is divisible by `. Write χ = χ1χ2, where χ1

is a primitive character of conductor `2 and χ2 is a primitive character of conductor
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prime to `. For each 1 ≤ i ≤ k, we have χ1(qi) = χ1((−1)`) = χ1(−1)` = 1, using
that qi ≡ −1 (mod `2). So

χ2(qi) = χ1(qi)χ2(qi) = χ(qi) = 1 for all 1 ≤ i ≤ k.
The analysis of the last paragraph shows that the number of possibilities for χ2 is
bounded by (2.1). But there are only `−1 = O(1) possibilities for χ1. So the number
of possible values of χ = χ1χ2 also satisfies the upper bound (2.1). �

3. The least split prime

With a few notable exceptions, the proofs of Theorems 1.2 and 1.3 closely parallel
our demonstration of Theorem 1.1. So we only sketch them here, focusing on those
steps which require a substantial departure from earlier arguments.

3.1. Proof of Theorem 1.2. In agreement with our earlier strategy, we re-organize
the finite average in (1.5) according to the value of p = nK . We then consider
separately the contribution from those p in the same three ranges as before: the small
primes p ≤ z, the medium-sized primes z < p ≤ (log x)1000, and the large primes
p > (log x)1000. The small primes are handled by the following lemma. As the proof
is essentially identical to that given for Lemma 2.2, we omit it.

Lemma 3.1. Let Q be a finite set of primes. The proportion of cyclic, degree `
number fields in which no q ∈ Q is split-completely is

∏
q∈Q cns(q). More precisely,( ∑

fK≤x

1

)−1( ∑
fK≤x

all q ∈ Q non-split

1

)
→
∏
q∈Q

cns(q), as x→∞.

Here the constants cns(q) are those defined in (1.4).

The treatment of the medium primes goes through the following lemma, which
differs from Lemma 2.3 only in the replacement of nχ with rχ.

Lemma 3.2. Let 2 ≤ z ≤ 1
10`2 log x. The number of primitive, order ` Dirichlet

characters χ of conductor not exceeding x for which rχ ≥ z is

� x exp(−cz/ log z),

where c = c(`) is a positive constant depending on `.

Lemma 3.2 is established in exactly the same way as Lemma 2.3, except that we
replace Lemma 2.11 with the following result (which, like Lemma 2.11, is proved by
applying the Chebotarev density theorem to Q(ζ`,

√̀
q1, . . . ,

√̀
qk)).

Lemma 3.3. In the notation of Lemma 2.10, the proportion of ideal classes of m
modulo f which make each

(
qi
m

)
`
6= 1 is precisely ( `−1` )k.

It remains to treat the contribution of the large primes. Tracing through our
argument for Theorem 1.1, we find that the proof of Theorem 1.2 will be completed
once we show that (as x→∞)

(3.1)
∑
fK≤x

rK>(log x)1000

rK = o(x).
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So far, all of our work has been unconditional. It is the proof of (3.1) which uses
the Riemann Hypothesis assumptions in Theorem 1.2. Specifically, those assump-
tions make possible an application of the following result, taken from Lagarias and
Odlyzko’s study [15] of effective versions of the Chebotarev density theorem.

Lemma 3.4. Let L/Q be a nontrivial Galois extension with discriminant DL. Sup-
pose that the Riemann Hypothesis holds for the Dedekind zeta function ζL(s). Then
for each conjugacy class C of Gal(L/Q), one can find a rational prime p unramified

in L with
(L/Q

p

)
= C for which

p� (log |DL|)2.
Here the implied constant is absolute.

Let K be any cyclic, degree ` number field. By [28, Theorem 4.3, p. 33], ζK(s)
factors as the product of ζ(s) and the L-functions L(s, χ), where χ runs over the `−1
characters χ corresponding to K. Since we are assuming in Theorem 1.2 that each
of these factors obeys the Riemann Hypothesis, so does ζK(s). Applying Lemma 3.4
with L = K and C the identity element of Gal(K/Q), we obtain that

rK � (log |DK |)2 = (log f `−1K )2 � (log fK)2.

This shows that the left-hand side of (3.1) is empty for large x, making the o-estimate
trivial. So there is, literally, nothing left to do for the proof of Theorem 1.2.

3.2. Proof of Theorem 1.3. It suffices to prove (3.1) unconditionally in the case
when ` = 3. In the proof of Theorem 1.1, the sum analogous to (3.1) was handled in
two steps: We bounded the maximum size of an individual term via Lemma 2.4 and
bounded the total number of terms by Lemma 2.5. The same strategy can be used
here. The number of terms in (3.1) is bounded in the following lemma, proved below
in §3.3. We continue to assume that ` is a fixed odd prime (not yet necessarily equal
to 3).

Lemma 3.5. Fix A > 1. The number of primitive, order ` characters χ of conductor
not exceeding x for which rχ > (log x)A is at most x

4
A+o(1), as x→∞.

Taking A = 1000, we see that the number of terms in the sum (3.1) is at most
x1/249 for large x, and so certainly at most x0.1. To bound the size of the terms in
(3.1), we invoke the main result of [21]:

Proposition 3.6. Let L/Q be an abelian extension, and let D denote the discrimi-
nant of L. For each ε > 0, the smallest rational prime p that splits completely in L
satisfies

p� |D| 14+ε.
Here the implied constant depends only on ε and the degree of L/Q.

Remark. This generalizes earlier work of Elliott [8], who proved the theorem when
L/Q has prime conductor. For further generalizations, see [20].

Now is where we must finally specialize to the case of cyclic cubic extensions (` = 3).
In this situation, D = f2K , and Proposition 3.6 shows that rK � f0.51K (say). (If ` ≥ 5,
we could still apply Proposition 3.6, but the resulting bound on rK would be too weak
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to be of use in proving (3.1).) Thus, each term of the sum (3.1) is O(x0.51). Since
x0.51 · x0.1 = o(x), we have the o-result asserted in (3.1). This completes the proof of
Theorem 1.3.

3.3. Proof of Lemma 3.5. Let X (Q) be the set of primitive Dirichlet characters
of conductor not exceeding Q, and recall the statement of Gallagher’s multiplicative
large sieve (see, for instance, [13, Theorem 7.13, p. 179]):

Lemma 3.7 (Multiplicative large sieve). Let Q,N ≥ 1. If {an}n≤N is any sequence
of complex numbers, then

∑
χ∈X (Q)

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

� (N +Q2)
∑
n≤N

|an|2.

Lemma 3.8. Suppose Q ≥ 1 and that 2 ≤ z ≤ Q2. Let Q be any set of primes
contained in [2, z]. The number of χ ∈X (Q) with

(3.2)

∣∣∣∣∣∣
∑
q∈Q

χ(q)

∣∣∣∣∣∣ > z/(log z)2

is

� (logQ)2 exp

(
4

logQ

log z
log(4 logQ)

)
.

Proof. We adapt a method of Elliott and Burgess (compare with [1, Lemmas 1 and
2] and [7, Lemma 9]). Let m be a positive integer parameter to be specified later.
For each χ ∈X (Q), we have∑

q∈Q

χ(q)

m

=
∑
n≤zm

χ(n)
∑

q1q2···qm=n
q∈Q

1.

So by the multiplicative large sieve,

(3.3)
∑

χ∈X (Q)

∣∣∣∣∣∣
∑
q∈Q

χ(q)

∣∣∣∣∣∣
2m

� (zm +Q2)
∑
n≤zm

 ∑
q1q2···qm=n

qi∈Q

1


2

.

By unique factorization, the right-hand inner sum is uniformly bounded by m! ≤ mm.
Hence, the right-hand side of (3.3) is O((zm+Q2)(zm2)m). It follows that the number
of χ ∈X (Q) satisfying (3.2) is

� ((log z)2mz−2m) · ((zm +Q2)(zm2)m) = (1 +Q2z−m)(m log z)2m.
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We choose m = d2 logQ/ log ze, so that Q2 ≤ zm < zQ2 ≤ Q4. This gives an upper
bound that is

� (m log z)2m ≤ exp(2m log(4 logQ))

≤ exp

((
4 logQ

log z
+ 2

)
log(4 logQ)

)
� (logQ)2 exp

(
4

logQ

log z
log(4 logQ)

)
,

as desired. �

Proof of Lemma 3.5. Let z := (log x)A. Suppose that χ is a primitive, order ` char-
acter of conductor f := fχ ≤ x for which rχ > z. Let Q be the set of primes not
exceeding z; then for every q ∈ Q, either q | f or χ(q) is a primitive `th root of unity.

Thus,
∑
q∈Q

∑`−1
j=0 χ

j(q) = 0. (In this sum and below, we understand χ0 to denote

the principal character modulo f .) By the triangle inequality, there is a j ∈ [1, `− 1]
for which ∣∣∣∣∣∣

∑
q∈Q

χj(q)

∣∣∣∣∣∣ ≥ 1

`− 1

∑
q∈Q

χ0(q) ≥ π(z)− ω(f)

`− 1
.

Once x is large, π(z) � z
log z = (log x)A

A log log x while ω(f) ≤ Ω(f) < 2 log x. So (again for

large x) we have ω(f) < 1
2π(z) and

π(z)− ω(f)

`− 1
≥ π(z)/2

`− 1
>

z

(log z)2
.

So χj is counted in Lemma 3.8 with Q = x and z = (log x)A. Substituting in these
values of Q and z, we find that the number of possibilities for χj at most x4/A+o(1).
Since χ belongs to the `-element subgroup generated by χj , the lemma follows. �

Remark. We have not discussed the smallest ramified prime in K, say qK . The
trivial observation that qK is the smallest prime factor of fK allows one to show

easily that
∑
fK≤x qK ∼

x2

2(`−1) log x as x → ∞. In fact, the sum is dominated by

those K with prime conductor, in the sense that the asymptotic formula is unaffected
even if the sum is restricted to such K. (Compare with Kalecki’s determination [14]
of the average least prime factor of an integer.) By Lemma 2.1, the average of qK ,
taken over all K with fK ≤ x, is thus asymptotic to a constant multiple of x/ log x.
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